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On the Non-existance of Rotation-Symmetric von Neumann
Neighbor Number-Conserving Cellular Automata of Which the
State Number is Less than Four

Naonori TANIMOTO†a), Katsunobu IMAI†, Chuzo IWAMOTO†, and Kenichi MORITA†, Members

SUMMARY A number-conserving cellular automaton (NCCA) is a
cellular automaton such that all states of cells are represented by integers
and the total number of its configuration is conserved throughout its com-
puting process. In constrast to normal cellular automata, there are infinitely
many assignments of states for NCCAs with a constant state number. As
for von Neumann neighbor(radius one) NCCAs with rotation-symmetry,
a local function can be represented by summation of four binary func-
tions. In this paper, we show that the minimum size of state set of rotation-
symmetric von Neumann neighbor NCCA is 5 by using this representation.
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1. Introduction

A number-conserving cellular automaton (NCCA) is a cel-
lular automaton such that all states of cells are represented
by integers and the total number of its configuration is con-
served throughout its computing process. It can be thought
as a kind of modelization of the physical phenomena, for ex-
ample, for modeling fluid dynamics [4] and highway traffic
flow [9].

Boccara et al. [2]. studied number conservation of one-
dimensional CAs on circular configurations based on a gen-
eral theorem on additive conserved quantities by Hattori et
al. [5]. Durand et al. [3]. studied the two-dimensional case
and the relation between several boundary conditions. Al-
though their theorems are useful for deciding given CAs are
number-conserving or not, it is quite difficult to design NC-
CAs with complex transition rules.

As for von Neumann neighbor(radius one) NCCAs
with rotation-symmetry, a local function can be represented
by summation of four binary functions [10]. This indicates
that the type of the neighborhood and the symmetry of the
rule constrain the design of the rule for an NCCA. By using
this framework, we constructed 14-state logically universal
NCCA.

In the general case, 2-state logically universal CA was
constructed by Banks [1]. But in the NCCAs case, it turned
out that it is difficult to construct a small state universal
NCCA for the constraint of rotation-symmetry. In this pa-
per, we make clear that there is no rotation-symmetric von
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Neumann neighbor NCCA of which the size(element num-
ber) of state set is less than four.

There is a study of enumeration of one dimensional ra-
dius one NCCAs for a constant size of state set by now. But
it is not exhaystive listing for the size of state set. Because
there are infinitely many assignments of states for NCCAs
with a constant size of state set.

At first, we show another way of inspecting the number
of state of NCCAs that the above representation is also use-
ful for estimating the size of state set. To be more precise,
we calculate state number of rotation-symmetric NCCA of
which all state are represented by symbols. As a result,
we show that the minimum size of state set of rotation-
symmetric von Neumann neighbor NCCA is 5.

2. Definitions

Definition 2.1: A deterministic two-dimensional von Neu-
mann neighbor cellular automaton is a system defined by
A = (Z2,Q, f , q), where Z is the set of all integers, Q
is a non-empty finite set of internal states of each cell,
f : Q5 → Q is a mapping called a local function and q ∈ Q
is a quiescent state that satisfies f (q, q, q, q, q) = q.

A configuration over Q is a mapping α : Z2 → Q and
the set of all configurations over Q is denoted by Conf(Q),
i.e., Conf(Q) = {α|α : Z2 → Q}.

The function F : Conf(Q) → Conf(Q) defined as fol-
low is called the global function of A.

∀(x, y) ∈ Z2,

F(α)(x, y) = f (α(x, y), α(x, y + 1), α(x + 1, y),

α(x, y − 1), α(x − 1, y)).

Definition 2.2: CA A is said to be number-conserving iff

∀c ∈ Conf(Q),
∑

(x,y)∈Z2

{F(c)(x, y) − c(x, y)} = 0.

Definition 2.3: We say that CA A is trivial if its global
function F satisfies the following condition.

∀c ∈ Conf(Q), c = F(c).

We say that A is non-trivial if it is not trivial.

In this paper, we only consider CAs with finite configura-
tions, i.e., the number of cells which states are not quiescent
is finite. Next we define some symmetry conditions.
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Definition 2.4: CA A is said to be rotation-symmetric if its
local function f satisfies the following condition.

∀c, u, r, d, l ∈ Q, f (c, u, r, d, l) = f (c, r, d, l, u).

3. Von Neumann Neighbor Number-Conserving Cellu-
lar Automata

We showed a necessary and sufficient condition for a von
Neumann neighbor CA to be number-conserving in [10].

Theorem 3.1: [10] A deterministic two-dimensional von
Neumann neighbor CA A = (Z2,Q, f , q) is number-
conserving iff f satisfies

∃gU , gR, gD, gL, hUR, hRD, hDL, hLU : Q2 → Z,

∀c, u, r, d, l ∈ Q,

f (c, u, r, d, l) = c + gU(c, u) + gR(c, r) + gD(c, d)

+gL(c, l) + hUR(u, r) + hRD(r, d) + hDL(d, l)

+hLU(l, u),

gU(c, u) = −gD(u, c), gR(c, r) = −gL(r, c),

hUR(u, r) = −hDL(r, u), hRD(r, d) = −hLU(d, r).

Next, we derived a necessary and sufficient condition
for a rotation-symmetric CA to be number-conserving from
the condition.

Corollary 3.1: [10] A deterministic two-dimensional rota-
tion-symmetric von Neumann neighbor CA A = (Z2,Q, f , q)
is number-conserving iff f satisfies

∃g, h : Q2 → Z,∀c, u, r, d, l ∈ Q,

f (c, u, r, d, l) = c + g(c, u) + g(c, r) + g(c, d)

+g(c, l) + h(u, r) + h(r, d) + h(d, l) + h(l, u),

g(c, u) = −g(u, c), h(u, r) = −h(r, u).

According to this condition, a local function of a
rotation-symmetric NCCA is represented by summation of
two binary function g and h. The binary function g indicates
the number flow between two cells in a vertical or horizontal
direction, and h does in a diagonal direction. In a vertical or
horizontal flow, a value moves on two cells of which states
are arguments of g. But in the diagonal flow case, cells on
which a value moves don’t correspond to arguments of h.
This causes divergence of the state number.

In order to design a rotation-symmetric NCCA, we
only have to define g and h. Although it may not be a CA for
the divergence of its state number, there exists a procedure
to modify these functions for construction of an NCCA after
designing g and h. The procedure is following.

Procedure 3.1: [10]

1. Choose a partial state set Q̃ of size k(> 0) and design
binary function g(x, y) and h(x, y) for (x, y) ∈ Q̃2.

2. Q′ := ∅. If f (v) � Q̃, then Q′ := Q′ ∪ f (v)(∀v ∈ Q̃5).
Q := Q̃ ∪ Q′.

3. If Q′ = ∅, then stop this procedure.

4. S := ∅. If f (c, u, r, d, l) � Q, then S := S ∪
{(c, u, r, d, l)}(∀c ∈ Q′,∀u, r, d, l ∈ Q).

5. If S = ∅, then stop this procedure.
6. ∀(c, u, r, d, l) ∈ S ,

a. T := {(u, r), (r, d), (d, l), (l, u)}, U := {u, r, d, l}.
b. g(c, i) := νi and g(i, c) := −νi(∀i ∈ U) as∑

i(∈U) νi = −∑w(∈T ) h(w).

7. Q′ := ∅. ∀(c, u, r, d, l) ∈ Q5,

a. ξ := c + g(c, u) + g(c, r) + g(c, d) + g(c, l).
b. If ξ � Q, then Q′ := Q′ ∪ {ξ}.

8. Q := Q ∪ Q′. Goto line 4.

We will show an example of a construction of a
rotation-symmetric NCCA according to this procedure.

Example 3.1: Let’s consider an NCCA Aex =

(Z2,Qex, fex, 0). We define Q̃ex = {0, 4} , g(0, 4) = 1,
g(4, 0) = −1, and other values of g and all values of h as 0.
According to the line 2 of the Procedure 3.1, Q′ex = {1, 2, 3}
and Qex = {0, 1, 2, 3, 4}. In line 4, S is ∅ because all values
of h are 0. Therefore this procedure stops at line 5. The size
of state set is 5.

4. A Relationship between the Binary Function of a
Rotation-Symmetric Number-Conserving Cellular
Automaton and Its State-Number

Any rotation-symmetric NCCA can be represented by the
functions g and h of Corollary 3.1. In this section, we show
there is no assignment of values to these functions for the
local function of an NCCA which state is less than 5 and the
minimum assignment of these functions can produce 5-state
NCCA rules.

Lemma 4.1: If we define Q̃ = {a, b} and g(a, b) � 0 for any
a and b(a < b) to design a non-trivial rotation-symmetric
von Neumann neighbor NCCA, |Q| of this NCCA is in the
range [5, 10].
Proof. We set g(a, b) = −g(b, a) = α(α ∈ N) and re-
gard other value of g as 0. When we calculate f for all
Q̃5 according to the corollary 3.1, it becomes clear that
a+α, a+ 2α, a+ 3α, a+ 4α, b− 4α, b− 3α, b− 2α and b−α
are also needed in addition to a and b. We have to define
values of g of which arguments includes these new states. If
we regard these values as 0, other states are not generated.
In the case of b − a > 8α, these numbers are different each
other as followings (Fig. 1). In the case of b − a ≤ 8, there
are cases that |Q| gets smaller than 10 because some of them
overlap each other. When b − a = 8α, a + 4α = b − 4α, the
|Q| is 9. In the same way, when b − a = nα(n = 1, 2, . . . , 7),
there is 5−|n−4| overlaps. So the |Q| is 5+ |n−4|. Therefore
the |Q| is in the range [5, 10]. �

Fig. 1 |Q| on a number line.
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Fig. 2 Value flows on configurations.

Lemma 4.2: If we define Q̃ = {a, b} and h(a, b) � 0 for any
a and b(a < b) to design a non-trivial rotation-symmetric
von Neumann neighbor NCCA, the minimum value of |Q| is
5.
Proof. We set h(a, b) = −h(b, a) = α(α ∈ N) and regard
other value of h as 0. We also set the minimum and the max-
imum value of Q as min and max respectively. To prevent
divergence of the state number, the two value g(min, b) =
α, g(max, a) = −α need to be defined at least (Fig. 2). When
we calculate f for all Q̃5 according to the corollary 3.1, it be-
comes clear that Q = {min,min+α,min+2α,min+3α,min+
4α, b−4α, b−3α, b−2α, b−α, b, a, a+α, a+2α, a+3α, a+
4α,max − 4α,max − 3α,max − 2α,max − α,max}. These
numbers must satisfy the following inequalities.

min ≤ a, b ≤ max,min ≤ b − 4α,

a + 4α ≤ max, 4α ≤ max − min.

If min = a and max = b, Q = {a, a + α, a + 2α, a + 3α, a +
4α, b − 4α, b − 3α, b − 2α, b − α, b}. In the same way of the
proof of lemma 3.1, when b− a = 4α, |Q| is 5 and this is the
minimum value of |Q|. If we calculate f for all Q5, we can
verify the sufficiency of Q. �

Theorem 4.1: The minimum value of |Q| of a non-trivial
rotation-symmetric von Neumann neighbor NCCA is 5.
Proof. According to lemma 4.1 and 4.2, if the number of
non-zero values of function g or h is one, the |Q| needs 5 at
least. If the number of non-zero values of function g or h is
more than two, |Q̃| needs more than 2. Therefore, there is no
possibility that |Q| is below 5. �

5. Conclusion

In this paper, we show that the minimum size of state set

of rotation-symmetric von Neumann neighbor NCCA is 5.
Although the representation of a local function by binary
funcitons was suggested for an easy construction method of
a rotation-symmetric NCCA, it is also useful for estimating
the lower bound of its size of state set. As the result, the
minimum state set size of the rotation-symmetric von Neu-
mann neighbor universal NCCA should be from 5 to 13 so
far. But the careful inspection of the representation will re-
duce the range.
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