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A Message-Efficient Peer-to-Peer Search Protocol Based on
Adaptive Index Dissemination

Yu WU†a), Nonmember, Taisuke IZUMI††, Fukuhito OOSHITA†, Members,
Hirotsugu KAKUGAWA†, Nonmember, and Toshimitsu MASUZAWA†, Member

SUMMARY Resource search is a fundamental problem in large-scale
and highly dynamic Peer-to-Peer (P2P) systems. Unstructured search
approaches are widely used because of their flexibility and robustness.
However, such approaches incur high communication cost. The index-
dissemination-based search is a kind of efficient unstructured search ap-
proach. We investigate such approaches with respect to minimize the sys-
tem communication cost. Based on a dynamic system model that peers
continuously leave and join, we solve two problems. One problem is how
to efficiently disseminate and maintain a given number of indices. An-
other is to determine the optimal number of indices for each resource object
of a given popularity. Finally, we propose an optimized index dissemina-
tion scheme which is fully decentralized and self-adaptive. A remarkable
advantage is that the scheme yields no additional communication cost to
achieve the self-adaptive feature.
key words: peer-to-peer, search, message cost, popularity, adaptability,
index-dissemination

1. Introduction

1.1 Background

Peer-to-Peer (P2P) applications, with prominent advantages
such as scalability, robustness and low development cost,
have developed quickly in recent years [1]. Different from
traditional client-sever systems that place resources in cen-
tral servers, P2P systems distribute resources all over the
system. Therefore, the resource search, which is to find out
the peer storing the target object, is one of the fundamental
building blocks for P2P systems [2]. (Throughout this pa-
per, we use a term ‘object’ to abstract all kind of resources
including files, services and so on). Since P2P systems are
usually large-scale and highly dynamic, search protocols are
desired to be scalable, robust and adaptive [3], [4].

Some early P2P systems (e.g. Napster) adopt central-
ized search schemes [5]. Such systems maintain a number of
servers in which peers register their objects’ indices, each of
which is an entry including the name, location, and other re-
lated information of the corresponding object. By accessing
one or more index servers, searchers can obtain the location
of their target objects. A serious drawback of the central-
server approach is that index servers suffer heavy load to
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process search queries when the system size becomes large.
Decentralized search schemes have attracted more at-

tentions because of their load balancing property and scala-
bility [6]–[8]. In such systems, the task of processing search
queries are shared by all member peers so that the system
may not have the bottleneck even in large-scale systems.
Decentralized search protocols are usually classified into
two categories: the structured search protocols and the un-
structured ones [9]. Most of structured search protocols are
based on the distributed hash table (DHT) technique [10]–
[12]. In these protocols, each peer places objects’ indices
(or the object itself) in specified peers and organizes struc-
tured network topologies where search queries can be routed
to the target object with a few messages. However, since in
real P2P systems most of peers stay in the system for a short
time, frequent updates are required to maintain topological
structures, which is very costly. Unstructured search proto-
cols, which are widely used in modern P2P systems, do not
require specified network topologies [13]–[16]. Such proto-
cols usually use a kind of random dissemination strategies
(e.g. flooding or random walk) to distribute query messages
over the system. Although they incur higher message cost
in search processes than structured ones, the cost imposed
by leave or join of peers is quite limited. This advantage is
also favorable in respect to fault resilience.

To reduce search cost in unstructured protocols, it is
effective in many cases to distribute indices (or replicas) of
objects. Then, the object with more indices can be found
easier. However, if an object has many indices, the dis-
semination and maintenance cost of those indices becomes
large. This implies that there is a trade-off between the index
maintenance cost and the search cost. The popularity-based
dissemination which disseminates more indices for popular
objects and less for unpopular ones, is an efficient strategy
to reduce the total communication cost of the system.

1.2 Our Contribution

We focus on the unstructured search schemes with the index
dissemination mentioned above. The problem is to find out
the optimal index dissemination scheme that minimizes the
total communication cost which includes both index main-
tenance cost and search cost.

The problem is firstly investigated by theoretical ap-
proaches. We analyze the system under an uniform-random
access model that each peer randomly send messages to
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other peers. We also introduce a dynamic churn model
that peers join and leave frequently. Since disseminated in-
dices disappears by leave of peers, the object’s holder has
to disseminate indices periodically. Thus, in this paper, we
consider the optimal index dissemination problem consists
of the following two subproblems: The first one is to find
the optimal scheduling for disseminating a given number
of indices. We propose the Stream Method that is to aver-
agely disseminate the same number of indices in each time
unit. The Stream Method is proved to minimize the expected
search cost with a given number of indices. The second sub-
problem is how many indices an object should have, consid-
ering its popularity. We show that the communication cost
of an object is minimized when its index dissemination cost
equals to its search cost, which is called Equal Rule. Based
on the Stream Method and Equal Rule, we work out the opti-
mal index number for each object and the lower bound of the
system total communication cost (i.e. the sum of the mini-
mum cost of each object) under the uniform-random access
model.

Then, we propose a distributed protocol that optimizes
the index dissemination and minimizes the system commu-
nication cost in a self-adaptive manner. Our protocol does
not need any global informations (i.e. number of peers, ob-
jects’ popularities and etc.). In addition, it yields almost
no additional communication cost (other than that for in-
dex dissemination and search) to achieve the distributed and
self-adaptive features. The performance of the protocol is
justified by simulation.

1.3 Related Works

Quorum-based Search. The quorum-based search pro-
tocol formulated the index-dissemination-based search ap-
proach [17]. Under the uniform-random access model, the
work presents a quantitative analysis of the hit rate with
given number of indices and search size. However, it does
not provide any optimization arguments. Based on the
same search principle, we optimize the index dissemina-
tion scheme and minimize the system total communication
cost. Our work can be regarded as a completed version of
the quorum-based search.

Peer Sampling Services. The uniform-random peer sam-
pling service is an important functional module for many
distributed algorithms. It is also a fundamental assumption
of this paper. Many works are proposed to implement it in
distributed ways. For example, some works firstly construct
a random network-like topology. Then if a peer sends a mes-
sage to a randomly selected neighbour, the message can be
regarded as being sent to a randomly selected peer from the
system [18], [19]. One can also use the random walk to relay
the message to multiple random destinations. The service
can also be achieved by more sophisticated approaches such
as the Metropolis-Hastings algorithm which is applicable in
arbitrary network topologies [20].

Most of such algorithms works proactively to maintain

a network [18], [19], or collecting neighbouring peers’ in-
formations [20], with O(d) messages for each peer where
d is the average degree. However, when sampling, they
cost no additional messages. Comparing with the ideal ran-
dom sampling, such distributed approaches may be not com-
pletely random so that a same peer may be multiply sampled
more often. That may slightly reduces the performance, but
the problem is usually not critical.

Square-Root Replication. The Square-Root Replication
(SRR) is a optimized storage assignment principle for
replica-dissemination-based search protocols [9], [21]. With
a similar purpose, the SRR adopts popularity-biased replica
dissemination to minimize system search cost. Different
from our approach that disseminate indices, the number of
disseminated replicas is limited by the system storage ca-
pacity because a replica’s size is usually large. The SRR
shows that the search cost for all objects can be minimized
when the number of each object’s replicas is proportional to
the square root of the object’s popularity. However, if the
system storage capacity is small, it is still difficult to find
objects because each object can have only a small amount
of replicas. On the other hand, since the SRR does not con-
sider the cost for file replication, the cost may be huge in
a system having a large storage. Modern P2P systems of-
ten adopt index-dissemination for search and optimize the
storage assignment only for download.

1.4 Organization

The organization of this paper are as follows: Section 2 in-
troduces the system model and the principle of the index-
dissemination-based search; Section 3 investigates the op-
timal index dissemination scheme; Section 4 presents an
adaptive protocol to achieve the optimal index dissemina-
tion; Section 5 evaluates the protocol by simulation; Sec-
tion 6 discusses some supplemental issues in real system
environments; and finally we give concluding remarks in
Sect. 7.

2. Preliminaries

2.1 System Model and Definitions

Throughout this paper, we adopt the discrete-time model
where continuous time is divided into a series of discrete
time intervals of the same length. Each interval is called
a time unit. In each time unit, peers can execute one or
more searches to find some resources. We assume that ev-
ery search executed during time unit t is necessarily termi-
nates within t. Notice that time units are introduced only
to simplify the system and that we do not require peers to
synchronize. That is, in the protocol proposed in this paper,
peers do not aware the global clock.

A P2P system is defined by a dynamic set of peers in
which peers join and leave frequently. In time unit t, m(t)
peers join the system. When a peer joins the system, it is
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assigned a random lifetime L drawn from some distribution
l(τ, t) [22], [23]. That is, in time unit t, let L be the lifetime,
Pr[L = τ] = l(τ, t), l(τ, t) ≥ 0 for any τ and

∑∞
τ=0 l(τ, t) = 1

for any t. The lifetime distribution can be arbitrary as long as
the expectation E[L] =

∑∞
τ=1 τ · l(τ, t) is finite. The lifetime

of each peer decreases by 1 per time unit. After the lifetime
decreased to 0, the peer leaves the system. Re-joined peers
are regarded as newly-joining peers, i.e. if a peer leaves the
system, its historical information is vanished.

There are some objects {a, b, c . . .} in the system. Each
object is independent, i.e. the copies of the same data item
are regarded as the same object. The popularity fx(t)(≥ 0)
of object x is defined by the the total number of times that
x (including all copies of x) is searched during time unit t.
The popularity of each object is independent of the others.

We assume an ideal random peer sampling service that
enables a peer send messages to peers selected from the sys-
tem uniformly at random, i.e. each peer is selected with the
probability 1/n where n is the number of peers. The service
is abstract that the detailed implementation, including net-
work topology and the routing method, is not specified. We
also assume the communication cost for the service is fixed
for the system, i.e. the cost is not affected by the number of
samplings. This assumption is reasonable as we mentioned
in Sect. 1.3. The ideal assumption is only used to obtain a
tight lower bound of the system communication cost. We
will show latter that our protocol works well with non-ideal
sampling services.

For simple presentation, we measure the communica-
tion cost by the number of transferred messages. (The term
‘message cost’ is used instead of the term ‘communication
cost’.) This metric is reasonable because the sizes of mes-
sages used in index-dissemination-based search protocols
are almost equal regardless of their types (i.e. query or in-
dex). Notice the message cost is the logical communication
cost on an overlay network. It does not represent physical
distance between peers. One can consider that the message
cost is the average physical communication cost for deliver-
ing a message between any two peers in the network.

Finally, we introduce some terms which will appear in
the following of this paper. A peer which currently attend
the system is called an active peer. The peer which stores a
copy of an object is called the owner of the object. If an in-
dex is stored in an active peer and points to an active owner
of the object, we say the index is available. The variables
(functions) m(t), l(τ, t) and fx(t) are called environment pa-
rameters. The environment parameters are not known by
any peers. In Sect. 3, we present theoretical contributions
when system environment parameters are given. In Sect. 4,
we propose a self-adaptive protocol to minimize the system
message cost when those parameters are unknown and dy-
namic.

2.2 Index-Dissemination-Based Search

We introduce the framework of the index-dissemination-
based search. It is mainly abstracted from the quorum-based

search protocol [17]. The description of the framework is as
follows:

• Index dissemination: The owner of an object x dissem-
inates some indices of x to some peers selected uni-
formly at random from the system.
• Search process: The searcher sends a query messages

to a peer selected uniformly at random. If the query
message is received by the peer which holds an index of
the target object (or the object itself), the search process
succeeds. Otherwise, the searcher sends the query to
another peer. This process is repeated until the target
object is found.
• Index maintenance: Each index has a predefined time-

to-live (TTL) value. An index will be deleted when its
lifetime is expired. Indices are maintained by periodi-
cal re-dissemination by the owner of the object.

Notice that although the limited lifetime of indices may
delete some available indices, it is favorable for fault toler-
ance because bad indices (i.e. the indices pointing to some
disappeared objects that have been deleted or left with their
owners) can stay in the system before their lifetimes expired.
Moreover, from the viewpoint of load balance, it also avoids
old peers, which have joined the system for long time, to
store too much indices.

Comparing with the quorum-based search, the frame-
work is more general in the sense that it allows arbitrary
sizes for query and index quorums. We show some mathe-
matical results of the framework below:

Lemma 2.1: Let n, q and p respectively be the number of
peers, the number of available indices of an object in the
system and the number of query messages used to search
for the object. The success probability that the searcher find
the target object is at least 1 − e−qp/n.

Proof: Since query messages are sent to the peers selected
uniformly at random, each query finds the target object’ in-
dex with a probability q/n. Thus the object can be found
with a probability

ρ = 1 − (1 − q/n)p

≥ 1 − e−qp/n.

�

Lemma 2.2: Let n, q and p respectively be the number of
peers, the number of available indices of an object in the
system and the query messages used until the index of the
target object is found. The expectation of p is E[p] = n/q.

Proof: The probability that the first index of the object is
found by the exactly the k th probing is

Pr[p = k] = (1 − q/n)(k−1) · q/n.
That is, there must be k − 1 failed probes followed by the
successful one. Thus, the random variable p follows a geo-
metric distribution that each probe succeeds with the proba-
bility q/n. Therefore, we obtain E[p] = n/q [24].

�
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3. Optimization of Index Dissemination

In this section, we analyze the system in a stable environ-
ment that m(t) = m, m > 0; l(τ, t) = l(τ), l(τ) ≥ 0; fx(t) = fx,
fx > 0. Clearly, if t is large enough, the expected number of
the peers join in time unit t − i is m

∑∞
τ=i l(τ). So the number

of peers in a stable system converges to n = m
∑∞

i=1
∑∞
τ=i l(τ).

Then, we have

n = m
∞∑

i=1

∞∑
τ=i

l(τ) = m
∞∑
τ=1

τ∑
i=1

l(τ) = mE[L]. (1)

As shown in Fig. 1, if m and t are large enough, we can
approximately consider the number of peers is fixed to n.

3.1 Formulation of the System Message Cost

We consider the system message cost consists of the search
cost and the index maintenance cost of all objects in the sys-
tem. Notice the cost for the random peer sampling service
is not omissible. However, as we mentioned in Sect. 1.3,
those algorithms work proactively and that their cost is fixed
for each peer [17], [18]. Therefore, the sampling cost does
not affect the trade-off between index maintenance cost and
search cost. For simple presentation, we do not count it in
the following of the paper.

Due to independence of the message cost related to
each object, the system message cost is minimized iff the
message cost related to each object is minimized. Therefore,
in the following of the paper, we focus on how to minimize
the total message cost related to an single object x. Below,
we give the definition of the system message cost, a sum-
mary is listed in Table 1.

Definition 3.1: (Search size). The search size, denoted by
px,s(t), is the number of search queries each searcher s uses
to find object x in time unit t. The search size px,s(t) is a
random variable.

Definition 3.2: (Search cost). The search cost, denoted by

Fig. 1 The number of peers in a newly created system. m = 400; Pareto
distribution for peers’ lifetime: Prob[L ≤ τ] = 1− (1+ τ/50)−2 that implies
E[L] = 50, n = 20000.

sx(t), is the total number of query messages used to find
object x during time unit t. That is, sx(t) =

∑
∀s px,s(t). Since

px,s(t) is a random variable, sx(t) is also a random variable.

Definition 3.3: (Index maintenance cost). The index main-
tenance cost, denoted by qx(t), is the number of the indices
for object x disseminated during time unit t.

Definition 3.4: (Message Cost). The message cost, de-
noted by mx(t), is the sum of the index maintenance cost
qx(t) and the search cost sx(t) of object x during time unit
t. That is, mx(t) = qx(t) + sx(t). Since sx(t) is a random
variable, mx(t) is also a random variable.

By the definitions, the message cost of object x is
mx(t) = qx(t) +

∑
∀s px,s(t). Letting Mx(t), S x(t) and Px(t)

be the expectations of mx(t), sx(t) and px,s(t) respectively,
we obtain

Mx(t) = qx(t) + S x(t) = qx(t) + fx · Px(t). (2)

Notice that no matter which peer is the searcher, the ex-
pected search size is the same because each searcher sends
query messages to randomly selected peers in the system.

3.2 Index Dissemination Method

A disseminated index may disappear in two cases. One case
is that the index’s TTL value is expired. Anther case is that
the peer which stores the index leaves the system. There-
fore, the number of available indices for each object is de-
cided by not only how many but also when those indices
were disseminated.

The leave of peers can be described as follows. In time
unit t, the expected number of peers with lifetime τ is η(τ) =
m
∑∞

i=0 l(τ + i) where ml(τ + i) is the expected number of
peers joined in time unit t − i. Those η(τ) peers will leave
the system in time unit t + τ. We define a damping function
by d(τ) =

∑τ
i=1 η(i)/n which indicates the probability that

peers in the current system leave after τ time units. Clearly,
d(τ) is monotonically increasing and 0 ≤ d(τ) ≤ 1 for any τ.
Notice η(τ) and d(τ) are independent of t.

For case study, we analyze two index dissemination
methods: the burst method which is used in the quorum-
based search protocol [17], and the stream method we newly
proposed. In the burst method, the owner of an object x dis-
seminates Qx indices once per T time units (called a TTL
cycle), where T is the predefined TTL value of indices. In
this case, the number of available indices decreases during
each TTL cycle. In the τ-th time unit of each TTL cycle, the
expected number of available indices qB

x (τ) is

qB
x (τ) = Qx · (1 − d(τ)). (3)

In contrast, in the stream method, the owner disseminates
Qx/T indices in each time unit. In this case, the expected
number of available indices qS

x (t) is fixed that
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Table 1 Symbols’ definition, time unit t.

n The number of peers in the system.
m The number of peers join the system in each time unit.
l(τ) The lifetime distribution of peers.
d(τ) The probability of peers leave after τ time units.
fx The popularity (search frequency) of object x.
px,s(t) (A random variable). The search size for searcher s to

find object x.
Px(t) The expectation of px,s(t).
sx(t) (A random variable). The search cost of object x,

sx(t) =
∑
∀s px,s(t).

S x(t) The expectation of sx(t), S x(t) = fx · Px(t).
qx(t) The index maintenance cost of object x.
mx(t) (A random variable). The message cost of object x,

mx(t) = qx(t) + sx(t).
Mx(t) The expectation of mx(t),

Mx(t) = qx(t) + S x(t) = qx(t) + fxPx(t).

Fig. 2 The percentage of the number of available indices number, T =
50, m = 400; Pareto distribution for peers’ lifetime: Prob[L ≤ τ] = 1− (1+
τ/50)−2.

qS
x (t) =

T∑
τ=1

(1 − d(τ)) · Qx/T. (4)

Figure 2 shows the percentage of the number of available in-
dices adopting two index dissemination methods. The same
number of indices, marked by 100%, are disseminated in
each TTL cycle.

Let MB
x and MS

x be the average message cost of the
burst method and the stream method respectively. Accord-
ing to lemma 2.2 and equality 2,we obtain:

MB
x =

Qx

T
+

1
T

T∑
τ=1

fxn
Qx · (1 − d(τ))

=
Qx

T
+

fxn
QxT

T∑
τ=1

1
(1 − d(τ))

; (5)

MS
x =

Qx

T
+

fxn∑T
τ=1 (1 − d(τ)) · Qx/T

=
Qx

T
+

fxnT
Qx

1∑T
τ=1 (1 − d(τ))

. (6)

Then we have

MB
x =

Qx

T
+

fxn
T Qx

T∑
τ=1

1
(1 − d(τ))

≥ Qx

T
+

fxn
Qx

1

T
√∏T

τ=1 (1 − d(τ))

≥ Qx

T
+

fxnT
Qx

1∑T
τ=1 (1 − d(τ))

= MS
x .

Therefore, the stream method achieves lower search cost
than the burst method even the index maintenance cost is
the same. Actually, we can show that the stream method
is the best index dissemination scheme in the sense that it
minimizes the expected search cost.

Theorem 3.1: The stream method is the optimal index dis-
semination method that minimizes the expected search cost
under a fixed index maintenance cost.

Proof: We assume the number of indices being disseminated
in each time unit follows a periodic function g(τ), 1≤ τ ≤Γ,
where Γ is the cycle of g(τ). Without loss of generality, we
assume Γ > T . (By combining several consecutive short
cycles, we can regard g(t) as a function of a long cycle.)
The expected number of available indices in the τ-th time
unit, denoted by a(τ), is

a(τ) =
τ−1∑

t=τ−T

g(t)(1 − d(τ − t)), (7)

where a nonpositive time label t indicates the (Γ − t)th time
unit of the previous cycle. Clearly, for any τ, a(τ) ≥ 0.

Letting q be the fixed average number of the indices
being disseminated in each time unit, we obtain

Γ∑
τ=1

g(τ) = Γ·q. (8)

By Equality 7 and 8, we obtain

Γ∑
τ=1

a(τ) = qΓ
T∑

t=1

(1 − d(t)).

Letting S x be the sum of the expected search cost in each
cycle, we obtain:{

S x =
∑Γ
τ=1 fx · n/a(τ)∑Γ

τ=1 a(τ) = qΓ
∑T

t=1(1 − d(t)).
(9)

Notice
∑Γ
τ=1 a(τ) is a finite constant which is independent

of both t and g(t). Therefore, by basic inequalities, we can
obtain

S x ≥ fx · n · Γ/q
T∑

t=1

(1 − d(t)).

Equality holds when

∀τ(1 ≤ τ ≤ Γ), a(τ) = q
T∑

t=1

(1 − d(t)).

Therefore, the search cost is minimized when the number of
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available indices is uniform in each time unit. Trivially, it is
only achievable by the stream method.

The theorem holds even if we consider non-periodical
dissemination methods because the same argument is possi-
ble if Γ is infinitely long. �

3.3 Optimal Index Number

Next, we investigate the minimum message cost when
adopting the stream method. By Equality 6 and the basic
inequality x + C/x ≥ 2

√
C, we obtain the minimum mes-

sage cost min[Mx] of object x that

min[Mx] = 2

√
fxn∑T

τ=1 (1 − d(τ))
. (10)

Then, the optimal number of indices, denoted by q̂x, to be
disseminated in each time unit is

q̂x =

√
fxn∑T

τ=1 (1 − d(τ))
. (11)

Equality 10 shows the theoretical lower bound of the
total message cost. The result indicates that there can not
be any implementations of the random sampling service or
any optimizing strategy of index dissemination can solve the
search problem with less cost, as long as the system accord
with the uniform-random sampling model.

4. A Self-Adaptive Protocol

In Sect. 3, we obtained the optimal index number q̂x. How-
ever it can not be directly computed from Equality 11 be-
cause m, l(τ) and fx are not known by any peer. In this sec-
tion, we propose a self-adaptive protocol that implements
the optimal index-dissemination without those global pa-
rameters.

4.1 The Equal Rule

Theorem 4.1: (The Equal Rule). The message cost of an
object is minimized when its index maintenance cost equals
to its search cost.

Proof: Let ŝx(t) be the expected search cost of x when
qx(t) = q̂x. According to Equality 10 and 11, we obtain

ŝx(t) = min[Mx] − q̂x = q̂x. (12)

�
The Equal Rule indicates that, if we disseminate the

same number of indices as the number of the search queries
disseminated in each time unit, the total message cost is
minimized. By the Equal Rule, we obtain the skeleton of
our protocol below:

• Search: When searching for an object, the searcher re-
peatedly sends query messages to randomly selected
peers until the object is found. During the search, the
searcher counts the number of query messages used.
• Index maintenance: After the search succeeds, the

searcher disseminates the same number of indices to
some randomly selected peers. Each index has a life-
time counter which is increased per time unit. An in-
dex will be deleted when its lifetime counter exceeds
the predefined TTL value.

Notice that we allow the searchers to disseminate the in-
dices. Since the searcher usually downloads the target ob-
ject after finding it, the indices disseminated by the searcher
can include anyone of two object locations; the searcher or
the original owner. Such flexibility is favorable in terms of
load balancing.

4.2 Index Dissemination Schemes

The following factors should be considered when each peer
disseminates indices. First, as we show in Theorem 3.1,
the search cost is minimized when the number of avail-
able indices is stable. However, it may make the num-
ber of available indices instable to disseminate straightfor-
wardly the same number of indices at each time unit be-
cause of the fluctuation of search cost by the random noise
effect. Second, the system environment parameters are usu-
ally not static, even change rapidly at sometimes. For ex-
ample, when an object becomes a hot spot, its popularity,
together with the search cost, drastically increases in a short
period of time [4]. The number of indices should adapt to
such changes.

By referring the statistical estimation methods, we pro-
pose three approaches for deciding the number of indices to
be disseminated.

• RT (Real-Time) mode:

qx(t) = sx(t − 1).

• SMA (Simple Moving Average) mode:

qx(t) =
T∑
τ=1

sx(t − τ)/T.

• EMA (Exponential Moving Average) mode:

qx(t) =
T∑
τ=1

sx(t − τ) · 2−τ.

The above descriptions indicate how we use the his-
torical information of search cost to decide the number of
disseminated indices in the global view. In the follow-
ings, the index dissemination schemes from the viewpoint
of each searcher are described. After the searcher s com-
pletes the search process for object x by px,s(t) query mes-
sages in time unit t, it disseminates some indices, denoted
by qx,s(t + τ), 0 ≤ τ ≤ T − 1, in the following T time units:

• RT mode:{
qx,s(t + τ) = px,s(t), τ = 0
qx,s(t + τ) = 0, τ > 0.
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• SMA mode:

qx,s(t + τ) = px,s(t)/T, 0 ≤ t ≤ T − 1.

• EMA mode:

qx,s(t + τ) = px,s(t) · 2−1−τ, 0 ≤ t ≤ T − 1.

Obviously, there is a trade-off between the stability and
adaptability. The RT mode has the fastest adaptation speed
when the system environment parameters change. How-
ever it works in the stream method only when the object
is frequently searched. In the contrast, the SMA mode can
stabilizes the system well because the indices are dissemi-
nated averagely during the following T time units after each
search event. However it may not be able to adapt to a highly
dynamic system environment. The EMA mode is a middle
approach between RT and SMA modes.

5. Simulation

In Sect. 3, we have the lower bound of the index-
dissemination based search under the random peer sampling
model. And in Sect. 4, we proposed a distributed protocol to
achieve it. In this section, we compare the message cost of
our protocol with the theoretical minimum message cost to
justify its effectiveness. Unfortunately, we can not find any
related works for comparative evaluation. For example, as
we mentioned in Sect. 1.3, the quorum-based search and the
square-root replication principle are not optimized for the
total message cost, so fair comparison with them are impos-
sible.

This section is divided to two parts. Section 5.1 jus-
tifies the adaptability of the protocol and compare the per-
formance of the three index dissemination schemes. Sec-
tion 5.2 justifies the practical impact of the protocol under
realistic system environment settings.

5.1 Adaptability

According to the theoretical analysis, we know that the
Stream Method and Equal Rule are the necessary conditions
of the optimal index dissemination. However the theoreti-
cal results are obtained in a stable system environment. It
is unclear how our protocol performs in unstable system en-
vironments because the Equal Rule is difficult to achieve in
those cases. Moreover, because our protocol disseminate
indices after each search, the search frequency decides the
index dissemination timing that affects the Stream Method.
This subsection evaluate the protocol with dynamic environ-
ment parameters and compare the performance of the three
index dissemination schemes with some special simulation
settings.

The environment parameters include m(t), l(τ, t) and
fx(t). We mainly evaluate the protocol under dynamic set-
tings of fx(t) because m(t) and l(τ, t) do not vary quickly (of-
ten change in cycles of one day) in large-scale systems [25]
and they do not affect the index dissemination timing. The

simulation environments are as follows. In each time unit,
400 peers join the system (i.e. m = 400). The lifetime distri-
bution of each peer is drawn from the Pareto distribution
which is proved to be the peers’ lifetime distributions in
many real P2P systems [22]. The cumulative distribution
function (CDF) of the distribution is lC(τ) = Prob[L ≤ τ] =
1 − (1 + τ/50)−2 which implies E[L] = 50. We execute
the protocol under the ideal random sampling service to es-
timate the best performance of the proposed protocol. The
initial lifetime of indices is set to T = 50.

This time we evaluate only one object x to show the
difference of the three index dissemination schemes clearly.
Notice our protocol minimize the message cost related to
each object respectively, the distribution of objects’ popu-
larities do not affect the evaluation result. In time unit t,
fx(t) searchers are selected randomly from the system. To
have a stable result against the randomness of the protocol,
we repeat the simulation for 1000 times and show the sum
of the message cost in each independent execution.

The simulation results are shown by the total message
cost in each time unit. In our protocol, the search process
continues until the target object is found, i.e. the success
rate is always 1. Notice the result consists of both the main-
tenance cost (i.e. index dissemination cost) and search cost
(i.e. query dissemination cost). Since the protocol is de-
signed according to the Equal Rule, The maintenance and
search cost occur exactly 50% of the total cost. Then from
the results and fx(t), one can easily obtain the average search
size and the number of indices disseminated. Such data will
not be shown respectively for lack of space. For comparing,
we show the theoretical minimum message cost by the curve
‘Ideal’.

Figure 3 shows the results for discontinuous change of
search frequency. All of the three schemes can converge to
the theoretical minimum message cost and stabilize within
2T time units. The RT mode quickly responses but has the
highest peak traffic. In Fig. 4 and 5, the search frequency
changes continuously. Figure 4 shows the message cost un-
der a slowly changing fx(t). In this case, all the three meth-
ods work as expected. However, when the fx(t) changes

Fig. 3 The total message cost (the sum of 1000 executions), fx(t) = 2 for
t ∈ [0, 100); fx(t) = 3 for t ∈ [100, 300); fx(t) = 1 for t ∈ [300, 500).
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Fig. 4 The total message cost (the sum of 1000 executions), fx(t) = 2 +
sin(2πt/400).

Fig. 5 The total message cost (the sum of 1000 executions), fx(t) = 2 +
sin(2πt/100).

Fig. 6 The message cost of index and query dissemination in RT and
SMA mode respectively (the sum of 1000 executions); fx(t) = 2 +
sin(2πt/100).

rapidly (Fig. 5), we can see all the three curves depart from
the curve ‘Ideal’ and incur higher message cost. Especially
the SMA mode consumes more messages than others. As
Fig. 6 shows, in each time unit, the number of index and
query messages are quite different in the SMA mode al-

Fig. 7 The total message cost (the sum of 1000 executions), 0.1 ≤ fx ≤
0.5.

Fig. 8 The total message cost (the sum of 1000 executions), fx = 2;
m(t) = 400 for t ∈ [0, 250), m(t) = 200 for t > 250.

though the total numbers are the same during the simula-
tion. That implies the Equal Rule is not well achieved by
the SMA mode in highly dynamic environments. As the re-
sult, the SMA mode cost more messages than the RT mode
which achieves the Equal Rule much better.

Figure 7 shows the result when the object is rarely
searched. We can see, when the fx is lower than 0.2, both the
RT mode and the EMA mode incurs much higher message
cost than the theoretical result. Because the index dissem-
ination process is executed after each search, the RT mode
can not achieve the Stream Method well when the search
frequency is low. The simulation result also implies that the
Stream Method is much efficient than the Burst Method.

The above results show the trade-off between adapt-
ability and stability of the three index dissemination
schemes. The RT mode and the EMA mode have good
adaptability while the SMA mode has good stability. How-
ever, in many P2P file sharing systems, the popularity of ob-
jects follow long-tail distributions that most of the objects
are rarely searched. Therefore, the SMA mode seems to be
more suitable for those systems.

At last, Fig. 8 shows that the protocol can also adapt to
the change of m(t). We can find that there is no obvious
difference among the three index dissemination schemes’
performance. Although it seems that the protocol requires
more time to converge, the long converge time does not im-
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Fig. 9 The number of peers in the system. m(t) = 400 for t ∈ [0, 250),
m(t) = 200 for t > 250.

ply the protocol has bad adaptability in this case. That is
because the system itself takes time to stable as shown in
Fig. 9. Similar results can be seen by adopting dynamic life-
time distributions of peers.

5.2 Feasibility

Up to now, we discuss the problem under the assumption
of the ideal random sampling service. However, to imple-
ment the ideal random sampling is very costly in distributed
systems, e.g. each peer may have to know the whole peer
set. Therefore, it is necessary to evaluate the protocol with
non-ideal but cheap implementations. In this subsection, we
show the performance of our protocol in realistic environ-
ments with feasible implementations of the random sam-
pling service. We also compare the performance of our pro-
tocol with the protocols adopting fixed number of indices for
every object to show the advantage of the popularity-biased
index dissemination.

We adopt random walk to disseminate messages. A
message (index or query) is carried by a random walker and
then the peers on the trace of the random walker receive
the message. Three kinds of overlay networks are adopted.
All of those networks are directed and each peer keeps 30
outgoing links. The first network is the random network
which is still an ideal setting but much easier to approach
than the ideal random sampling [18]. In each time unit, the
network is re-built in order to delete bad links pointing to
the peers which have left the system. The second one is
the name thread network which is proposed by the quorum-
based search [17]. It approximately generates a random net-
work by gossip-based link exchange among peers. The third
one is the random-growing network [26]. The network con-
verges to a power-law in-degree distribution which is an ex-
ceptional case.

The simulation parameters are almost the same as
which used in Sect. 5.1. The only difference is that we use
1000 objects and each of them has a different search fre-
quency. Each object x has a unique popularity rank, denoted
by rx, 1 ≤ rx ≤ 1000. The search frequency fx of object x
is fx = 1000/rαx , 0.6 ≤ α ≤ 1.2. That implies the objects’
popularities follow the Zipf-distribution where α is the Zipf

Fig. 10 Simulation results in implementations of the random sampling
service.

coefficient. The Zipf distribution and the scope of the Zipf
coefficient are proved to be consistent to the objects’ popu-
larity distributions in P2P file sharing systems [7].

The simulation results are shown in Fig. 10. The
three index dissemination schemes have almost the same
result in this simulation because the objects’ popularities
are fixed and the most unpopular object is searched at least
1000/10001.2 > 0.25 times each time unit. The item A is
the theoretical minimum message cost while each object has
the same number of indices. Item B is the minimum cost of
adopting fixed index number and random walk in the name
thread network. Item C is the theoretical minimum mes-
sage cost of our protocol which adopts adaptive index num-
ber. The items D, E, F are the results of our protocol in the
random network, the name thread network and the random-
growing network respectively.

Comparing A with C (or B with D, E), we can see that
the popularity-based index dissemination can effectively de-
crease the system message cost, especially when the popu-
larity distribution are highly skewed (the cases α = 1.0 and
α = 1.2). Comparing C with items D, E, it can be found that
the message cost of adopting nonideal random sampling im-
plementations are at most 10% higher than that of the ideal
system model. The result justifies that our protocol is prac-
ticable in real system environments since its performance is
nearly optimal even adopting nonideal sampling service.

The item F is an exceptional case. Clearly, the results
of F are much lower than those of C, D, E disregarding the
value of α. In a power-law network, random walk samples
high-degree node with high probability. This implies that
indices and query messages is concentrated in a small part
of peers. The system is out of the scope of the random sam-
pling model and yields the problem of load balancing. Of
course, the theoretical minimum message cost is not suitable
for such non-uniform sampling services. Further investiga-
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tions are left as the future work.

6. Supplemental Remarks

6.1 Message Size

We assumed that both the dissemination of an index and a
query message equally cost one message. This assumption
can be easily removed. Letting Ix and Px be the communi-
cation cost of disseminating a index and a query message
respectively, we obtain

Mx(t) =
Qx

T
· Ix +

fxnT

Qx ·∑T
τ=1 (1 − d(τ))

· Px.

Thus, the optimal index number is

q̂x =

√
fxnPx∑T

τ=1 (1 − d(τ))Ix

,

while the search cost is

sx =

√
fxnIx∑T

τ=1 (1 − d(τ))Px

.

Therefore, the Equal Rule still holds because the commu-
nication cost of an object is minimized when qxIx = sxPx,
where qxIx and sxPx are the object’s index maintenance cost
and search cost respectively.

6.2 Queries for Inexistent Objects

When a peer search for some inexistent objects, the search
process can not terminate because it continues searching un-
til the object is found. To prevent the infinite search, a upper
bound of search size, denoted by H, should be set. How-
ever, the bounded search size yields another problem that
some rarely-searched objects are difficult to find because
they have almost no indices. To increase the success rate of
searching for those objects, we can introduce the minimum
number of indices disseminated in each time unit, denoted
by L. By Lemma 2.1 and Equality 4, the minimum success
rate, denoted by ρ, for searching for any object is

ρ ≥ 1 − e−HL
∑T
τ=1(1−d(τ))/n.

The system message cost is still approximately the mini-
mum because if L is small enough, the additional index
maintenance cost is little.

7. Conclusions

In this paper, we investigated the index-dissemination-based
search approaches under a general churn model that peers’
lifetime distribution can be arbitrary. The objective is to
minimized the system total communication cost including
both the index maintenance cost and search cost. Under
the uniform-random sampling assumption, the main theoret-
ical contributions consists of a tight lower bound of the total

system communication cost and two principles for optimal
index dissemination which are natural but have never been
proved under a general churn model. The first principle is
the Stream Method that shows the best index dissemination
method is to incrementally disseminates the same number of
indices at each time unit. The method can stabilize the avail-
able index number in the system and minimize the expected
search cost against the loss of indices when peers leave the
system. The second principle is the Equal Rule that shows
the optimal balance point of the trade-off between the search
cost and index maintenance cost is to assign the same com-
munication on the query and index dissemination.

According to the two principles, we proposed a fully
distributed search protocol to achieve the optimal index dis-
semination adapting to the system environment. A remark-
able advantage of the protocol is that the it yields almost no
additional communication cost to achieve the self-adaptive
feature. By simulation, we justify the protocol’s effective-
ness in both dynamic and realistic system environments.
Future work

This work is based on the uniform-random sampling
model that peers disseminate queries and indices to any
other peers with the same probability. As the simulation
results shown in Fig. 10, the theoretical minimum com-
munication cost is not suitable for the systems adopting
non-uniform sampling such as in super-peer systems, e.g.
the modern Gnutella network [27]. Although the Stream
Method and the Equal Rule seem to be also optimal in those
systems, the theoretical proof has not been done. We are
looking forward to find some approaches for modeling those
non-uniform sampling based systems under churn and com-
plete the proof of the argument.
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