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PIV Measurements
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SUMMARY Particle Image Velocimetry (PIV) is a widely used tool for
the measurement of the different kinematic properties of the fluid flow. In
this measurement technique, a pulsed laser light sheet is used to illuminate
a flow field seeded with tracer particles and at each instance of illumination,
the positions of the particles are recorded on digital CCD cameras. The re-
sulting two camera frames can then be processed by various techniques to
obtain the velocity vectors. One such techniques involve the tracking of the
individual particles so as to identify the displacement of the every particles
present in the flow field. The displacement of individual particles thus de-
termined gives the velocity information if divided by known time interval.
The accuracy as well as efficiency of such measurement systems depend
upon the reliability of the algorithms to track those particles. In the present
work, a cellular neural network based algorithm has been proposed. Perfor-
mance test has been carried out using the standard flow images. It performs
well in comparison to the existing algorithms in terms of reliability, accu-
racy and processing time.

key words: flow measurement, particle image velocimetry, particle track-
ing velocimery, neural network, optimization

1. Introduction

Enhancements in the visualization of flow fields have been
achieved in the recent years with the advancement of digi-
tal image processing techniques together with electronic and
optical hardwares. Particle Image Velocimetry (PIV) has
been widely accepted as a reliable technique for the deter-
mination of velocity fields. In this measurement technique,
a pulsed laser light sheet is used to illuminate a flow field
seeded with tracer particles, and at each instance of illumi-
nation the positions of the particles are recorded on digital
CCD cameras. The two camera frames are then processed
to find the displacement vector map of the flow field. The
displacement that can be estimated by different means and
the time separation between the images give the velocity in-
formation. In contrast to the techniques for the measure-
ment of flow velocities employing probes as pressure tubes
or hotwires, the PIV technique being an optical technique
works intrusively. This allows the application of PIV even
in high-speed flows with shocks or in boundary layers close
to the wall, where the flow may be disturbed by a presence of
probe. This technique allows one to record images of large
parts of flow fields in a variety of applications in gaseous and

Manuscript received March 11, 2008.
Manuscript revised September 2, 2008.

"The authors are with the Department of Information Sys-
tems Engineering, Osaka Sangyo University, Daito-shi, 574-8530
Japan.

a) E-mail: sapkota@ieee.org
b) E-mail: ohmi@ise.osaka-sandai.ac.jp
DOI: 10.1587/transinf. E92.D.319

liquid media and to extract the velocity information. This
feature is unique to PIV as most of the traditional techniques
for velocity measurements only allow the measurement of
velocity of the flow at a single point [1].

Basically, there are three types of particle data pro-
cessing techniques used in PIV: auto-correlation, cross-
correlation and individual particle tracking, which is com-
monly known as Particle Tracking Velocimetry (PTV). Cor-
relation based processing techniques produce spatially av-
eraged velocity estimates while PTV technique attempts to
identify the displacement of individual particles. The later
one is the focus of the present study. The technique of indi-
vidual particle tracking has two advantages over the corre-
lation based processing techniques. The first one is the lo-
calization of the measured velocity within the limit of the
traceability of particles. In the case of correlation based
techniques, the aim is to calculate mean velocity of a group
of particles. The possibility of taking fully three- dimen-
sional measurements by the use of volumetric lighting and
stereoscopic analysis is another advantage of the PTV over
correlation based PIV techniques.

In PTV, all the particles in an image taken at one time
step (say, at t = f,) are compared to the particles in an an-
other image taken after certain time interval (say, at 7 = #,,1)
to determine physically correspondent particle pairs. The
displacements of individual particles thus determined gives
the velocity information if divided by a known time interval
i.e. ty+1 — t,. This kind of correspondence problem, in PTV
measurements, has been dealt in different ways to date. The
initial attempts were made using multi-frame tracking [2],
[3] and binary image cross-correlation [4] techniques. The
multi-frame tracking methods, which require four or more
frames, involve the iterative procedures of extrapolation of
particle displacement and search for the nearest neighbor.
The key assumption behind this method is the small dis-
placement of the particle from one frame to another. Only
on the basis of this constraint, many ambiguous situations
are obvious in the particle frames with higher particle den-
sity.

Similarly, binary image cross-correlation technique is
a variation of standard cross-correlation particle image ve-
locimetry and requires only two frames. This involves the
computation of the cross-correlation between the regions
around the particles in the first and in the second frame.
The number of particles that can be matched accurately is
more in comparison to multi-frame tracking methods men-
tioned earlier. The point which makes this algorithm less
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reliable is the assumption of equal velocity of the particles
within the cross-correlation window. The positive estimate
of the correlation is increased only if the neighboring parti-
cles find their partners at exactly the same relative displace-
ment points. It is not always the case and this is the rea-
son why the algorithm is difficult to apply for the cases of
strongly rotating and shearing motion.

Similarly, Wernet [5]-[8] and others [9]-[11], includ-
ing the present authors, made assesments of the fuzzy logic
based algorithm for particle tracking velocimetry. In these
methods, each particle in the second frame within the user-
defined radius from the position of the particle in the first
frame is considered as candidate particles of this first frame
particle. In the list of candidate particles thus generated,
if two initial particles claim the same second frame parti-
cle then the pair of vectors that look the most similar (in
direction and magnitude) must be correct pair of displace-
ment vectors for these two separate initial particles. This
algorithm is good in a sense that it tends to address the dif-
ferent constraints of the flow fields but the limitation here is
requirement of the priori knowledge of the maximum flow
velocity to search the probable candidates. The small size
of the search region may cause the missing of the true vec-
tor in the set of interacting vectors and large value may re-
sult to more confusing interacting vectors especially in the
region of lower velocity gradient and high particle density.
Moreover, the method works under the supervision of the
fuzzy rules which requires the careful judgment of the sys-
tem. Similarly, the appropriate assignment of the member-
ship values is another complicated part of this algorithm.

Another approach for the particle tracking algorithm
is the matching of the particle clusters [12],[13]. In this
type of particle tracking, each one of the first-frame and
second-frame particles form a cluster together with its re-
spective neighboring particles and the selection of the best-
match partners is conducted on the basis of a deformation
index defined for the relationship between the first-frame
and second-frame clusters. These algorithms require a fixed
number of neighboring particles and, in order to satisfy this
condition, the size of the local interrogation area has to be
changed from cluster to cluster. This causes the problem
of the localization of velocity data. Similarly, the approach
shares its limitation with fuzzy logic based method that the
information of the maximum flow velocity is needed in ad-
vance to choose the candidates.

The relaxation algorithms [14]-[19] based on the prob-
ability of particle matching [20] seem promising in compar-
ison to the above methods. In the relaxation algorithm, ev-
ery first-frame particle selects its candidate partners from
the second frame using a certain distance threshold. Sim-
ilarly, every first frame particle selects its neighbors using
again the distance threshold. The probabilities of matching
between the first-frame particles and their respective candi-
dates in the second frame are calculated. The particle prob-
abilities are then updated using the matching probabilities
of the neighboring particles which are then iterated until all
the probabilities remain almost constant. The basic concept
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of the relaxation method is somewhat similar to that of the
binary-image cross-correlation method on the basis of the
principle that every possible movement of the reference par-
ticle in the first frame is checked in the light of neighboring
particles. Unlike binary-image cross-correlation method,
the positive estimate in the relaxation method is increased
only if the neighboring particles find their partners with in
the finite distance from the parallel displacement point. This
makes the algorithm applicable to rotating or shearing mo-
tions. But, like fuzzy logic based algorithm, it also requires
the priori knowledge of the flow field as distance thresholds
are determined on the basis of the maximum possible dis-
placement of the particles, and on the basis of the radius of
the neighborhood where the similarity of the movement of
the particles can be preserved. In addition, relaxation algo-
rithm works on a fixed set of particles during its iterative
process. Therefore, it requires in the initial step enough
matching particles to stimulate the matching process and
converge towards a reliable solution. Not satisfying this re-
quirement makes difficult the convergence of the probability
and may result in the situation where no match particles are
found. This problem is more pronounced for the images
with low particle density.

In these contexts, the authors believe that defining and
optimizing a certain cost function representing the relation
between the particles in the two image frames is the most
suitable solution for the particle tracking methods. Such
methods can go without priori knowledge of the flow and
can accommodate the different conditions that the paired
particles must satisfy. The genetic algorithms and neural
networks are powerful tools for many types of optimiza-
tion problems and thereby used as prospective methods in
the particle pairing process of PTV. Ohyama et al. [21] im-
plemented genetic algorithm where the best match particle
pairs are determined by using a fitness function minimizing
the total sum of the squares of the particle displacements.
This type of fitness function is not bad at all as long as
the particle density is relatively low and the mean particle
displacement between the two frames is less than the mean
particle interval in a single frame. However, the algorithm
often becomes unsuccessful when the particle displacement
and the particle interval come close to each other. So the
optimization should be based on some other additional cri-
teria than just the least sum of the distance of the parti-
cle pairs. In this aspect, the technique based on Hopfield
neural network [22] seems more promising [23]-[25]. The
physical constraints applied there accommodate smoothness
and rigidity of the displacement fields accompanied by the
unique matching partner and the least sum of the distance of
the matched pairs. It outperforms the conventional tracking
methods but the computational process is so time consum-
ing that very few particles per frame (<150) can be dealt
within tolerable computation time [24],[25]. The process
becomes tremendously slow for higher number of particles
per frame. In order to overcome this problem a separate
computational framework based on cellular neural network
is proposed here. The proposed algorithm is described in
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Sect.2 and performance test with different particle images
are demonstrated in Sect. 3. The work is briefly concluded
in Sect. 4.

2. Proposed Algorithm

First of all, the particles in the two frames are mapped as
shown in Fig. 1. Numerical figures in the horizontal and
vertical directions show the identity numbers of the parti-
cles in the first frame and the second frame respectively. All
the “possible match vectors” are represented by the small
circles. The term “possible match vectors” refers the dis-
placement vectors drawn from a particle in first frame to the
particle in second frame. For each particle in one frame, all
the particles in another frame are considered as the proba-
ble match, and the displacement vectors corresponding to
these matches are the “possible match vectors”. For exam-
ple, in Fig. 1, the first column of the matrix of the circles
represents the so-called “possible match vectors” of the par-
ticle in the first frame with particle identity number “1”. In
another way, the bottommost row of the matrix of the cir-
cles represents the “possible match vectors” of the particle
in second frame with particle identity number “1”. Each of
these vectors is then considered as the neuron unit of the
neural network. The neural computational paradigm pro-
posed here is based on cellular neural network (CNN) [26].
In this network, any unit is connected only to its neighbor
units, i.e. only the adjacent units interact directly with each
other. Units not in the immediate neighborhood have indi-
rect effect because of the propagation effects of the dynam-
ics in the network. Mathematically, if the unit located in
position (i, k) of a two dimensional M = N array is denoted
by Cy, then its neighborhood N}, is defined by:

N}, = {Cylmax{|j—il, Il —kl} < r,
1<j<M;1<I<N} ey

where, r denotes the size of neighborhood and is a positive
integer number. M and N here represent the number of par-
ticles in the first and the second frame.

The basic principle now is that the Lyapunov energy
function of the network system should be minimized as for-
mulated below:
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Fig.1 Mapping of the particles.
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In Eq.(2), Vi is the neuron state at the crossing of row i
and column & (so is Vj; in like manner). Ty j is the connec-
tion weight of the two neuron units ik and jl, and I;; the en-
ergy threshold of unit ik. The neuron units undergo series of
state updates in order to minimize the function, and updated
state of neuron units are not computed in a simple threshold
scheme (0 or 1) but according to the following normalized
function Vl.(l:'ew):

) 1 u;
(new) _ ik
yoen 5(1 +tanh(ﬁ)) 3)
where,
Uy = Z T Vi + I “4)
i
Cieny

Now, an object function should be defined on the basis of
the different physical constraint conditions. [23] introduced
four different physical constraint conditions for the object
function which were further modified by the present au-
thors [24], [25] and are now re-formulated as below in ac-
cordance with the proposed new scheme.
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The first condition (5) requires the minimization of the total
sum of the distances between all the paired particles, where
£+ (i, k) is the Euclid distance between the particles i and k in
different frames. This criterion addresses the assumptions
made by multi-frame tracking methods [2], [3] and genetic
algorithm based particle pairing method [21]. This condi-
tion alone is not sufficient for the increased numbers of par-
ticles to be tracked correctly as mentioned earlier. Hence,
second condition (6) is proposed which asks for the mini-
mal sum of the two components of the particle displacement
vectors where f (i, k) and f; (i, k) stand for the x-component
and y-component respectively of the displacement vector
from particle i to particle k. Presence of this condition re-
solves the ambiguities which can’t be dealt with first condi-
tion alone.

Additionally, the third condition (7), which asks the
minimization of the sum of local fluctuations of the dis-
tances to every neighbor particle, ensures the rigidity of the
flow pattern. g (i, j) stands for the Euclid distance between



322

the two particles i and j in the first frame and similarly
g (k, 1) stands for the Euclid distance between the particles k
and / in the second frame, where particle k and particle / are
the matched partners of particle i and particle j respectively.
This condition addresses the assumptions made in binary-
image cross-correlation methods [4] and in relaxation based
method [14]-[19] with enough flexibility, and in a global
manner. The second and the third conditions are, in some
way, involved in the idea of fuzzy logic based tracking [S]—
[11]. The application there is rule-based and is quite vague,
but here the network understands from the global perspec-
tive of the flow.

Finally, the fourth condition (8), requires the unique-
ness of solution i.e. one particle in one frame will have only
one unique partner in the other frame. So, every row or col-
umn of the matrix of the circles in Fig. 1 ought to have at
least but no more than one active neuron as shown in Fig. 2.
The five coefficients Cy, Cy, C,, C3 and C4 in the abovemen-
tioned equations are weight constants by which the weight
balance of the four different constraint conditions can be
controlled. Using the combination of constraint conditions,
the final object function is given by:

¢ =¢o+ ¢+ ¢+ 3 )

Now, by comparing the second-order terms of Eq. (9) with
that of the Lyapunov function in Eq.(2), the connection
weight is mathematically determined as below:

C ..
Taji = —73(1 ~5:)(1 = 6w) g iy ) — g (K, D)

C C
—7“5,-,(1 — 6u) — 745,(,(1 -6;) (10)

where, ¢;; stands for the Kronecker delta and is equal to 1 if
i = jor 0 if otherwise.

Similarly, by comparing the first-order term, the thresh-
old I is computed as follows:

Iik = _fr (l’ k) CO - fx (lv k) Cl
—f (i, k) Cy (1)

By substituting Ty j; and I in Eq. (4) from Egs. (10) and
(11), the unit output uy; in Eq.(4) is obtained. From the
unit output u;, thus obtained, the updated unit value Vl.(]:mw)
in Eq. (3) is calculated. The series of computation is iter-
ated until the object function ¢ tends to be minimum and the

5 @O|0|0|0O
4 O|0|@O|O
3100|010 |®
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Fig.2  Network after optimization.
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unit values come to their respective optima, which are ba-
sically “active” or “inactive”. The initial values of V; and
V;; are given random decimal numbers ranging between 0.0
and 1.0. In order to facilitate the determination of the weight
constants, the distance parameters in the object functions are
also normalized in the range between 0.0 and 1.0.

The terminal condition of the iterative calculation is
that all the “active” neurons remain unvaried over succes-
sive iterations. Figure 2 depicts the state of the network
after successful optimum solution. In the figure, the black-
solid circles represent the “active” neurons and hollow cir-
cles represent the “inactive” neurons. Since the unit values
in Eq.(3) are not given in binary digits, the maximal unit
value for each row (or column) in the abovementioned ma-
trix is regarded as “active” and all the others as “inactive”.
To interpret Fig.2 in terms of particle pairing, black-solid
circles represent the most likely match pairs. Figure 2 is the
instance of the solution where particles are matched as 1-5,
2-2,3-4, 4-1 and 5-3, i.e. particle with identity number 1 in
first frame is the partner of the particle with identity number
5 in the second frame, and likewise the others.

3. Experimental Results

The proposed algorithm is tested by using the PIV stan-
dard images available from the Visualization Society of
Japan [27]-[29]. These images are composed of various sets
of synthetic time-series particle images generated from Di-
rect Numerical Simulation (DNS) results of an impinging
jet in a square cavity. The images come with text files of
the original particle coordinates so that one can compare the
analysis results of particle matching with the correct data
set. Table 1 shows the particle tracking results for the im-
ages with different numbers of particles using different al-
gorithms. These are the results for the images from #301 se-
ries of the standard image library. Since the objective here
is to develop a PTV measurement system without a priori
knowledge of the flow field and on the basis of cost func-
tion optimization, the present algorithm is compared with
the other algorithms having similar strategies. In the ta-
ble, the abbreviation NALG stands for the new algorithm
proposed here, HALG, for Hopfield neural network based
algorithm [23]-[25], and GALG, for the genetic algorithm

Table 1  Particle tracking results for different algorithms.
Number of Particles ~ Algorithm  CPU Time  Error
NALG 0” 0
50 HALG 9” 0
GALG 5 0
NALG 2”7 0
100 HALG 91” 0
GALG 24” 0
NALG 5” 0
150 HALG 620" 0
GALG 33” 10
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(a) Original positions: 500
particles

(b) Veloc1ty vectors: 500 Par-
ticles
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(c) Original positions: 1000
particles)

(d) Velocity Vectors: 1000
Particles

Fig.3  Performance test with #301 image series.

based technique [21]. Similarly, while mapping the parti-
cles as shown in Fig. 1, the identity number of the particles
present in the images can be assigned randomly. Our several
trials with the random assignment of the identity number of
the particles didn’t make any change in the performance of
the algorithm.

As shown in Table 1, the new algorithm has been suc-
cessful to track the particles with fine accuracy and encour-
aging computation time. The computation times shown here
are for 1.2 GHz Celeron machine. The algorithm outper-
forms the Hopfield neural network based particle tracking
algorithm (HALG) in terms of computation time. The com-
putation time for 150 particles was 10 minutes 20 seconds
using HALG, and for the further increase in number of par-
ticles, for example 300, the process goes too irritating with
computation time of more than one hour which is just a few
second’s processing time for NALG. Similarly, if compared
to the genetic algorithm based technique (GALG) the pro-
posed algorithm is better in terms of accuracy, computation
time as well as reliability. Though GALG goes fast for lower
number of particles if compared to HALG but the computa-
tion time is still more in comparison to NALG and pairing
results are less accurate. The major drawback with GALG
is that the results are not reproducible as they depend upon
the random numbers generated during the execution of the
programs. In a performance test, carried out for the image
with 300 particles using GALG, the error in pairing results
varied from 12% to 30%. The same performance test for
NALG produced the results without any error.

Table 2  Performance test for higher number of particles.

Number of Particles ~CPU Time  Error

300 9” 0
500 30”7 0
700 45” 0
1000 80” 0

The proposed algorithm is tested for further higher
number of particles too as shown in Table 2. The compu-
tation time for 1000 particles is just 80 seconds without any
pairing errors. The displacement vector maps obtained us-
ing NALG are shown in Fig. 3 together with the positions
of the particles in the images. The positions of the parti-
cles taken at r = ¢y and ¢ = #; are superimposed in a single
frame as shown in the figures which in some way reveal the
general pattern of the flow. Figure 4 shows the comparisons
between HALG, GALG and NALG in terms of computation
time.

Additionally, a performance evaluation of each of the
sub-function of the proposed objective function has been
carried out. Table 3 depicts the scenario when each of the ¢y,
¢2, ¢3 and ¢4 are removed, one at a time, from the objective
function. It can be observed from the table that the impor-
tance of the each of the element of the objective function is
more pronounced with the increased number of particles in
the images. It supports the argument behind the inefficiency
of GALG to higher number of particles. It should also be
noted here that the function showing the uniqueness has sig-
nificant influential role in the optimization procedure. This
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Fig.5 Performance test with three-dimensional image data.

Table3  Performance test of the objective function.
Number of Particles ¢ ¢ 3 Pa
100 0 2 0 3
300 6 14 1 23
500 13 13 5 47
1000 12 164 13 142

condition of uniqueness is not addressed by many existing
algorithms mentioned above including GALG. It is to add
here that the weight parameters Cy to C4 play an important
role in the proposed scheme. This kind of parameter de-
pendency is common to almost every PTV algorithms men-
tioned in Sect. 1 including GALG and HALG. Normally,
the selection of such kind of parameters in PIV is done on

hit and trial basis till the maximum numbers of true vectors
are recovered. In the standard images tested here it is easy to
verify the true vectors as their correct answer is known while
in the case of real-world images it should be done with the
aid of some validation algorithms [30], [31].

Similarly, the algorithm is tested with 3-D images too.
To test for the 3-D images additional z component is in-
corporated in distance parameters in Egs. (5) and (7) and
the physical condition expressed in (6) should contain addi-
tional f; (i, k) component like other two components present
there. Standard image series #351 and #352 are taken from
the standard images library. Figure 5 shows the displace-
ment vectors maps for 250 particles of #352 image series
and 1000 particles of #351 image series. The number of
errors obtained is actually zero in the case of 3-D images
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too. The 3-D coordinates of particles used for the match-
ing operation are obtained from the numerical database of
the standard images. But, it should be noted that, in the
fully 3-D system the accuracy of the matching is dependant
upon the accuracy of the algorithms to extract the three di-
mensional coordinates of the particles [32]-[34]. But in any
case, the constraint conditions proposed here are, obviously,
more favourable to three-dimensional flows as particle po-
sitions in this case are resolved in depth directions also and
hence provide the more accurate estimates of distance pa-
rameters.

Finally, as the authors have done experiments with
standard images available to check the validity of the PTV
algorithms, it should be noted that in real world scenario
there is a possibility of some overlapping particles and defi-
nitely some such particles in one frame which actually don’t
have any correct partner in the second frame. Hence is such
case of overlapping and missing particles the ambiguous sit-
uation may arise producing the outliers. Such kind of out-
liers should be removed using proper outlier dection algo-
rithms [30], [31], [35]. Similarly, it should also be noted that
some optical conditions of recording and computation of the
image centroid from such images may also affect the final
pairing results. Hence, care should be taken on proper hard-
ware setup and image pre-processing.

4. Conclusions

A new algorithm for particle tracking velocimetry has been
proposed. The algorithm doesn’t require a priori knowl-
edge of the fluid flow (like maximum flow velocity) as re-
quired by many other algorithms and it is accurate to low
density as well as high density particle images. The main
objective here is to enhance particle matching problem from
the view point of cost function optimization. The signif-
icant improvement in computation time has cited a com-
fortable way for the use of this combinatorial optimization
approach which was previously considered tedious due to
long computation time as evident in the results of Hopfield
neural network based PTV. The results are quite reliable
and more constraints are effectively being addressed then in
genetic algorithm based methodology. Obviously, the con-
straint conditions proposed here do not address all the do-
mains of applications where PIV system is getting popular.
Slight modifications or improvements can be made in the
part of the physical constraint conditions to more accurately
address the desire of one’s system.
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