
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009
377

PAPER

Reachability Analysis of Variants of Communication-Free Petri
Nets

Chien-Liang CHEN†a), Member, Suey WANG††b), and Hsu-Chun YEN†,†††∗c), Nonmembers

SUMMARY Communication-free Petri nets provide a net semantics
for Basic Parallel Processes, which form a subclass of Milner’s Calcu-
lus of Communicating Systems (CCS) a process calculus for the descrip-
tion and algebraic manipulation of concurrent communicating systems. It
is known that the reachability problem for communication-free Petri nets
is NP-complete. Lacking the synchronization mechanism, the expressive
power of communication-free Petri nets is somewhat limited. It is therefore
importance to see whether the power of communication-free Petri nets can
be enhanced without sacrificing their analytical capabilities. As a first step
towards this line of research, in this paper our main concern is to inves-
tigate, from the decidability/complexity viewpoint, the reachability prob-
lem for a number of variants of communication-free Petri nets, including
communication-free Petri nets augmented with ‘static priorities,’ ‘dynamic
priorities,’ ‘states,’ ‘inhibitor arcs,’ and ‘timing constraints.’
key words: reachability, communication-free Petri nets

1. Introduction

Petri nets are one of the most popular tools for model-
ing concurrent systems. In spite of their popularity, con-
ventional Petri nets are very difficult to analyze. Over
the years, various subclasses of Petri nets have been de-
fined and investigated in the literature, hoping that by
imposing certain structural or behavioral constraints on
the basic model of Petri nets, such restricted classes be-
come easier to analyze while retaining sufficient expres-
sive power. A communication-free Petri net is a Petri net
in which each transition has exactly one input place, and
the firing of a transition removes exactly one token from
its input place. As a modeling tool, the computational
power of communication-free Petri nets is somewhat lim-
ited. The limitation is a direct consequence of the inability
for communication-free Petri nets to model ‘synchroniza-
tion’ actions, which require places to synchronize through
transition firings.

With respect to the reachability problem, it has
been shown in [7] that the problem is NP-complete for
communication-free Petri nets (equivalently commutative

Manuscript received April 7, 2008.
Manuscript revised October 26, 2008.
†The authors are with the Dept. of Electrical Engineering, Na-

tional Taiwan University, Taipei, Taiwan 106, ROC.
††The author is with Technology Department of Morgan Stanley

Japan Securities Co., Ltd., Tokyo, 150–6008 Japan.
†††The author is with the Dept. of Computer Science, Kainan

University, Taoyuan, Taiwan 338, ROC.
∗Corresponding author.

a) E-mail: clyde@cobra.ee.ntu.edu.tw
b) E-mail: Eliza.Wang@morganstanley.com
c) E-mail: yen@cc.ee.ntu.edu.tw

DOI: 10.1587/transinf.E92.D.377

context-free grammars). Considering the difficulty of an-
alyzing conventional Petri nets [13], communication-free
Petri nets exhibit a ‘relatively low’ complexity, which is
attractive from an algorithmic viewpoint. On the negative
side, however, the absence of synchronization mechanisms
makes such a Petri net class a bit too weak from a prac-
tical viewpoint. Consequently, it is interesting to see how
the complexity of checking reachability is affected when
such Petri nets are extended with the notions of, say, ‘pri-
ority’, ‘time,’ among others. As a first step towards this line
of investigation, this paper is concerned with the study the
reachability problem from a decidability/complexity view-
point for a number of extended communication-free Petri
nets. In our setting, the basic model of communication-free
Petri nets are augmented with ‘static priorities,’ ‘dynamic
priorities,’ ‘states,’ ‘inhibitor arcs,’ and ‘timing constraints.’

In static-priority communication-free Petri nets, pri-
orities are assigned to transitions statically, and at any in-
stant, only transitions among the highest priority class are
allowed to fire. For dynamic-priority communication-free
Petri nets, the assignment of priorities to transitions varies
from marking to marking, as opposed to a fixed assignment
in the static-priority case. State-extended communication-
free Petri nets can be viewed as a restricted class of vector
addition systems with states whose addition vectors have at
most one ‘-1’ position (i.e., each vector can subtract one
from a single position at most). For communication-free
Petri nets with inhibitor arcs, the test-for-zero capabilities
are explicitly allowed. Several timed versions of Petri nets
have been proposed in the literature to introduce the timing
information (either implicitly or explicitly) into the Petri net
model (see, e.g., [14], [16]). A common approach is to asso-
ciate each of the time-related transitions with an upper and
lower bounds, defining the interval in which the transition
must fire. In a more recent article [6] (see also [4]), a new
model of ‘timed’ Petri nets for which transitions are anno-
tated by clock constraints was introduced. Such a model
can be thought of as a generalization of the so-called timed
automata model [1]. To model real-time systems, real-value
clocks are incorporated into the model of Petri nets in such a
way that clocks measure the advances of time, and, with the
help of the associated clock constraints, timing requirements
for transition firings can be enforced. (To distinguish from
those timed versions of Petri nets previously defined in the
literature, such a model will be coined “clocked Petri nets”,
throughout the remainder of this paper.) As opposed to con-
ventional timed Petri nets for which enabled transitions must

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

378
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Table 1 Decidability/complexity results of the reachability problem for a variety of communication-
free PNs. (NP-c denotes NP-complete; NEXPTIME =

⋃
i≥0 NT IME(2ni

).)

+ priority + inhibitor arc + clock + priority
w/o inhibitor + clock

static dynamic general cycle general alter. RQ
basic NP-c undecid. ? NEXPTIME decidable NP-c undecid.

NP-hard
state- undecid. undecid. undecid. undecid. decidable decidable undecid.
extended

fire within their time bounds, clocked Petri nets (of [6]) al-
low time to elapse, causing enabled transitions to become
disabled without being fired. In fact, this sort of ‘lazy firing’
semantics of clocked Petri nets is the key behind the decid-
ability of the reachability problem. In this paper, we define
the so-called alternating RQ communication-free Petri nets
where R denotes the resets and Q denotes the queries — a
restricted class of clocked Petri nets in which, aside from be-
ing communication-free structurally, resets and queries of a
clock along any computation must appear alternatively. Our
definition of alternating RQ communication-free Petri nets
is mainly motivated by the work of [11] in which the so-
called alternating RQ timed automata were defined. As it
turns out, alternating RQ timed automata admit more ef-
ficient verification algorithms, in comparison with that for
the general model of timed automata [11] (see also [12]).
As indicated in [11], [12], many practical examples in the
literature meet the alternating RQ constraints. Inspired by
[4], [11], [12], we tailor the alternating RQ conditions de-
fined in [11], [12] to our clocked communication-free Petri
net model. Our results are summarized in Table 1.

2. Definitions

Let Z (resp., N and R) denote the set of integers (resp., non-
negative integers and reals). A Petri net (PN) is a triple
(P,T, ϕ), where P is a finite set of places, T is a finite set
of transitions, and ϕ is a flow function ϕ : (P× T) ∪ (T × P)
→ N. A marking (or configuration) is a mapping μ : P →
N. A transition t ∈ T is enabled at a marking μ iff for
every p ∈ P, ϕ(p, t) ≤ μ(p). A transition t may fire at

a marking μ if t is enabled at μ. We then write μ
t→ μ′,

where μ′(p) = μ(p) − ϕ(p, t) + ϕ(t, p) for all p ∈ P. A se-
quence of transitions σ = t1 . . . tn is a firing sequence from

μ0 iff μ0
t1→ μ1

t2→ · · · tn→ μn for some sequence of mark-

ings μ1, . . . , μn. (We also write ‘μ0
σ→ μn’.) We write

‘μ0
σ→’ to denote that σ is enabled and can be fired from

μ0, i.e., μ0
σ→ iff there exists a marking μ such that μ0

σ→ μ.
A marked PN is a pair ((P,T, ϕ), μ0), where (P,T, ϕ) is a
PN, and μ0 is a marking called the initial marking. Let
P = ((P,T, ϕ), μ0) be a marked PN. The reachability set

of P is the set R(P) = {μ | μ0
σ→ μ for some σ ∈ T ∗}. The

reachability problem is that of determining, given a marked
PN P and a marking μ, whether μ ∈ R(P).

For ease of expression, the following notations will be
used extensively throughout the rest of this paper. (Let σ be

a transition sequence, p be a place, and t be a transition.)

• #σ(t) represents the number of occurrences of t in σ.
• Δ(σ): the displacement ofσ is defined as Δ(σ) = μ′−μ,

provided that μ
σ→ μ′.

• Tr(σ) = {t|t ∈ T, #σ(t) > 0}, denoting the set of transi-
tions used in σ.
• p•={t|ϕ(p, t) ≥ 1, t ∈ T }; t•={p|ϕ(t, p) ≥ 1, p ∈ P};
•p={t|ϕ(t, p) ≥ 1, t ∈ T }; •t={p|ϕ(p, t) ≥ 1, p ∈ P}.

Given a computation μ
σ→ μ′, a sequence σ′ is said to be

a rearrangement of σ if #σ = #σ′ and μ
σ′→ μ′. Given a

directed graph G = (V, E), we write u ↪→ v to denote a path
from nodes u to v.

A marked PN ((P,T, ϕ), μ0) is said to be communica-
tion-free (abbreviated as cf) [5] if

(1). ∀t ∈ T, |•t| = 1, (i.e., every transition has exactly one
input place), and

(2). ∀p ∈ P, t ∈ T, ϕ(p, t) ≤ 1 (i.e., every arc going from a
place to a transition has weight 1).

3. Variants of Communication-Free Petri Nets

In this section we recall the definitions of variants of cf-
PNs. The cf-PNs is special class of Petri nets in which each
transition has exactly one input place, and the firing of a
transition removes exactly one token from its input place.
A motivation comes from cf-PNs exhibit a relatively low
complexity from an algorithmic viewpoint, as opposed to
general Petri nets. It is worth to take a look and see how the
complexity of checking complexity is affected when such
Petri nets are extended with the notations of priority, time,
among others.
• State-extended cf-PNs

A state-extended cf-PN is a (S , s0, (P,T, ϕ), δ), where S
is a finite set of states, s0 ∈ S is the initial state, (P,T, ϕ) is a
cf-PN, and δ ⊆ S × S × T defines the transition relation. A
configuration is a pair (p, x), where p is in S and x is a vector
in Nk. (s0, v0) is the initial configuration, where v0 is the
initial marking. The transition (p, q, t) can be applied to the
configuration (p, v) and yields the configuration (q, v+Δ(t)),
provided that t is fireable in marking v in PN (P,T, ϕ). In this
case, (q, v + Δ(t)) is said to follow (p, v). Let σ0 and σt be
two configurations. Then σt is said to be reachable from σ0

iff σ0 = σt or there exist configurations σ1, · · · , σt−1 such
that σr+1 follows σr for r = 0, . . . , t − 1.

CHEN et al.: REACHABILITY ANALYSIS OF VARIANTS OF COMMUNICATION-FREE PETRI NETS
379

Some equivalence issues of state-extended BPP (equiv-
alently, state-extended cf-PNs) have been studied in, e.g.,
[9], [10]. In particular, bisimulation equivalence has been
shown to be undecidable for state-extended BPP.
• Priority cf-PNs

A static-priority PN is a tuple ((P,T, ϕ), ρ), where
(P,T, ϕ) is a PN, and ρ (⊆ T × T) defines the so-called pri-
ority relation over T . Intuitively, (t1, t2) ∈ ρ means that t2
takes precedence over t1 in transition firing. Let ρ̄ denote
{(t, t′)|(t, t′) � ρ and (t′, t) � ρ} (i.e., ρ̄ is the set of pairs of
incomparable transitions). In this paper (so is in [2]), ρ is as-
sumed to be irreflexive, asymmetric, and transitive, and ρ̄ be
an equivalence relation. Given a ρ, transition t is ρ-enabled
at μ iff t is enabled at μ and for every t′ (∈ T) enabled at
μ, (t, t′) � ρ (i.e., t is of the highest priority among those
enabled at μ). In a static-priority PN ((P,T, ϕ), ρ), a tran-
sition t may fire at a marking μ if t is ρ-enabled at μ; we

then write μ
t⇒ μ′, where μ′(p) = μ(p) − ϕ(p, t) + ϕ(t, p)

for all p ∈ P. By replacing → (defined for conventional
PNs in Sect. 2) with =⇒, the definitions of firing sequences
and reachable markings apply to static-priority PNs as well.
Since ρ̄ is assumed to be an equivalence relation, ρ̄ partitions
T into a number of equivalence classesΩ1, . . . ,Ωd, for some
d (d ≤ |T |). Intuitively, eachΩi, 1 ≤ i ≤ d, represents a set of
transitions having the same priority. Since ρ is also assumed
to be irreflexive, asymmetric, and transitive, for every t ∈ Ωi

and t′ ∈ Ω j (where 1 ≤ i, j ≤ d and i � j), either (t, t′) ∈ ρ or
(t′, t) ∈ ρ (but not both); we write Ωi < Ω j (resp., Ω j < Ωi)
if (t, t′) ∈ ρ (resp., (t′, t) ∈ ρ). Without loss of generality, we
assume thatΩ1, . . . ,Ωd be enumerated in increasing priority
throughout the rest of this paper. Given a t ∈ T and a ρ, we
let class(t) = i if t ∈ Ωi (i.e., class(t) is the index of the
equivalence class containing t).

A dynamic-priority PN is a tuple ((P,T, ϕ), ρ), where
(P,T, ϕ) is a PN, and ρ : Nk → 2T×T defines the so-called
dynamic priority relation over T . The main difference be-
tween static and dynamic priorities is that the priority re-
lation is fixed for the former, whereas it is a function of
the marking for the latter. More precisely, for a marking
μ, ρ(μ) (⊆ (T × T)) defines the priority relation at marking
μ. For dynamic-priority PNs, the notions of enabledness as
well as reachability are analogous to that in the static priority
case. See [3] for more about PNs with dynamic priorities.

For cf-PNs, it is assumed that for arbitrary transitions t
and t′, if •t =• t′ (i.e., they share the same input place), then
t and t′ have the same priority. (If this is not the case, the
lower priority one can never be fired.)
• Cf-PNs with inhibitor arcs

A PN with inhibitor arcs is a tuple (P,T, ϕ, I), where P,
T , and ϕ are the same as that in conventional PNs defined
earlier, and I ⊆ P × T defines the set of inhibitor arcs. (We
assume (p, t) ∈ I =⇒ ϕ(p, t) = 0.) A transition t may fire
at a marking μ if for every (p, t) ∈ ϕ, ϕ(p, t) ≤ μ(p) and
for every (p, t) ∈ I, μ(p) = 0. For convenience, a transition
t is said to be an o-transition if (p, t) ∈ I, for some place
p. As its name suggests, a cf-PN with inhibitor arcs is a

PN with inhibitor arcs such that the structure of the PN is
communication-free.
• Clocked cf-PNs

Given a set X = {x1, x2, . . . , xn} of clock variables, the
set Φ(X) of clock constraints δ is defined inductively by

δ := x ≤ c | c ≤ x | ¬δ | δ ∧ δ,
where x is a clock in X and c is a constant in N. A clock
reading is a mapping ν : X → R which assigns each clock
a real value. For η ∈ R, we write ν + η to denote the clock
reading which maps every clock x to the value ν(x) + η. A
clock reading ν for X satisfies a clock constraint δ over X,
denoted by δ(ν) ≡ true , iff δ evaluates to true using the
values given by ν.

A clocked PN is a tuple N = ((P,T, ϕ), X, r, q), where
(P,T, ϕ) is a PN, X is a finite set of real-value clock vari-
ables, r : T −→ 2X is a labeling function assigning clocks to
transitions, and q : T −→ Φ(X) ∪ {λ} is a labeling function
assigning clock constraints to transitions. Intuitively, r(t)
contains those clock variables which are reset when transi-
tion t is fired, and q(t) is a ‘guard’ governing the condition
under which the clock reading must meet in order for t to
fire. Notice that when r(t) = ∅ and q(t) = λ, transition t
behaves just like a transition in an ordinary PN. A transi-
tion is said to be clocked it is associated with either resets
or queries. In our subsequent discussion, when a transition
t in a PN graph is annotated by R(x), it means x ∈ r(t). A
configuration of a clocked PN consists of a marking μ, the
global time η and the present clock reading ν. We use the
3-tuple (μ, η, ν) to denote such a configuration. Note that
the clock reading ν is continuously being updated as η, the
global time, advances. Hence, ν and η are not completely
independent. Given a configuration (μ, η, ν) of a clocked PN

P, a transition t is enabled iff μ
t→, and q(t)(ν) ≡ true .

Let μ be the marking and ν the clock reading at time η.
Then t may fire at η if t is enabled in the marking μ with

the clock reading ν. We then write (μ, ν)
(t,η)→ (μ′, ν′), where

μ′ = μ+Δ(t), ν′(x) = 0 (for all x ∈ r(t)) and ν′(x) = ν(x) (for
all x � r(t)). Note that the global time remains unchanged
as a result of firing t. That is, the firing of a transition is
assumed to let no time elapse at all. The global clock will
start moving immediately after the firing of a transition is
completed. A marked clocked PN is a pair (N , μ0), where
N is a clocked PN and μ0 is the initial marking. Initially, we
assume the initial global time η0 and clock reading ν0 to be
η0 = 0 and ν0(x) = 0 (∀x ∈ X), respectively.

It is important to point out that in the execution seman-
tics defined above, enabledness is necessary but not suffi-
cient for transition firing. Unlike the case in the strong firing
semantics of timed (or time) PNs ([16]), it is not required
to fire all the enabled transitions at any point in time dur-
ing the course of a computation. The reachability problem
for clocked PNs is to decide, given a marked clocked PN

(N , μ0) and a marking μ, deciding whether μ0
ω→ μ, for some

ω = (σ, τ), where σ and τ are transition and time sequences,
respectively.

380
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

4. Complexity and Decidability Analysis of the Reach-
ability Problem

4.1 Priority Communication-Free Petri Nets

A 2-counter machine consists of a finite-state control
equipped with two counters, in which a transition from state
p to state q (operating on counter C) is of one of the fol-

lowing three: increment (p
C+→ q), decrement (p

C−→ q), and

test-for-zero (p
C=0→ q). 2-counter machines are computa-

tionally equivalent to Turing machines.

Theorem 4.1: The reachability problem for dynamic-
priority cf-PNs is undecidable.

Proof: It suffices to show that given a 2-counter ma-
chine M, a dynamic-priority cf-PN P and a marking μ can
be constructed in such a way that μ is reachable in P iff M
halts.

Consider M′s transitions p
C−→ q and p

C=0→ q′, we use
the cf-PN fragment shown in Fig. 1 to simulate these two
transitions. Here place c simulates Counter C and places
a, d, f simulate states p, q′, q, respectively. (The simu-

lation of p
C+→ q is rather straightforward, and hence, is

left to the reader.) Before the simulation begins, it is the
case that μ(a) = 1 (indicating p being the current state),
μ(c) equals the counter C′s value, and the remaining places
are empty. In our setting, only two priority classes, namely,
{High, Low}, are needed to make the simulation work. More
precisely,

(1) High = {t1} and Low = {t2, t3, t4, t5}, when μ(a) = 1 ∧
μ(c) = 0,

(2) High = {t2} and Low = {t1, t3, t4, t5}, when μ(a) = 1 ∧
μ(c) > 0 ∧ μ(e) = 0,

(3) High = {t3} and Low = {t1, t2, t4, t5}, when μ(b) = 1 ∧
μ(c) > 0 ∧ μ(e) = 0,

(4) High = {t4} and Low = {t1, t2, t3, t5}, when μ(b) = 1 ∧
μ(e) = 1,

Fig. 1 Simulation of a 2-counter machine using a dynamic-priority
cf-PN.

(5) High = {t5} and Low = {t1, t2, t3, t4}, when μ(b) = 0 ∧
μ(e) = 1 and

(6) the remaining transitions belong to class ‘Low’.

p
C=0→ q′ is simulated through the firing of transition

t1, whose feasibility is guaranteed by Case (1) above. p
C−→

q, on the other hand, requires the execution of a sequence
of transitions t2t3t4t5, which is feasible as the result of the
priorities assigned in Cases (2)–(5) above.

By reducing from the halting problem of 2-counter ma-
chines, the following is not difficult to show.

Theorem 4.2: The reachability problem is undecidable for
state-extended cf-PNs with static priorities.

For cf-PNs with static priorities, we are able to show
the reachability problem to be NP-complete. We require the
following lemma, whose proof is similar in style to a result
in [2] concerning the so-called EQUAL-conflict P/T nets.

Lemma 4.3: Given a cf-PN (P,T, ϕ) and a priority relation

ρ, if μ
σ→ μ′ and for every t enabled at μ′, t ∈ Ω1 (i.e., t is

in the lowest priority class induced by ρ̄), then μ
σ′⇒ μ′, for

some permutation σ′ of σ.

Proof: Consider a path from μ to μ′ along which μ1

is the leftmost marking at which the priority requirement is
violated, and t1 be the transition fired at μ1. We claim that
one of the highest priority transitions enabled at μ1 must fire
in between μ1 and μ′, for only transitions belonging to the

class Ω1 are enabled at μ′. We let μ2
t2→ be the marking and

its associated transition such that μ2 is the nearest location
(following μ1) with t2 among the highest priority transitions
enabled at μ1. (More precisely, every transition occurring
between μ1 and μ2 has its priority lower than t2.) Since t1
and t2 (which have different priorities) do not share a com-
mon input place, firing t2 at μ1 followed by t1 remains a
valid path. By repeatedly applying such a rearrangement to
the remaining path, a path meeting the priority requirement
can be constructed.

The following lemma (shown in [17]) suggests that the
reachability problem for cf-PNs can be characterized as an
Integer Linear Programming problem.

Lemma 4.4: (from Theorem 4 in [17]) Given a cf-PN P =
(P,T, ϕ), a system of linear inequalities ILP(P, μ, μ′) can be
constructed in NP in such a way that μ′ is reachable from μ
iff ILP(P, μ, μ′) has a solution over the integers.

With the above two lemmas, we are ready to derive
the complexity of the reachability problem for static-priority
cf-PNs. The proof closely parallels that of a recent result
concerning priority conflict-free PNs [18].

Theorem 4.5: The reachability problem for static-priority
cf-PNs is NP-complete.

4.2 Communication-Free Petri Nets with Inhibitor Arcs

A cf-PN with inhibitor arcs P = (P,T, ϕ, I) is said to be

CHEN et al.: REACHABILITY ANALYSIS OF VARIANTS OF COMMUNICATION-FREE PETRI NETS
381

cycle-free if it is the case that for every cycle l (i.e., a closed
loop) in the PN graph of P, there exists a transition t along l
such that the following condition holds:

(Condition A):
∀p ∈ t•,∀t′ ∈ T, (p, t′) � I

(i.e., the firing of t does not deposit tokens to a place from
which an inhibitor arc emanates).

To analyze the reachability problem of cf-PNs with
cycle-free inhibitor arcs, we require the following lemma,
which demonstrates the possibility of rearranging a path into
some sort of a ‘canonical form’.

Lemma 4.6: Given a cf-PN with cycle-free inhibitor arcs

P = (P,T, ϕ, I), suppose μ
σ1tσ2→ μ′ is a computation in P

such that t is an o-transition, t � Tr(σ1), and t satisfies Con-

dition A above, then σ can be rearranged into σ1

i︷︸︸︷
t · · · t σ3,

for some i, such that t � Tr(σ3). (That is, all the occurrences
of t in σ can be fired all at once.)

Proof: Since none of t’s output places is the input of
an o-transition (Condition A), firing t earlier (compared to
the original firing position) does not affect the fireability of
the remaining transitions. The rest is then clear.

By repeatedly applying the above lemma, we have the
following:

Lemma 4.7: LetP = (P,T, ϕ, I) be a cf-PN with cycle-free

inhibitor arcs, and μ
σ→ μ′ be a computation in P. The σ can

be rearranged into σ1

n1︷�︸︸�︷
t1 · · · t1 σ2

n2︷�︸︸�︷
t2 · · · t2 · · ·σm

nm︷��︸︸��︷
tm · · · tm σm+1

such that

1. ∀1 ≤ i ≤ m, ti is an o-transition,
2. ∀1 ≤ i ≤ m + 1, none of the transitions in σi is an

o-transition, and
3. m ≤ 2k, where k denotes the number of o-transitions in

T .

(Notice that ti, 1 ≤ i ≤ m, do not have to be distinct.)

Proof: According to Lemma 4.6, any computation

μ
σ→ μ′ can be rearranged into μ

σ1

i︷︸︸︷
t · · · t σ3→ , for some o-

transiton t � Tr(σ1) ∪ Tr(σ3). As a result, the number of
o-transitions in σ1 and σ3, respectively, is at most k − 1. By
recursively applying Lemma 4.6 to σ1 and σ3 (with respect
to PN (P,T − {t}, ϕ|T−{t}, I|T−{t})), our lemma follows.

Theorem 4.8: The reachability problem for cf-PNs with
cycle-free inhibitor arcs is solvable in NEXPTIME.

Proof: From Lemma 4.7, any computation μ
σ→ μ′

can be rearranged into μ
σ1→ μ1

n1︷�︸︸�︷
t1 · · · t1→ μ′1

σ2→ μ2

n2︷�︸︸�︷
t2 · · · t2→

μ′2 · · ·
σm→ μm

nm︷��︸︸��︷
tm · · · tm→ μ′m

σm+1→ μ′, for some markings

μ1, μ
′
1, . . . , μm, μ

′
m, and positive integers n1, . . . , nm. As each

σi, 1 ≤ i ≤ m, does not contain any o-transitions, its com-
putation can be captured by an instance of integer linear
programming, as Lemma 4.4 suggests. By ‘guessing’ those
o-transitions t1, t2, . . . , tm, checking whether μ′ is reachable
from μ in P can be formulated as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = μ
∀1 ≤ i ≤ m + 1

ILP((P,T ′, ϕ), xi−1, xi)
xi(•ti) = 0
x′i = xi + niΔ(ti) ≥ 0

xm+1 = μ

where T ′ is the set {t | t ∈ T , t is not an o-transition}, vector
variables x0 and xm+1 represent markings μ and μ′, respec-
tively, xi, x′i , 1 ≤ i ≤ m, are vector variables representing
markings μi, μ′i , respectively, and ni, 1 ≤ i ≤ m, are scalar
variables. As m is bounded by an exponential function in the
size of P, the above instance of integer linear programming
is solvable in NEXPTIME.

The reachability problem for cf-PNs with cycle-free
inhibitor arcs is clearly NP-hard, as the problem for origi-
nal cf-PNs is NP-complete. It would be interesting to see
whether the lower bound can be improved.

By reducing from the halting problem of 2-counter ma-
chines, we can show the following:

Theorem 4.9: The reachability problem is undecidable for
state-extended cf-PNs with cycle-free inhibitor arcs.

4.3 Alternating RQ Communication-Free Petri Nets

For general clocked PNs, we are able to show the follow-
ing result using a standard technique based on the concept
of clock regions [1]. The idea is to reduce the reachability
problem for clocked Petri nets to that for vector addition
systems with states (by associating each clock region with a
state), which are known to be computationally equivalent to
Petri nets.

Theorem 4.10: The reachability problem is decidable for
general clocked PNs.

In view of the above, together with the fact that check-
ing reachability in cf-PNs is easier to solve than in general
PNs (the former is in NP whereas the latter is EXPSPACE-
hard), a natural question to ask is how difficult the reachabil-
ity problem is for clocked cf-PNs. As one might expect, the
property of ‘communication-freedom’ is crucial in making
cf-PNs easier to analyze (from a computational complexity
viewpoint) than their general counterparts. The introduction
of timing constraints to cf-PNs, however, renders (in an im-
plicit way) the net not communication-free behaviorally. In
fact, for static-priority cf-PNs with clocks, the following re-
sult shows the reachability problem to be undecidable. (Re-
call that for static-priority cf-PNs without clocks, the prob-
lem was shown to be solvable in NP in the previous section.)

382
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Theorem 4.11: The reachability problem is undecidable
for static-priority clocked cf-PNs.

Proof: Following Theorem 4.2, it suffices to show that
any static-priority state-extended cf-PN can be simulated by
a static-priority clocked cf-PN. The idea of the simulation
is depicted in Fig. 2. Figure 2 (1) shows a fragment of a
state-extended cf-PN in which the firing of PN transition t
is controlled by p → q. In our construction we associate
two distinct clocks, namely x and y in Fig. 2 (2), with each
transition t. Clocks x and y are used to ‘synchronize’ the
actions between ‘moving a token from places p to q’ (which
corresponds to the ‘state’ portion of the state-extended cf-
PN) and firing transition t itself. We assume the clock values
of x and y to be greater than 1 initially; hence, they have to
be reset before t becomes fireable. (This ensures that only
the transition associated with the ‘current state’, namely, p,
has the right to fire.) It is easy to see that the sequence utv is
fireable. In addition, upon firing v, the values of x and y are
2 and 3, respectively, satisfying our earlier assumption that
the values of x and y are greater than 1.

In view of the above and Theorem 4.5, cf-PNs with
clocks seem to be harder to analyze than their unclocked
counterparts. As a first step towards a complexity analysis of
clocked cf-PNs, in what follows we lower our expectations
by considering a restricted class of clocked cf-PNs called
alternating RQ cf-PNs. As the structure of the so-called cir-
cuits (or cycles) in the PN graph plays an important role in
our subsequent discussion, some definitions are needed first.

A circuit of a PN is a ‘simple’ closed path in the PN
graph. (By ‘simple’ we mean all nodes are distinct along
the closed path.) It is important to note that every circuit
c = p1t1 p2t2 · · · pntn p1 in a cf-PN must have •ti = {pi}, for
every i, 1 ≤ i ≤ n. (Notice that the firing of a transition may
deposit more than one token into a place. Given a circuit c =
p1t1 p2t2 · · · pntn p1, let Pc = {p1, p2, · · · , pn} denote the set of
places in c. We define the token count of circuit c in marking
μ to be μ(c) =

∑
p∈Pc

μ(p). A circuit c is said to be token-free

in μ iff μ(c) = 0. A set of circuits C = {c1, c2, . . . , cn} is
said to be a circuit collection iff for every i, j, 1 ≤ i, j ≤ n,
there exist 1 ≤ h1, h2, . . . , hr ≤ n, for some r, such that

Fig. 2 Transformation of a state-extended cf-PN into an equivalent
clocked cf-PN.

h1 = i, hr = j, and for every 1 ≤ l < r, Pchl
∩ Pchl+1

� ∅.
In words, every pair of neighboring circuits in the sequence
ch1 , ch2 , . . . , chr share at least one place. For a simple circuit
c, we also use #c to denote the vector count of transitions
used in c, i.e., #c(i) = 1 if ti is in c; #c(i) = 0, otherwise.
A circuit is called a clocked circuit if it contains at least one
clocked transition. A sequence σ is said to cover circuit c if
#c ≤ #σ, i.e., every transition of c appears in σ.

Our definition of alternating RQ cf-PNs is mainly mo-
tivated by the work of [11] in which the so-called alternat-
ing RQ timed automata were defined. Intuitively, a timed
automaton is said to be an alternating RQ timed automa-
ton if given an arbitrary computation σ and a clock x, the
sequence of ‘resets’ and ‘queries’ regarding x must appear
alternatively. As it turns out, alternating RQ timed automata
admit more efficient verification algorithms, in comparison
with that for the general model of timed automata [11] (see
also [12]). What makes alternating RQ timed automata eas-
ier to analyze, compared to their general counterparts, seems
to lie in the so-called simple path property, suggesting that
if a state q is reachable from p in a timed automaton, then
q can be reached from p through a path without cycles, and
if a cycle is traversable once, it can be traversed an arbitrary
(finite of infinite) number of times. The intuition behind
the justification of imposing the alternating RQ constraints
is that, in many cases, if we want to inquire about a timing
status at a certain point during a computation via a query,
we often reset the associated clock before the query. Fur-
thermore, if the same clock is to be inquired twice, different
clocks can be used for each query. As indicated in [11],
[12], many practical examples in the literature meet the al-
ternating RQ constraints. Inspired by [4], [11], [12], in our
subsequent discussion we tailor the alternating RQ condi-
tions defined in [11], [12] to our clocked PN model.

Given a sequence σ of transitions, the RQ sequence of
σ, denoted by Γ(σ), is the sequence of resets and queries
encountered along σ. Given an RQ sequence Γ(σ), the RQ
sequence with respect to clock x, denoted by Γ(σ)|x, is ob-
tained from Γ(σ) by deleting all the resets and queries that
do not involve x. An RQ sequence Γ(σ) is alternating, if,
for each clock x, Γ|x is of the form R(x)Q(x)R(x)Q(x) · · ·,
where R(x) and Q(x) denote reset and query operations, re-
spectively, with respect to clock x.

An alternating RQ cf-PN is a clocked cf-PN satisfying
the following constraints:

(1) For each clock x, there is only one pair of reset and
query associated with x in the PN.

(2) For each computation ω = (σ, τ) starting from the ini-
tial configuration, Γ(σ) is alternating, i.e., for each x,
resets and queries in Γ(σ)|x appear in an alternating
fashion.

(3) Suppose (μ, η, ν) is a reachable configuration with
μ(p1) ≥ 1 and p1t1 p2t2 · · · pntn is an arbitrary simple
path in the PN graph. Then there exists a time sequence

τ such that (μ, η, ν)
(t1t2···tn,τ)→ is fireable.

(4) Each strongly connected component in the PN graph

CHEN et al.: REACHABILITY ANALYSIS OF VARIANTS OF COMMUNICATION-FREE PETRI NETS
383

contains at most one clocked circuit.

The reason why multiple clocked circuits are disallowed (as
Condition (4) indicates) is that the time delay induced by
traversing a clocked circuit might invalidate the clock con-
straints associated with another clocked circuit (more pre-
cisely, the number of times a clocked circuit can be traversed
hinders on another clocked circuit) — violating the simple
path property mentioned earlier. As a consequence, at the
current stage of our investigation we only consider cf-PNs
which exhibit ‘simple’ circuit structures, although we sur-
mise that a more general condition also works. Although
not discussed in this paper, it is worthy of investigating the
complexity of deciding whether a given PN is an alternating
RQ cf-PN or not.

Given Condition (1) in the above definition, for conve-
nience we define two mappings R : X → T and Q : X → T
which indicate the transitions at which resets and queries,
respectively, reside. R(x) = t indicates that clock x is reset
whenever t is fired. Likewise, Q(x) represents the transi-
tion at which a query concerning clock x resides. A tran-
sition (resp., place) is said to be timed if and only if there
exists a path in the PN graph from the transition (resp.,
place) to a clocked transition. Let Ttimed and Ptimed be
the sets of timed transitions and places, respectively, and
Tuntimed = T − Ttimed, Puntimed = P − Ptimed. The following
result shows an important feature regarding the behavior of
alternating RQ cf-PNs.

Lemma 4.12: Let P = (N , μ0) be an alternating RQ cf-
PN. If p1 ↪→ p2 ↪→ t is a path in the PN graph and t is
clocked, then μ(p1) + μ(p2) ≤ 1, for every reachable config-
uration (μ, η, ν). (Here p1 ↪→ p2 can be null; in this case,
p1 = p2.)

Proof: Suppose t is the first clocked transition along
the path ↪→ p2 ↪→ t. Let the transition sequences (exclud-
ing t) in p1 ↪→ p2 and p2 ↪→ t be σ1 and σ2, respectively.
Consider the following cases:
(Case 1): μ(p2) ≥ 2. Due to the property of being an alter-
nating RQ cf-PN, there exists a time sequence η such that

μ
(σ2t,η)→ μ′, for some μ′. As none of the transitions in σ2 is

clocked, μ
(σ2t,η)‖(σ2t,η)→ μ′′, for some μ′′ — violating the RQ

alternating property as t being fired twice consecutively.
(Case 2): μ(p1) ≥ 1 and μ(p2) ≥ 1. In this case there ex-

ist computations μ
(σ1σ2t,η)→ μ1, μ

(σ2t,η′)→ μ2, for some μ1 and

μ2. It then follows that μ
(σ1σ2t,η)‖(σ2t,η′)→ μ3, for some μ3 —

violating the RQ alternating property as t being fired twice
consecutively.
(Case 3): μ(p1) ≥ 2. Similar to Case 1.

If t is not the first clocked transition in p2 ↪→ t, choose
the first such transition, and then apply the above argument.

To simplify our subsequent discussion, we require the
following result whose proof is not difficult.

Lemma 4.13: Given an arbitrary alternating RQ cf-PN

and a marking μ, we can construct in polynomial time an
‘equivalent’ (as far as reaching μ is concerned) alternating
RQ cf-PN P satisfying the following two properties:

(1) ϕ(t, p) ≤ 1, ∀ t ∈ Ttimed (i.e., firing any timed transition
puts only one token into each of its output places),

(2) for every p ∈ Puntimed, there is at most one timed tran-
sition in •p.

It is clear from the definitions of timed and untimed
transitions and places that in any circuit c, if there is an un-
timed transition or place, then all the transitions and places
in c must be untimed as well. Such an observation applies to
circuit collections. Hence, a circuit c is called a timed circuit
of P if ∀ p ∈ c and t ∈ c, p ∈ Ptimed and t ∈ Ttimed. A circuit
collection S is called a timed circuit collection if for every
c ∈ S , c is a timed circuit. Note that a clocked circuit is also
a timed circuit, but the converse does not necessarily hold.

Let N = ((P,T, ϕ), X, r, q) be an alternating RQ cf-
PN. Suppose ϕt and ϕu are the restrictions of ϕ to timed
and untimed transitions, respectively. The timed subnet of
N , denoted by NT , is also an alternating RQ cf-PN where
NT = ((P,Ttimed, ϕt), X, r, q). The untimed subnet of N , de-
noted by NU , is a cf-PN where NU = (P,Tuntimed, ϕu).

Our strategy of showing the reachability problem for
alternating RQ cf-PNs to be in NP is, given an alternating
RQ cf-PN P and a marking μ, to construct a system of linear
inequalities L in such a way that μ is reachable in P iff L
has an integer solution. As integer linear programming is
known to be solvable in NP, our result follows.

To give the reader a better feel for how the main proof
goes, in what follows we first present the key idea in a high-
level and intuitive fashion. The details will be filled in as
our discussion progresses.

To begin with, we first guess the set of transitions (pos-
sibly) witnessing reachability. (Note that we have the luxury
of doing so (i.e., guessing) since NP is what we are aiming
for.) Our next step towards the complexity analysis is to fur-
ther divide the (guessed) structure of the net into timed and
untimed subnets in a way described in the previous section.
For tokens in the timed subnet, their behaviors are restricted
by the timing constraints. On the other hand, tokens can
move more freely if they are in the untimed subnet. Such
a disparity in token behavior motivates a lemma (namely,
Lemma 4.14, which will be proven later) which proves the
legitimacy of separating the computation of the two subnets
when dealing with the reachability problem. More precisely,

we are able to show that any computation μ0
σ→ μ in P can

be rearranged into μ0
(σ1,τ)→ μ′

σ2→ μ, for some μ′ and time
sequence τ, so that σ1 (resp., σ2) uses only timed (resp., un-
timed) transitions. Following Lemma 4.4, a system of linear

inequalities can be set up for μ′
σ2→ μ, since σ2 involves only

untimed transitions. (Note that in such a system of linear
inequalities, μ′ represents a vector variable.)

It remains to show how a similar (albeit much more
complicated) system of linear inequalities can be derived for

μ0
(σ1,τ)→ μ′. To this end, we argue that any ‘timed’ compu-

384
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Fig. 3 Computational structure of an alternating RQ cf-PN.

tation in an alternating RQ cf-PN must behave in a rather
regular fashion. It is important to point out that such a reg-
ularity is exhibited in the PN not only structurally but also
behaviorally. Take Fig. 3 as an example for illustrating what
we mean by ‘regularity.’ Figure 3 represents the life cycle of
a token, say, x, in existence initially, along with those tokens
generated by x directly or indirectly as x progresses. In a
graph-theoretic sense, the portion of the PN involved in the
course of token x’s computation consists of circuit collec-
tions (see S 1 and S 2 in Fig. 3) interleaved by line segments
(see transitions t1 - t4 in Fig. 3). In a line segment, token x
can only move downwards, while possibly generating new
token (to either timed or untimed portions of the PN) as it
progresses. Once x moves inside a circuit collection, it is
entitled to circle around an arbitrary number of times (pro-
vided the timing requirement is also met) while spinning off
new tokens. There are several key features (which will be
proven later) regarding a circuit collection:

• At any instant, at most one token is present in a circuit
collection.
• Tokens can only be injected into untimed places as a

result of spin-off (see t5 in Fig. 3).
• To exit from a circuit collection, a token must leave

from a unique exit place.
• Tokens in the timed portion can never interfere with

one another.

With the exception of generating new tokens (or being
generated by another token), a token, during its entire life
span, never interferes with the rest of the tokens in existence
in the PN.

Enough for the intuition, we are in a position to embark

on the derivation of the NP upper bound. To do so, a few
lemmas are in order.

Lemma 4.14: Let P = ((P,T, ϕ), X, r, q) be an alternat-
ing RQ cf-PN with initial marking μ0. For every reach-
able marking μ of P, there exists a ‘canonical’ computa-
tion ω = (σ, τ) = (σaσb, τaτb), where σa ∈ (Ttimed)∗ and

σb ∈ (Tuntimed)∗, such that μ0
(σa,τa)→ μ′

(σb,τb)→ μ, and for
the intermediate marking μ′, μ′(p) = μ(p), ∀ p ∈ Ptimed and
p• ⊆ Ttimed.

Proof: Given a reachable marking μ, there exists a

computation ω0 such that μ0
(ω0,τ

′)→ μ, for some time se-
quence τ′. Let t1 and t2 be the first pair of transitions fired
consecutively in ω0, with t1 ∈ Tuntimed, t2 ∈ Ttimed and
η1 ≤ η2, where

μ0
(σ1,τ1)→ μ1

(t1,η1)→ μ2
(t2,η2)→ μ3

(σ2,τ2)→ μ.

Let {p1} = •t1, {p2} = •t2. Obviously, p1 and p2 are
marked in μ1 and μ2, respectively. (Hence, μ1(p1) ≥ 1 and
μ2(p2) ≥ 1.) By definition, p2 is a timed place; hence,
μ2(p2) = 1 (Lemma 4.12). We also have t1 �↪→ t2, since
t1 is untimed while t2 is timed. Therefore p2 � t•1 and
μ1(p2) ≥ μ2(p2) = 1. Also from Lemma 4.12, p1 � p2.
Since t1 is an untimed transition, none of the clock variables
is reset upon firing t1. Let ν1 and ν2 be the clock readings
at time η1 and η2, respectively. Clearly ν2 = ν1 + (η2 − η1),
regardless of the firing of t1. By skipping t1 and firing t2 in

μ1 at time η2, we have μ0
(σ1,τ1)→ μ1

(t2,η2)→ μ′2, for some μ′2,
and 1 ≤ μ1(p1) ≤ μ′2(p1). Since t1 is an untimed transition,
it is still enabled in μ′2 at time η2, in spite of being delayed.
Hence we have

μ0
(σ1,τ1)→ μ1

(t2,η2)→ μ′2
(t1,η2)→ μ′3

(σ2,τ2)→ μ,

for some μ′3.
By repeatedly applying the above to every pair of

neighboring transitions in which the untimed one precedes

the timed, a canonical rearrangement μ0
(σa,τa)→ μ′

(σb,τb)→ μ
with all the timed (resp., untimed) transitions appear in σa

(resp., σb) is obtained. It remains to show that μ′(p) = μ(p),
∀ p ∈ Ptimed and p• ⊆ Ttimed. Let p1 ∈ Ptimed and p•1 ⊆ Ttimed.
Since p1 ∈ Ptimed, all the input transitions of p1 are timed
transitions which will not be fired in σb. In other words,
no tokens are put into p1 during the course of firing σb;
so μ′(p1) ≤ μ(p1). On the other hand, by assumption all
the output transitions of p1 are also timed, so that they
won’t be fired in σb. Since no tokens leave p1 during σb,
μ′(p1) ≥ μ(p1). Therefore, μ′(p1) = μ(p1).

In our subsequent discussion, we simply use PT to de-
note the marked timed subnet ((P,Ttimed, ϕt), X, r, q) (with
initial marking μ0) of a marked alternating RQ cf-PN P.
Note that PT itself is an alternating RQ cf-PN and all the
transitions in PT are timed transitions. So there are only
“timed” circuits and circuit collections in PT .

Lemma 4.15: Let ω = (σ, τ) be a computation of PT

CHEN et al.: REACHABILITY ANALYSIS OF VARIANTS OF COMMUNICATION-FREE PETRI NETS
385

where μ0
ω→ μ. For every transition t in PT , if t is not on any

circuit, then t can be fired at most once in ω, i.e., #σ(t) ≤ 1.

Proof: Suppose #σ(t) ≥ 2 and let μ0
(σ1,τ1)→ μ1

(t,η1)→ μ′1
(σ2,τ2)→ μ2

(t,η2)→ μ′2
(σ3,τ3)→ μ. Let •t = {p}, then we have

μ1(p) = 1, μ′1(p) = 0 and μ2(p) = 1. So there must be a
path χ (in the PN graph) which starts from a marked place
pa in μ′1 and ends in p, through which a token is deposited
to p before time η2. (Let the firing sequence correspond-
ing to path χ be σa.) Since pa is a timed place, μ′1(pa) = 1
(Lemma 4.12). Furthermore, no transition in σa ever re-
moves a token from p.

Since transitions of σa are carried out in σ2 (perhaps
interleaved with other transitions), i.e. #σa ≤ #σ2 . Hence

μ′1
(σa,τa)→ μ′′1

(t,η′2)→ μ′′2 is a legal firing sequence, for some
τa, η′2, μ′′1 , μ′′2 . If pa � t•, μ1(pa) = 1. μ′′1 (p) = 2 — con-
tradicting Lemma 4.12. Hence, t ↪→ pa ↪→ t, contradicting

the assumption. So μ1(pa) = 0. Since μ1
(t,η1)→ μ′1 and

μ′1(pa) = 1, it means pa ∈ t• and pa is then reachable from t.
This, together with the fact that pa ↪→ t, results in a circuit
containing t — a contradiction. This completes the proof of
the Lemma.

Let c = p1t1 p2 · · · pntn p1 be a circuit in an alternating
RQ cf-PN P. A place pi in c is called an entry of c if ∃ t ∈
•pi, t � c. A place pi in c is called an exit of c if ∃ t ∈ p•i , t �
c. A transition ti in c is called a leak of c if ∃ p ∈ t•i , p � c.
In short, an entry of a circuit is a place through which tokens
are injected into the circuit. An exit, in contrast, is a place
from which tokens leave the circuit. A leak is a transition
which spins off tokens whenever the circuit is traversed.

The following is easy to show.

Lemma 4.16: Let c be a clocked circuit and μ be a reach-
able marking with μ(c) ≥ 1. Then for arbitrary a ∈ N

there exists a computation ω = (σ, τ) such that μ
ω→ and

#σ = a · #c, for some τ. (That is, c can be traversed a times
in μ.)

Corollary 4.17: Let c be a circuit that is traversed during
the course of the computation. If t is one of its leaks, then
∀ p ∈ t•, p � c implies p is an untimed place.

We can also show the following:

Lemma 4.18: Given a clocked circuit c and a number d ∈
N, we can decide in NP whether traversing circuit c once (if
it is traversable) needs time < or ≤ d.

Given a computation ω = (σ, τ) of PT , the traversed
net of PT associated with ω, denoted by P̂(ω), is the subnet
consisting of places and transitions involved in ω. Notice
that some places in PT may not be timed.

From Lemma 4.12, we have

Lemma 4.19: Let s = {c1, c2, . . . , cr} be a circuit collection
in the traversed net P̂(ω). For any reachable marking μ of

P̂(ω), we must have
r∑

i=1

μ(ci) ≤ 1. In other words, there can

be at most one token within a circuit collection in P̂(ω) at
any time during the computation ω.

Lemma 4.20: Let p be a place in P̂(ω). If p does not be-
long to any circuit, then p has at most one input (and output)
transition in P̂(ω).

Proof: First consider the input case. According to
Lemma 4.13, if p is an untimed place, p will have at most
one timed input transition visible in P̂(ω). Therefore the
above statement is true. Next, we consider the case when p
is a timed place.

Assume that p has two input transitions t1 and t2 in
P̂(ω). Let {p1} = •t1 and {p2} = •t2. Without loss of gen-
erality, we assume that t1 is fired earlier than t2 during the
computation ω = (σ, τ), where

μ0
(σ1,τ1)→ μ1

(t1,η1)→ μ′1
(σ2,τ2)→ μ2

(t2,η2)→ μ′2.

So, μ1(p1) = 1 and μ′1(p1) = μ1(p1) − 1 = 0. Since 1 ≥
μ′1(p) = μ1(p) + 1, we will have μ′1(p) = 1. That is, in μ′1,
the place p has one token.

Since μ2(p2) = 1, there exists a place p′ marked in μ′1
such that p′ ↪→ p2. Since p is not on any circuits and p2

t2→
p, p �↪→ p2 (the assumption of the lemma). Therefore p′ �
p. Now we have at μ′1, μ′1(p) = μ′1(p′) = 1 and p′ ↪→ p ↪→ t,
for some clocked transition t — violating Lemma 4.12.

The proof of the output case is similar, and hence, the
details are left to the reader.

Let s = {c1, c2, . . . , cr} be a circuit collection in P̂(ω)
and t be a transition which is not in s. (That is, t � ci ∀ 1 ≤
i ≤ r.) t is said to be an input of s if ∃ p ∈ c j for some j
where 1 ≤ j ≤ r, such that p ∈ t•, and t is an output of s if
∃ p ∈ c j for some j where 1 ≤ j ≤ r, such that p ∈ •t.
Corollary 4.21: If s is a circuit collection in P̂(ω), then s
has at most one input and one output.

The following lemma is from [17].

Lemma 4.22: (From Lemma 1 in [17]) Let C = {c1,
c2, . . . , cn} be a set of connected circuits in a cf-PN P and
μ be a marking with μ(ci) > 0, for some i. For arbitrary in-
tegers a1, a2, . . . , an > 0, there exists a sequence σ such that

μ
σ→ and #σ =

n∑
j=1

a j(#c j). (In words, from μ there exists a

fireable sequence σ utilizing circuit c j exactly a j times, for
every j.)

We are in a position to put all the pieces together, in
order to devise a system of linear inequalities to capture

μ0
(σa,τa)→ μ′

(σb,τb)→ μ (where σa ∈ T ∗timed and σb ∈ T ∗untimed)
for alternating RQ cf-PNs. (Assume the set of timed transi-
tions Ttimed and the set of timed places Ptimed of P are pre-
computed in advance.)

1. Guess T ′ ⊆ Ttimed such that T ′ = Tr(σa), the portion
actually involved in the computation.

2. Guess the tree structure of T ′ discussed earlier (see

386
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Fig. 3), and then verify its validity. Let S =

{s1, s2, . . . , sg} be circuit collections in T ′, and si =

{ci
1, . . . , c

i
r1
} be the set of circuits of si, for some ri. We

also guess d1, d2, . . . , dg ∈ N. Then the following are
verified.

a. for each si, check the connectivity condition of ci
1,

. . . , ci
r1

(doable in polynomial time (Lemma 4.4)),
b. for each circuit collection si, verify the condition

of Lemma 4.21 (i.e., whether there is at most one
input and output for each si),

c. for any timed place p not in si check if p
has at most one input (and output) transition
(Lemma 4.20),

d. verify that the clocked circuit in si, 1 ≤ i ≤ g, can
be traversed in < (or ≤) di time (Lemma 4.18).

3. Disregarding timing constraints, a system of linear in-
equalities can be set up (guaranteed by Lemma 4.4) to
capture the essence of a marking μ′ reachable from the
initial marking. (Here μ′ is a vector variable.) In set-
ting up such a system of inequalities, the number of
times a circuit is traversed in a circuit collection is kept
as a scalar variable (see Lemma 4.4). Now we focus
on how timing requirements can be enforced by adding
additional inequalities to the system. To give the reader
a better feel for how this is done, consider the example
given in Fig. 3. As discussed earlier, for each transition
t in T ′ not in any circuit collection, t is fired exactly
once during the course of the computation. We there-
fore assign a variable dt to denote the global time at
which t is fired. Since we have allocated variables to
represent the numbers of times circuits in T ′ (includ-
ing clocked circuits) are traversed, linear inequalities
with respect to variables dt can easily be set up, tak-
ing into account the number of times clocked circuits
are traversed. Take the path from t0 to t4 for exam-
ple (assuming that the minimum delays (which can be
decided in NP as Lemma 4.18 suggests) of circuit col-
lections S 1 and S 2 are 2 and 4 time units, respectively).
The associated inequalities for timing constraints along
this path are:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dti ≤ dti+1 ,∀1 ≤ i ≤ 3
n1 ∗ 2 ≤ dt3 − dt2 ≤ 50
n2 ∗ 4 + (dt3 − dt1) ≤ dt4 − dt1
20 < dt4 − dt1

where n1 and n2 (which are scalar variables) represent
the numbers of times the clocked circuits in S 1 and S 2,
respectively, are executed. The details for the general
case are simply a matter of technicality, and hence, are
left to the reader.

4. To see whether marking μ (given as part of the prob-
lem’s instance) can be reached from μ′ (which is a vec-
tor variable) using only transitions belonging to the un-
timed portion of the PN, Lemma 4.4 again can be used
for setting up a system of linear inequalities.

Based on the above idea, we have the following result.

Fig. 4 A flexible manufacturing system with timing constraints.

Theorem 4.23: The reachability problem for alternating
RQ cf-PNs is NP-complete.

Example 4.1: A flexible manufacturing system with time
constraint is specified as follows. This machine disassem-
bles one component to provide finished or unfinished prod-
ucts. Figure 4 is the alternating RQ cf-PN model of an as-
sembly machine which manufactures four types of products
denoted by p2, p5, p12 and p17 using one type of component
denoted by p0. Workstation 1 divides Material A into two
Parts B and C. Then, Part B needs to be processed by Work-
station 2 with a portion of rework by the same workstation;
and Part C needs to be processed by either Workstation 3
or 4. Workstation 2 with a timing constraint produces two
types of products p12 and p17. Workstation 3 with a time
constraint produces one type of product p2. Workstation 4
produces one type of product p5.

Let P = ((P,T, ϕ), X, r, q) be an alternating RQ cf-PN
with initial marking μ0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0) as shown in Fig. 4 where the shaded place and
transitions are denoted by untimed places and transitions. P
can be divided into timed subnet PT = ((P,Ttimed, ϕt), r, q)
and untimed subnet PU = (P,Tu, ϕu). Given a marking
μ = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1), we want to
know whether marking μ can be reached from μ0. To an-
swer this question, the idea is to construct a system of linear
inequalities L that μ is reachable in P iff L has an integer
solution.

According to Lemma 4.14, there exists a computa-
tion ω = (σ, τ) = (σaσb, τaτb), where σa ∈ (Ttimed)∗ and

σb ∈ (Tuntimed)∗, such that μ0
(σa,τa)→ μ′

(σb,τb)→ μ. We can de-
termine whether marking μ of the alternating RQ cf-PN P is
reachable by the following two steps. First, find an interme-
diate marking μ′ which is reachable from the initial marking
μ0 by firing only the timed transitions. Next, we have to
determine if μ is reachable in the untimed subnet from the
intermediate marking μ′.

1. Consider μ0
(σa,τa)→ μ′, disregarding timing constraints, a

CHEN et al.: REACHABILITY ANALYSIS OF VARIANTS OF COMMUNICATION-FREE PETRI NETS
387

system of linear inequalities can be set up (guaranteed
by Lemma 4.4) to capture the essence of a marking μ′
reachable from the initial marking as follows:

μ′ = μ0 + A1 x̄1

in which A1 represents the adjacency matrix associated
with subnet PT and is of dimension 18 × 18, x̄1 is an
18 × 1 column vector of nonnegative integers which is
called the firing count vector. Now we focus on how
timing requirements can be enforced by adding addi-
tional inequalities to the system. We assign a variable
dt to denote the global time at which transition t is fired
and the linear inequalities with respect to variables dt

can be set up. The associated inequalities for timing
constraints along the path are
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dt1 ≤ dt2
5 ≤ (dt2 − dt1)
dt11 ≤ dt15

(dt15 − dt11) ≤ 20

2. Consider μ′
(σb,τb)→ μ, Lemma 4.4 again can be used for

setting up a system of linear inequalities as follows:

μ = μ′ + A2 x̄2

in which A2 represents the adjacency matrix associated
with subnet PU and is of dimension 18 × 18, x̄2 is an
18 × 1 column vector of nonnegative integers which is
called the firing count vector.

According to the above results, we can construct a system
of linear inequalities L such that μ is reachable in P iff L
has an integer solution.

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ′ = μ0 + A1 x̄1

μ = μ′ + A2 x̄2

dt1 ≤ dt2
5 ≤ (dt2 − dt1)
dt11 ≤ dt15

(dt15 − dt11) ≤ 20

In this example, theL has an integer solution x̄1 = (1, 0, 0, 0,
0, 0, 0, 0, 3, 2, 2, 2, 1, 1, 1, 2, 1, 1), x̄2 = (0, 0, 1, 3, 1, 2, 2, 2, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0), dt1 = 1, dt2 = 6, dt15 = 10 and dt11 = 5.

�

References

[1] R. Alur and D. Dill, “A theory of timed automata,” Theor. Comput.
Sci., vol.126, pp.183–235, 1994.

[2] F. Bause, “On the analysis of Petri net with static priorities,” Acta
Inform., vol.33, pp.669–685, 1996.

[3] F. Bause, “Analysis of Petri nets with a dynamic priority method,”
Proc. 18th International Conference on Application and Theory of
Petri Nets, Toulouse, France, June 1997.

[4] B. Berard, “Untiming timed languages,” Inf. Process. Lett., vol.55,
pp.129–135, 1995.

[5] J. Esparza, “Petri nets, commutative context-free grammars, and ba-
sic parallel processes,” Fundamenta Informaticae, vol.31, pp.13–26,
1997.

[6] R. Gorrieri and G. Siliprandi, “Real-time system verification using
P/T nets,” CAV’94, LNCS 818, pp.15–26, 1994.

[7] D. Huynh, “Commutative grammars: The complexity of uniform
word problems,” Inf. Comput., vol.57, pp.21–39, 1983.

[8] D. Huynh, “The complexity of equivalence problems for commuta-
tive grammars,” Inf. Comput., vol.66, pp.103–121, 1985.

[9] P. Jančar, A. Kucěra, and R. Mayr, “Deciding bisimulation-like
equivalences with finite-state processes,” Theor. Comput. Sci.,
vol.258, pp.409–433, 2001.

[10] P. Jančar and F. Moller, “Techniques for decidability and unde-
cidability of bisimilarity,” Proc. CONCUR’99, vol.1664 of LNCS,
pp.30–45, 1999.

[11] W. Lam and R. Brayton, “Alternating RQ timed automata,” CAV’93,
LNCS 697, pp.237–252, 1993.

[12] W. Lam and R. Brayton, “Criteria for the simple path property in
timed automata,” CAV’94, LNCS 818, pp.27–40, 1994.

[13] R. Lipton, “The reachability problem requires exponential space,”
Technical Report 62, Yale University, Dept. of CS., Jan. 1976.

[14] M. Marsan and G. Chiola, “On Petri nets with deterministic and
exponential transition firing times,” Proc. 7th European Workshop
on Application and Theory of Petri Nets, pp.151–165, 1986.

[15] E. Mayr, “An algorithm for the general Petri net reachability prob-
lem,” SIAM J. Comput., vol.13, no.3, pp.441–460, 1984.

[16] C. Ramchandani, “Analysis of asynchronous concurrent systems by
Petri nets,” Tech Report MAC TR-120, Massachusetts Institute of
Technology, 1974.

[17] H. Yen, “On reachability equivalence for BPP-nets,” Theor. Comput.
Sci., vol.179, pp.301–317, 1997.

[18] H. Yen, “Priority conflict-free Petri nets,” Acta Inform., vol.35,
pp.673–688, 1998.

Chien-Liang Chen received the B.S. degree
in Computer Science and Information Engineer-
ing from Tamkang University, Taiwan, in 1995,
the M.S. degree in Electrical Engineering from
National Taiwan University, Taiwan, in 2000.
He is a Ph.D. candidate in the Department of
Electrical Engineering at Nation Taiwan Univer-
sity, Taiwan. His current research interests in-
clude Petri net theory, formal methods, discrete
event systems and manufacturing systems.

Suey Wang was born in Taiwan, Repub-
lic of China, on September 22, 1971. She re-
ceived the B.S. degree in physics and the M.S.
degree in electrical engineering from National
Taiwan University, Taiwan, in 1994 and 1996,
respectively. She received the M.S. degree in
information networking from Carnegie Mellon
University, U.S.A., in 1998. She joined Morgan
Stanley in 1998. She worked in the New York
office for six years before transferring to Tokyo
in 2004. She is currently a vice president in

Technology department of Morgan Stanley Japan Securities Co., Ltd.

388
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Hsu-Chun Yen was born in Taiwan, Repub-
lic of China, on May 29, 1958. He received the
B.S. degree in electrical engineering from Na-
tional Taiwan University, Taiwan, in 1980, the
M.S. degree in computer engineering from Na-
tional Chiao-Tung University, Taiwan, in 1982,
and the Ph.D. degree in computer science form
the University of Texas at Austin, U.S.A., in
1986. He is presently a Professor of Electri-
cal Engineering at National Taiwan University,
where he initially joined in August 1990. Since

August 2007, he has served as Dean of School of Informatics at Kainan
University, Taiwan. From August 1986 to July 1990, he was an Assis-
tant Professor of Computer Science at Iowa State University, Ames, Iowa,
U.S.A. His current research interests include Petri net theory, formal meth-
ods, design and analysis of algorithms, and complexity theory. Dr. Yen
is an editor of International Journal of Foundations of Computer Science
(IJFCS, Worlds Scientific Publisher).

