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The Spanning Connectivity of the Burnt Pancake Graphs

Cherng CHIN™ "9 Nonmember, Tien-Hsiung WENG ", Member, Lih-Hsing HSU''T,

SUMMARY  Let u and v be any two distinct vertices of an undirected
graph G, which is k-connected. For 1 < w < k, a w-container C(u, v) of
a k-connected graph G is a set of w-disjoint paths joining u# and v. A w-
container C(u, v) of G is a w*-container if it contains all the vertices of G.
A graph G is w*-connected if there exists a w*-container between any two
distinct vertices. Let x(G) be the connectivity of G. A graph G is super
spanning connected if G is i*-connected for 1 < i < x(G). In this paper,
we prove that the n-dimensional burnt pancake graph Bj, is super spanning
connected if and only if n # 2.

key words: interconnection networks, Hamiltonian cycles, Hamiltonian
connected, container

1. Introduction

The architecture of an interconnection network is usually
represented as a graph where the vertices represent the pro-
cessor and the edges represent the links between processors.
For the graph definitions and notations, we follow [12]. Let
G = (V,E) be a graph if V is a finite set and E is a subset
of {(a,b) | (a,b) is an unordered pair of V}. We say that
V is the vertex set and E is the edge set. Two vertices u
and v are adjacent if (u,v) € E. We use Nbds(u) to de-
note the set {v | (u,v) € E(G)}. The degree of a vertex
u in G, denoted by deg;(u), is [Nbdg(u)|. We use 6(G) to
denote min{deg;(u) | u € V(G)}. A graph is k-regular if
deg,(u) = k for every vertex u in G. A path is a sequence
of adjacent vertices written as (vg, Vi, ..., Vy), in which all
the vertices vg, vy, ..., Vv, are distinct except for the possi-
bly that vy = v,,. We also write the path (v, P, v,,), where
P = (vo,vi,...,vy). The length of a path P, denoted by
I(P), is the number of edges in P. Let u and v be two ver-
tices of G. The distance between u and v denoted by d(u, v)
is the length of the shortest path of G joining # and v. A
cycle is a path with at least three vertices such that the first
vertex is the same as the last one. A hamiltonian cycle is a
cycle of length V(G). A hamiltonian path is a path of length
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V(G) - 1.

Connectivity is an important issue for interconnection
networks. The connectivity of a graph G, x(G), is the mini-
mum number of vertices whose removal leaves the remain-
ing graph disconnected or trivial. Assume that G is a k-
connected graph. It follows from Menger’s Theorem that
there are k internally vertex-disjoint (abbreviated as disjoint)
paths joining any two distinct vertices u and v [22]. A k-
container C(u, v) of G is a set of k disjoint paths joining u to
v. In this paper, we discuss another type of container, called
spanning container. A spanning k-container, (abbreviated
as k*-container), C(u, v) is a k-container such that it contains
all vertices of G. A graph G is k*-connected if there exists
a k*-container between any two distinct vertices. In particu-
lar, a graph G is 1*-connected if and only if it is hamiltonian
connected, and a graph G is 2*-connected if and only if it
is hamiltonian. All 1*-connected graphs except K; and K,
are 2*-connected. Thus, we define the spanning connectiv-
ity of a graph G, «*(G), to be the largest integer k such that
G is w*-connected for all 1 < w < kif G is a 1*-connected
graph. Obviously, spanning connectivity is a hybrid concept
of hamiltonicity and connectivity. A graph G is super span-
ning connected if «*(G) = k(G). Obviously, the complete
graph K, is super spanning connected if n > 2.

A lot of interconnection networks are proved to be su-
per spanning connected [16], [19], [24]. The spanning con-
nectivity for general graphs are discussed in [17], [18]. The
corresponding concept of spanning connectivity in bipar-
tite graphs is spanning laceability. A lot of interconnec-
tion networks are proved to be super spanning laceable [2],
[3],[11],[15],[16],[19], [21], [23], [24]. The burnt pancake
graphs B, was proposed by Gates and Papadimitriou [6].
Since then, many interesting properties of the burnt pan-
cake graphs have been studied [5], [9], [13], [14]. In particu-
lar, the burnt pancake graph can be used for genome analy-
sis [7]. In this paper, we prove that the n-dimensional burnt
pancake graph B, is super spanning connected if and only if
n#2.

2. The Burnt Pancake Graph and Its Properties

Let n be a positive integer. We use (n) to denote the set
{1,2,...,n}. To save space, the negative sign may be placed
on the top of an expression. Thus, it; = —u;. We use [n] to
denote the set (n) U{i | i € (n)}. A signed permutation of {n)
is an n-permutation u;u5 . . . u, of [n] such that |u;||us] . . . |u,l,
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taking the absolute value of each element, forms a permu-
tation of (n). For example, 132654 is a signed permutation
of (6). We will use bold face to denote any signed permu-
tation of (n). Hence, uj,u,,...,u, denote a sequence of
signed permutation of (n). Letu = wuju,...u, be a signed
permutation of (n). We use (u); to denote the i-th compo-
nent u; of u. For 1 < i < n, the i-th prefix reversal of u,
denoted by (u)’, is the signed permutation v = v(v;...v,
with v; = —u; ;1 for 1 < j < iandv; = u; if otherwise.
For example, (132654)* = 623154. Thus, ((u)’)’ = u. The
n-dimensional burnt pancake graph B, is a graph contain-
ing all the signed permutation of (n). Two vertices u and v
are adjacent in B, if and only if v = (u)'. The burnt pancake
graph By, B;, and B; are shown in Fig. 1.

Obviously, B, is an n-regular graph with 2"n! vertices.
We will use Bi,” to denote the i-th subgraph of B, induced
by those vertices u with (u), = i. Obv10usly, B can be
decomposed into 2n vertex disjoint subgraphs B for every
i € [n] such that each Bif is isomorphic to B,_;. Thus, the
burnt pancake graph can be constructed recursively. Let H C
[1], we use B to denote the subgraph of B, induced by
Uien V(BM). For 1 < i, j <nandi # j, we use E* to denote
the set of edges between Bff] and BLj b

It is easy to check the following Lemma.

Lemma 1. Assume that n > 2. Then |Eb =2 2(n = ) if
1 < i| # |jl € n. Moreover, |[E™| = 0 for any iwith1 <i < n.

The following Theorem is proved in [14].

Theorem 1. B, is 1*-connected if n # 2, and B, is 2*-
connected if n > 2.

Lemma 2. Ler u and v be any two distinct vertices of B,
with d(u, v) < 2. Then (u); # (v);. Furthermore, {|((n));| |
l<i<n}={).

Lemma 3. Letn > 4 and iy, iy, ..., 1, be an m-permutation
of [n] such that iy # —iry for 1 < k < m. Let H denote

Fig.1  The burnt pancake graphs (a) By, (b) B,, and (c) B3.
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the set {iy,i2,...,in}. Then there is a hamiltonian path of
B ]ommg any vertex u € V(B ) to any other vertex v €

VB,

Proof. We set x; = u and y,, = v. By Theorem 1, this
lemma holds for m = 1. Assume that m > 2. By Lemma 1,
we choose (yj, Xj+1) € E7# with yj # Xj and ym # Xm for
every 1 < j < m — 1. By Theorem 1, there is a hamiltonian
path Q; of B J01n1ng xj to yj forevery 1 < j < m. The

path <X15 le YI’ XZa QZ’ YZ, .. Xm’ Qms Ym> fOrmS a deSIred
path. O

Let I be a subset of [n]. We use D(I) to denote |{j | j €
(n) such that {j, j} C I}|. We have the following lemma.

Lemma 4. Suppose that I be a subset of [n] with D(I) > 2.
Then there exists a hamiltonian path of B! joining any vertex
u e V(Bf;}) to any vertex Vv € V(Bn ) with {i, j} c I and
lil # 1)1

Proof. The proof follows from Lemma 3 if we can
construct the required permutation of elements in /. We
only use several examples to illustrate that such permuta-
tion exists. Let I = {1,2,1,2}. Suppose that i = 1 and
j = 2. Then the corresponding sequence can be 1,2, 1,2.
Let I = {1,2,3,1,2}. Suppose thati = 1 and j = 3. Then
the corresponding sequence can be 1,2, 1,2, 3. O

Similarly, we have the following lemma.

Lemma S. Suppose that I is a subset of [n] with |I| > 5.
Then there exists a hamiltonian path of B joining any vertex

ueE V(Bﬁ,i}) to any vertex v € V(Bi,j’) with {i, j} C Iandi # ].

Lemma 6. Let n > 4. Let u and v be any two distinct
vertices in Bﬁf} for some t € [n]. Suppose that B,_1 is k*-
connected. Then there is a (k + 1)*-container of B, between
uandv.

Proof. By assumption, there is a k*-container
{01,05,...,0:} of Bi[} joining u to v. We need to find a
(k + 1)*-container of B, joining u to v.

Suppose that (u); = (V)1 p. Thus, (w)* and (v)"
are two distinct vertices 1n B, 28 By Lemma 1, there is a
hamiltonian path Q of Bn joining (w)” to (v)". We write O
as ((w)", Q',y,z,(v)"). By Lemma 2, (y)1 # (21, (y)h # 1,
and (z); # f. Since n > 4, |[n] — {t, p}| = 6 By Lemma 5,
there exists a hamiltonian path R of B["] joining (y)" to
(2)". We set O as (u,(w)", Q" y,(¥)", R, ()", 2, (V)", V).
Obviously, {Q1, Q», ..., O+1} forms a (k + 1)*-container of
B, joining u to v. See Fig. 2 (a) for illustration.

Suppose that (u); # (v);. Thus, (u)" and (v)" are
in different subgraphs. Obviously, |[#] — {¢t}] = 7. By
Lemma 5, there is a hamiltonian path Q of Bl joining
(w)" to (v)". We set Q41 as (u, (w)", Q, (v)",v). Obviously,
{01,05,..., 0k} forms a (k + 1)*-container of B, joining
u to v. See Fig. 2 (b) for illustration.

Thus, the lemma is proved. O
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Fig.2  Illustration for Lemma 6.

3. Basic Lemmas

The following lemma is a well-known result that gives a
necessary and sufficient condition for a system of distinct
representative.

Lemma 7. [8] Let A = {A,A,,..., Ay} be a collection
of sets. There exists {x1,X2,..., Xy} such that x; € A; for
I <i<mandx; # x;ifi # jif and only if | Uics Ajl > |J] for
all J C{1,2,...,m}.

Lemma 8. Assume that n and k are positive integers with
n>4and3 < k < n-1. Let s andt be two different
elements in [n]. Let X1,Xa,...,Xk be k different vertices in
Bn with (Xi)l =3 (Xi)n # thVl <i<k (Xi)n * (Xl)n
for2 < i <k, and |(xp),| # Xl for 2 < i # j < k.
Let y1,¥2,...,Yk be k different vertices in B, with (y;)1 =,
Yi)n # sfor1 <i <k (Yy)n # Y)ufor2 <i <k, and
|(Yial # |(¥j)nl for 2 <i # j < k. Suppose that {(xi), | 1 <
i <k} #{(yn | 1 £i < k}. Then there exist k disjoint
paths Py, Py, ..., Py such that (1) P; joining X; to Y for
some permutation 1 from the set {1,2,...,k} into itself and
(2) UX, P; spans Blm=tsd,

Proof. Since (x;); = 5, (x;)" € V(B') and x; ¢ V(B').
Since (xj), # (X1), for 2 < i < k, and [(x),| # |(xj),| for
2<i#j<kx ¢ V®B". Similarly, y; ¢ V(B and
(yi)" € V(Bff}). Let I be the set {(x;),, | (xi), = (y;j)» for some
1 <i,j < k}. We can reorder the indices of {1,2,...,k} so
that (x;), = (yi), for 1 <i < |I|. By Lemma 3, there exists a
hamiltonian path P; of BL(X‘)"} joining x; to y; for 1 <i < [1].
Since {(xj), | 1 <i<k}#{(yDn | 1 <i <k}, |l| <k.

For[I|+1 <i<kletA; ={y; | l+1<j<k
with (x;), # —(yj)»). Obviously, |A;] > kK — 1 —|I|. Thus,
| Vi Ail 2 k=1—=|I| 2 |J|ifO = J C{I|+ 1,|I| +2,...,k}.
Since {(Xi), | 1 i <k} #{(yn | 1 <i <k}, | Uf=|1|+1 Al =
k —|I|. By Lemma 7, there exists {y; | ||+ 1 < i < k}
such that (x;), # —(yi)» and y; # yj fori # j. Let X be
(i) |1 <i<k-1}U{Gyu |1 <i<k—-1}U{s,1}.

Suppose that D([n] — X) # 1. By Lemma 3, there ex-
ists a hamiltonian path P; of B\®®) joining x; to y; for
Ill+1 < i < k-1. By Lemma 4 and Lemma 5, there
exists a hamiltonian path Py of B/ joining xy to yi. Ob-
viously, {Py, P»,..., P;} forms a set of the required paths.
See Fig. 3 (a) for illustration.

Suppose that D([n] — X) = 1. We claim that |I| < k— 1.

Suppose not. Then {(Xk)u, —(Xk)n> (Vi )n> —(Fi)n} € ((n] = X)
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Fig.3  Illustration for Lemma 8.

and D([n] — X) > 2. We get a contradiction. Let m be the
only positive integer such that {m, m} C [n] — X. Then there
exists a hamiltonian path P; of BL"®) joining x; to y; for
|7l +1 < i < k—2. Moreover, there exists a hamiltonian path
Py of BI®Dnm 0ol jgining xy_y to yk_1. Furthermore,
there exists a hamiltonian path Py of B~ joining xy
to ykx. Obviously, {Py, P,, ..., P} forms a set of the required
paths. See Fig. 3 (b) for illustration. The lemma is proved.
[m}

Lemma 9. Let n > 4 and k be any positive integer with
3 <k <n-1. Let u be any vertex in BLX} and v be any
vertex in B,{,” such that s # t. Suppose that X1,Xa, ..., Xk are
k vertices in B, with (X;)1 = 5 and (X;), # tfor 1 <i <k;
and y1,¥2,...,¥k are k vertices in B, with (yi); = f and
(Yi)n # sfor 1 <i < k. Suppose that there exists a permu-
tation mon {1,2,...,k} and k disjoint paths, Py, P,, ..., P,
such that P; is a path joining Xi to Yy for 1 < i < k and
Uf.‘zl P; spans BE,"]f{S’”. Moreover, there are k internal disjoint
paths, S1,S2,....8 ofBLf] such that S ; is a path joining u
to (x3)" and Uf.‘zlS i spans Bi,‘”. Furthermore, there are k in-
ternal disjoint paths, T\, T,,..., Ty, of Bil” such that T; is
a path joining v to (y;)" and UleTi spans Bi,”. Then there
exists a k*-container of B, joining u to v. Moreover, this k*-
container does not contain the edge (u,v) if (u,v) € E(B,).

Proof. We set Q; as (u, S, (Xi)", Xi, Pi, Yaii)> (Y@)"s Ty V)
for 1 <i < k. Obviously, {Q1,03, ..., O} forms the required
k*-container between u and v. See Fig. 4 for illustration. O
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Fig.4  Illustration for Lemma 9.

Lemma 10. Let n > 4 and k be any positive integer with 3 <
k < n— 1. Let u be any vertex in BLS} and v be any vertex in
B‘,f} such that s # t. Suppose that B,,_, is k*-connected. Then
there is a k*-container of B, between u and v. Moreover,
this k*-container does not contain the edge (0, v) if (u,v) €
E(B),).

Proof. Let r be any element in [n] — {s, 5,7, 7}. Suppose
that s # 7. We set z to be a vertex with (z); = r, (z), = 1,
(z), = s, and z # u; and set w to be a vertex with (w); = r,
(W), =5, (W), =t,and w # v. Suppose s = 7. We set z to
be a vertex with (z); = r, (z), = s, and Z # u; and set w to
be a vertex with (w); = r, (W), =, and w # V.

Thus, z € V(Bi,sl) and w € V(B,lf}). By assumption,
there exists a k*-container of Bif’, {R1, Ry, ..., Ry}, joining
u to z. We write R; = (u,R;,zi,z). (Note that z; = u if
I(R;) = 1.) Obviously, ((z;)"); ¢ {s,t} for 1 < i < k. By
Lemma 2, |(zj),| # |(zj)| for 1 < i # j < k. Again, there
exists a k*-container of Bif’, {H|,H,,...,H},joining wtov.
We write H; = (w, w;, H],v). (Note that w; = vif I(H;) = 1.)
Again, (w;)")1 ¢ {s,t} for 1 <i <k, and |(w;)(| # [(wj)1] for
1 <i+# j<k. We can reorder the indices of {1,2,...,k} so
that {(zj), |2 <i<k}#{(wi)1 |2<i<k}

Let x; = (z)" and x; = ()" for 2 < i < k. Simi-
larly, let y; = (w)" and y; = (wy)" for 2 < i < k. Obvi-
ously, (xj); = §, (x;), # tfor 1 <i <k, (Xj), # (X1), for
2 <i <k, and |(x7),] # |(Xj)u| for 2 < i # j < k. More-

over, (yi)i = £, (yi)n # sfor 1 <i <k, (yi)u # (y1)u for
2 < i <k, and |(yi)al # |(yj)al for 2 < i # j < k. Further-
more, (X1), = (Y)n = F, and {(Xi), [ 1 < i <k} # {(yi)n | 1 <
i < k}. By Lemma 8, there exist a permutation r and k dis-
joint paths, Py, P,, ..., Py, such that P; joining X; to y.q) and
UL, P; spans BY"""". By assumption, there exist k internal
disjoint paths, S, S>,...,S%, such that §; is a path joining
uto (xj)" forl < i < k and Uf.‘zlS ; spans Bff}. Similarly,
there exist k internal disjoint paths, T, 7>, ..., Tk, such that
T; is a path joining (y;)" to v for 1 <i < k and Uile T; spans
Bff}. By Lemma 9, the required k*-container between u and
v exists. See Fig. 5 for illustration. The lemma is proved. O

Lemma 11. Assume that n > 4. Let u be any vertex in B!
with (u)" € V(Bi,'}) and v be any vertex in Bif Vwith v # (w)"
and (V) € V(Bif)). Suppose that X1,X3, . ..,Xp-2 are (n — 2)

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.3 MARCH 2009
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n

Fig.5 Illustration for Lemma 10.

Fig.6  Illustration for Lemma 11.

vertices in B, with (xj)| = 5and (Xj), #tfor1 <i<n-2;
and y1,¥z2, - .., Yn—2 are (n — 2) vertices in B, with (yi) =
and (y), # s for 1 <i < n—2. Suppose that there exist a
permutation ron {1,2,...,n—2} and (n - 2) disjoint paths,
P\, Py, ..., P, such that P; is a path joining X; to y,g, for
1<i<n-2and U;‘:‘EP,- spans B"™51 . Moreover; there are
(n — 1) internal disjoint paths, S1,S2,...,S -1, ofBif} such
that S; is a path joininguto (xi)" for 1 <i<n-2,S,_1isa
path joining u to (v)", and U;‘:‘ES ; spans B! Furthermore,
there are (n — 1) internal disjoint paths, T1, T, ..., Ty—1, of
Bff} such that T; is a path joining (y;)" tovfor 1 <i<n-2,
T,.-1 is a path joining (W)" to v, and U?:‘II T; spans Bff}. Then
there exists an n*-container of B, joining u to v.

Proof.  Let Q; = (W,S;, (%)",Xi, Pis Yrtiy>» Vr)"> Tuiiys V)
for 1 < i < n-2, Q1 = (u@",T,y,v), and
0, =,S,-1,(v)",v). Then {Q1, Q>, ..., Q,} forms an n*-
container between u and v. See Fig. 6 for illustration. The
lemma is proved. O

Lemma 12. Assume that n > 4. Let u be any vertex in B!
with (n)" € V(Bi,'}) and v be any vertex in Bff’ with v # ()"
and (V)" € V(Bif}). Suppose that B, is (n — 1)*-connected.
Then there is an n*-container of B, between u and v.

Proof. Obviously, |s| # |f|. By assumption, there exists
an (n — 1)*-container of Bﬁf}, {Ri,R2,...,R,_1}, joining u to
(V)". We write R; = (u,R},z;,(v)"). (Note that z; = w if
I(R;) = 1.) Obviously, (z;); ¢ {s,t}for ] <i <n-1. By
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Lemma 2, |(zi);| # [(zj):l for 1 <i # j < n-1. Again,
there exists an (n — 1)*-container of B,[f}, {H\,H,,...,H,_1},
joining (u)" to v. We write H; = {((w)", w;, H}, v). (Note that
w; = vif I[(H;) = 1.) Again, (w;); ¢ {s,t}for1 <i<n-1,
and |(wi)i| # [(wj)i| for 1 <i # j < n-1. We can reorder
the indices of {1,2,...,n—1}sothat{(z); |1 <i<n-2} #
{(wi 11 <i<n-2}

Letx; = ()" for 1 <i <n-2andy; = (w)" for
1 <i<n-2. Obviously, (xj); = s, (Xj), # tforl <i <
n—2, (X))l # |(Xj)ul for 1 < i # j < n—2. Moreover,
)1 =t () # sfor 1 <i <n—2,and [(yi)al # [(¥jal
for 1 < i # j < n—2. Furthermore, {(x;), | 1 < i <
n—2} #{(yi)n | | <i<n-2}). By Lemma 8, there exist a
permutation 7 on {1,2,...,n — 2} and (n — 2) disjoint paths,
Py, Py, ..., Py, such that P; joining X; to Yy and U7P;
spans B! By assumption, there exist (n — 1) internal
disjoint paths, S, S»,...,S -1, such that S, is a path joining
uto (xj)" for1 <i<n-2,5,is a path joining u to (v)",
and U'-'S; spans BY. Similarly, there exist (n — 1) internal
disjoint paths, Ty, T3, ..., T,-1, such that T; is a path joining
(yp)"tovforl <i <n-2, T, is a path joining (u)" to
v, and Ul’.’:‘l' T; spans Bi[]. By Lemma 11, there exists an n*-
container between u and v. See Fig.7 for illustration. The
lemma is proved. O

Lemma 13. Assume that n > 4. Let u be any vertex in BL‘”
with (n)" € V(Bi,'}) and v be any vertex in Bif’ with v # ()"
and (V)" ¢ V(Bff’). Suppose that X1,X3,...,Xp-1 are (n — 1)
vertices in B, with (Xj); = Sand (Xj), #tfor 1 <i<n-1;
and y1,¥2, - .. ,Yn-1 are (n — 1) vertices in B, with (yi) =
and (yi), # sforl <i < n—1. Moreover, (V)" = yn-1.
Suppose that there exist a permutation tr on {1,2,...,n -1}
and (n — 1) disjoint paths, Py, Pa, ..., P,_1, such that P; is a
path joining Xi to Y for 1 <i < n—1and U:.’z‘llPi spans
B,[,"]_{S’”. Moreover, there are (n — 1) internal disjoint paths,
S1,82,...,8n_1, of B such that S; is a path joining u to
x)" for1 <i<n-1and Uf’:‘llS i spans BL‘Y} . Furthermore,
there are (n — 1) internal disjoint paths, T1, T, ..., T,-1, of
Bif} such that T; is a path joining v to (y;)" for | <i <n-2,
T,.-1 is a path joining (W)" to v, and Ul’.’:‘l1 T; spans B Then
there exists an n*-container of B, joining u to v.

Fig.7  Illustration for Lemma 12.
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Proof. Without loss of generality, we assume that m(n —
1) =n—1. Let Qi = u,S;, (X:)", Xi, Pi, Yriy» (¥Y2@)"s Tuiiy> V)
for 1 < i < n-2 01 = 0, Sy_1, Xn-1)", Xn-1,
Ppots Y1 = (), V), and O, = (u,(w)", Ty-1, V). Then
{01,0,,...,0,} forms an n*-container between u and v.
See Fig. 8 for illustration. The lemma is proved. O

Lemma 14. Assume that n > 4. Let u be any vertex in B!
with (u)" € V(BL’}) and v be any vertex in Bif Y with v # (n)*
and (V)" ¢ V(Bif)). Suppose that B, is (n — 1)*-connected.
Then there is an n*-container of B, between u and v.

Proof. Since (w)" € V(B\"), |s| # |7 and (u); = 7. We set
z be the vertex with (z); = f and (z); = (u); for2 < i < n.
Thus, z € V(B*.

By assumption, there exists an (n—1)*-container of BE,S},
{R1,Rs,...,R, 1}, joining u to z. We write R; = (u, R}, z;,z).
(Note that z; = u if I[(R;) = 1.) Obviously, (z); ¢ {s,t}
for1 <i < n-1. ByLemma 2, |(z)] # |(zj)| for I <
i # j < n— 1. Again, there exists an (n — 1)*-container of
Bﬁf}, {H\,H>,...,H,_1}, joining (w)" to v. We write H; =
(W', w;, H],v). (Note that w; = v if [(H;) = 1.) Again,
(w1 € {s,t} for 1 <i<n—1,and|(w;)| # [(wj)]for1 <
i # j < n— 1. We can reorder the indices of {1,2,...,n— 1}
sothat {(z); |2 <i<n—1}#{(wi |2<i<n-1}.

Letx; = (z)" and x; = (z;)" for 2 < i < n—1. Similarly,
yi = W andy; = (wy)" for 2 < i < n— 1. Obviously,
X)) =8, X))y #tforl <i <n-1, (X)), # (X1), for
2 <i<n-1,and [(X;),] # |Xj)u| for2 <i# j<n-1
Moreover, (yi); =t (yi)n £ sforl <i<n—-1, F)u # Y)n
for2 <i<n-1,and |(yi)al # [(yjulfor2 <i#j<n-1.
Furthermore, (X1), = (y1), = L and {(Xj), | 1 <i<n—-1} #
{(yin 11 <i<n-1}

By Lemma 8, there exist a permutation 7 on
{1,2,...,n— 1} and (n — 1) disjoint paths, Py, P;,..., Py,
such that P; joining X; to yxg and UL, P; spans plm-tsi
By assumption, there exist (n — 1) internal disjoint paths,
S1,82,...,8,-1, such that §; is a path joining u to (x;)" for
Il <i<n-1and U;’z‘llS i spans BY. Similarly, there exist
(n — 1) internal disjoint paths, T, T»,..., T,—1, such that T;
is a path joining (y;)"tovfor 1 <i<n-1and U;’:’f T; spans
Bﬁf}. By Lemma 13, there exists an n*-container between u
and v. See Fig. 9 for illustration. The lemma is proved. O

Fig.8 Illustration for Lemma 13.
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Fig. 10

Tllustration for Lemma 15.

Lemma 15. Assume that n > 4. Let u be a vertex in Bif}
and v be a vertex in Bff} with s # t, (w)" ¢ V(Bff]), and
) ¢ V(Bff}). Suppose that Xq,Xa, ..., Xy are n vertices in
B, with (x;); = 5, (Xi)p #tfor 1 <i < n; and y1,y¥2,..-,¥n
are n vertices in B, with (yi)1 =1, (Ji), # sfor1 <i <n.
Moreover, ()" = X, and (V)" = yn. Suppose that there
exist a permutation on {1,2,...,n} and n disjoint paths,
Py, P,,..., P, such that P; is a path joining Xi to Y, for
1 <i < nand UL, P; spans B Moreover; there are
(n — 1) internal disjoint paths, S1,S2,...,S -1, ofof’ such
that S; is a path joining u to (x;)" for 1 < i < n -1 and
Uf’;llS i spans Bi,S}. Furthermore, there are (n — 1) internal
disjoint paths, T1, T2, ..., Ty_1, ofBif} such that T; is a path
joining v to (y))" for 1 <i <n-1, and Ul’f:‘ll T; spans Bff}.
Then there exists an n*-container of B, joining u to v.

Proof. The proof is similar as that of Lemma 13. We just
illustrate the proof in Fig. 10. O

Lemma 16. Assume that n is a positive integer with n > 4.
Let s and t be two different elements in [n]. Let X1,X2,...,Xn
be n different vertices in B, with (X;); = 5§, (Xj), # f for
1 <i<noand (X)), # Xju for 1 < i # j < n Let
Y1,¥2, ..., ¥Yn be n different vertices in B, with (yij)1 = 1,
(yi)n # Sfor1 <i<n, and (yi), # (Yj)ufor 1 <i# j<n
Suppose that {(xi), | 1 < i <n} #{(yi. | 1 <i < n}
Moreover, {|(xi)a] | 1 < i < n} = (n) —{Is]} and {|(y)| |
1 <i < n}=(n)—{|t]}. Then there exist a permutation m on
{1,2,...,n} and n disjoint paths Py, P,, ..., P, such that P;
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Fig.11  Illustration for Lemma 16.

joining X; to Y for 1 <i < nand U P; spans Blm=tsdl,
Proof. Obviously, x; ¢ V(BY") and (x;)" € V(B). Sim-
ilarly, y; ¢ V(B'™") and (y;)" € V(B!). Let I be the set
{Xi)n | (%i), = (yj)n for some 1 < i, j < k}. We can reorder
the indices of {1, 2, ..., n} so that (x;),, = (y;), for 1 <i < |].
By Theorem 1, there exists a hamiltonian path P; of Bl
joining x; toy; for 1 < i <|1].

For|I|+1 <i<mnletA; ={y; | Hl+1< j<nwith
(Xi)n # —(¥j)n}. By Lemma 7, there exists {y; | [/|+1 < i < n}
such that (x;), # —(yi)» and y; # yj fori # j. Let X be
{X)n | 1 <i<n=1}U{(yi)n | 1 <i<n—-1}U{s,t}. Moreover,
{Ii)ul | 1 <@ < n}=(n) —A{lsl} and {|(yi)ul | 1 <i < n}=
(n) — {|t|}. Obviously, D([n] — X) = 0. By Lemma 3, there
exists a hamiltonian path P; of BL"®) joining x; to y; for
|7+ 1 < i <n-1. Again, there exists a hamiltonian path P,
of BL"]_X joining x,, to y,. Obviously, {Py, P>, ..., P,} forms
a set of the required paths. See Fig. 11 for illustration. O

Lemma 17. Assume that n > 4. Let u be a vertex in BLS}
and v be a vertex in Bﬁf} with s # t, (W)" ¢ V(B,‘f}), and
)" ¢ V(BLS}). Suppose that B, is (n — 1)*-connected.
Then there is an n*-container of B, between u and v.

Proof.  Suppose that s # 7. We set z be a vertex with
(z); =t, (z); = (W), and (z), = s; and set w be a vertex with
(W) = s, (W), = (V)1, and (W), = t. Suppose s = 7. Since
n > 4, there exists an element r in (n) —{|s|, |(w)], |(v)1]}. We
set z be a vertex with (z), = r, (z), = (u)1, and (z), = s; and
set w be a vertex with (w); = 7, (W), = (v)1, and (w),, = 1.

By assumption, there exists an (n—1)*-container of BE,S},
{R1,R>,...,R, 1}, joining u to z. We write R; = (u, R}, z;, Z).
(Note that z; = u if /[(R;)) = 1.) Obviously, (z;); ¢ {s,1}
for 1 <i <n-1. By Lemma 2, |(z)| # |(zj)| for 1 <
i # j < n— 1. Again, there exists an (n — 1)*-container
of BL”, {H|,H,,...,H,_1}, joining w to v. We write H; =
(w,wj, H!,v). (Note that w; = vif [(H;) = 1.) Again, (W;); ¢
{s,f}for1 <i<n—1,and|(w)| #|[(Wwj)i|forl <i=#j<
n — 1. We can reorder the indices of {1,2,...,n — 1} so that
{12 <i<n=1} ={l(wi| |2 < i <n-1} = m)—{lsl, |t}
ifs#fHand{|(z)] |2 <i<n-1}={(whl|2<i<
n— 1} = (n) — {|sl, |r]} if otherwise.

Letxy = (2)",x; = (z))" for2 <i < n-1andx, = (u)".
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Fig.12  Illustration for Lemma 17.

Similarly, y; = (W)", y; = (wp)" for2 < i < n-1 and
¥n = (v)". Obviously, (x;); = s, (Xj), # tfor 1 < i < n,
(Xi)n # (X1), for 2 < i < n, and |(x;),| # [(xj),| for 2 <
i # j < n. Moreover, (yi); = t, (yi), # sforl <i < n,
(¥i)n # (Yoo for 2 < i < n—1, and |(¥i)a| # |(yj)nl for
2 <i# j<n-1. Note that (x1), = f and (yy), = 5 if
s # t; and (X1), = 7 and (y1), = rif s = ¢. Thus, {(x}), |
1 <i<n}#{(ydn |1 =<i<n). Moreover, {|(X)),] | 1 <
i < n} = <n)—{lsl} and {|(yal | 1 <7 < n} = (n) — {lal}.
By Lemma 16, there exist a permutation « on {1,2,...,n}
and n disjoint paths, Py, P»,..., P,, such that P; joining x;
t0 Yxy and U, P; spans BU=s1 By agsumption, there exist
(n — 1) internal disjoint paths, S1,S5,...,5,-1, such that S;
is a path joining w to (x;)" for 1 < i < n -1 and Uf;llSi
spans Bl Similarly, there exist (n — 1) internal disjoint
paths, Ty, T», ..., T,—1, such that T; is a path joining (y;)" to
vforl <i<n-1and U?:’llTi spans B By Lemma 15,
there exists an n*-container between u and v. See Fig. 12 for
illustration. The lemma is proved. O

4. Main Result

Theorem 2. B, is n*-connected for any positive integer n.

Proof. We prove this theorem by induction. It is easy to
see that By is 1"-connected and B, is 2*-connected. Since
the Bj is vertex transitive, by brute force, we have checked
that Bj is 3*-connected. We list the result in the appendix.

Assume that By is k*-connected for every 3 < k < n —
1. Let u and v be any two distinct vertices of B, with u €
V(Bif]) and v € V(Bff}). We need to find an n*-container
between u and v of B,. Suppose that s = ¢. By induction,
there exists an (n — 1)*-container of BY joining u to v. By
Lemma 6, there is an n*-container of B, joining u to v. Thus,
we assume that s # 7.
Case 1: ()" € V(B™) and (v)" € V(B'*.

Suppose that u = (v)". By Lemma 10, there is an
(n — 1)*-container {Q1, Q>,...,0,-1} of B, joining u to
v not using the edge (u,v). We set O, as (u,v). Then
{01,05,...,0,} forms an n*-container of B, joining u to
v. Suppose that u # (v)". By Lemma 12, there is an n*-
container of B, joining uto v.
Case 2: ()" € V(B}') and (v)" ¢ V(B})) or (u)" ¢ V(B})
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and (v)" € V(BE,S})). Without loss of generality, we assume
that (u)" € V(B! and (v)" ¢ V(B'). By Lemma 14, there
is an n*-container of B, joining u to v.
Case 3: (u)" ¢ V(B!") and (v)" ¢ V(BY"). By Lemma 17,
there is an n*-container of B, joining u to v.

The theorem is proved. O

Theorem 3. B, is super spanning connected if and only if
n#2.

Proof. We prove this theorem by induction. Obviously,
this theorem is true for B;. Since P, is isomorphic to a cycle
with eight vertices, B, is not 1*-connected. Thus, B; is not
super spanning connected. By Theorem 1 and Theorem 2,
this theorem holds on B3. Assume that By is super spanning
connected for every 3 < k < n— 1. By Theorem 1 and
Theorem 2, B, is k*-connected for any k € {1,2,n}. Thus,
we still need to construct a k*-container of B, between any
two distinct vertices u € V(Bif} )and v € V(Bi,’}) for every
3<k<n-1

Suppose that s = ¢. By induction, B,_; is (k — 1)*-
connected. By Lemma 6, there is a k*-container of B, join-
ing u to v. Suppose that s # t. By induction, B,_; is k*-
connected. By Lemma 10, there is a k*-container of B, join-
ingutov.

Hence, the theorem is proved. |

5. Conclusion

Graph containers do exist in engineering designed informa-
tion and telecommunication networks and in biological neu-
ral systems. See [1],[12] and their references. The study of
w-container and their w*-versions plays a pivotal role in de-
sign and implementation of parallel routing and efficient in-
formation transmission in large-scale network system. In bi-
ological informatics and neuroinformatics, the existence and
structure of a w*-container signifies the cascade effect in sig-
nal transduction system and the reaction in a metabolic path-
way. Recently, there are a lot studies on w*-container [2],
[31, [11],[16],[19],[21],[24]. In this paper, we prove that
the burnt pancake graph B, is super connected for n # 2.

Assume that G is k*-connected.We may also define the
k*-connected distance between any two vertices u and v, de-
noted by d;(u,v), which is the minimum length among all
k*- containers between u and v. The k*-diameter of G, de-
note by D(G), is max{d;(u,v) | u and v are two different
vertices of G}. In particular, we are intrigued in Dy ;(G)
and Dj(G). There are some studies on the k*-diameter
of some interconnection networks [4], [20]. Later, we will
study D;(B,) and D3(B,).
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Appendix

3*-container from 123 to 123

Py =(123,123)
P, =(123,213,213,123,123,213,312, 132,132,

P3

Py

312,312,132,231,231,321, 321,231,231,
321, 3?}_123)

= (123,321,321,231,231, 321,321,231, 231,

P, =

P3

Py
P,

Ps; =

132,312,213, 123, 123,213,313, 123, 123,
213,312,132,132,312,312, 132,132,312,
213,123)

3*-container from 123 to 213
(123,213)
(123,123,213,213, 123, 123,213,213)

(123,321,231, 132,312,312,132,132,312,

312,132,231,321,321,231,231, 321,321,

231,132,312, 213, %1% 123,123, gl% 213,

123,123,321,231,231, 321,321,231, 132,
312,312,132,132,312,213)

3*-container from 123 to 213
(123,213,213)

132, 312 312 132 132 312 213)
(123,123,321,231,132, 312,213, 123,123,
213,213,312,132,1%%,231,321,321,23L

231,321,123,123,213,312,312,132,132,
312,213,213,123,123,213)

3*-container from 123 to 123
(123,123,213,213,123,123>
(123, 213 213 123)

231, 231 132 312 312 132 132 312 312
132,231, 321 321, g%} 23} }3% §lg 312,

21,321,123,213,213,123, 123,
23 321,321,123)

s

DI = —
—1 21 L
LI NI
[\SIN ST}
— 0

L).)Ib—
»—lb.)

3*-container from 123 to 123
(123,123,213,213,123)
(123, 213 ZI3 12213, Ii3>

132, 132 231 321 321 231 231 321 123
123,213,312,312,132,132,312,312,213,
213,123,123,213,312,312, 132,132,312,

312,132,132,231,321,123)

3*-container from 123 to 213
(123,123,213,213)
(123,213,213, 12213, 123,213)

=(123,321,321,231,132,132,312,312,132,

132,231,231,321,321,231, 132,312,312,
132, 132 312, 312, 132 231 231,321, 321

123 213 213 312 312 213)
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3*-container from 123 to 213
Pl-—<123 123, 213)

132, 132 312 312 213 123 ]23 213 213)
Py =(123,213,312,312,132,132,312,213, 123,
123,213,213,123,123,213,312,312, 132,

132,231,321,321,231,231, 321,321, 231,

132,132,312,213)
3*-container from 123 to 321

Py = (123,321)

P, =(123,123,213,213, 123, 123,213,312, 132,
132,312,312,132,132,312,213, 123, 321,
321,231,231,321)

Py =(123,213,312,132,231,231, 321,321,231,
231,321,321,123,213,213, 123, 123,2
312,132,132,312,312,132,231,231,3

321)

3*-container from 123 to 321
P, =(123,321,321)

P, = (123,213,213,12213,123,213,213,312, 132,

132,312,312,213,213,123,123,213,213,
312,132,132,231,321,321,231,231, 321,
123,123,321)

Py = (123,123,321,231,132,312,312,132, 132,

312,312,132,231,231,321, 321, 231, 231,
321)

3*-container from 123 to 231

P, = (123, 123,213,213,123,123,213,312,132,
231,231,321,321,231,231, 321,

32,

213,213,123,123,213,312,1
312,132,231)

P, =(123,213,312,132,132,312,312, 132,132,
312,213,123,321,231)

Py = (123,321,231,231, 321, 321,231, 231)

3*-container from 123 to 231
P =123, 123,213,213,123,123,213,312,132,

132,312,312,213,213,123, 123,213,312,
132,132,312,312,132,231)
P, = (123,213,312, 132,231, 231,321,321, 231,

231,321,321,123,123,213,312,132, 132,

231,231,321,321,231)

P; = (123,321,321,231,231)

3*-container from 123 to 321
Py = <123 123 213 213 123,123,213, 312 132,

P, = (123 213 312 312 213 123 123 213,213,
123,321,321,231,132,132,312,312, 132,
132,231,231,321,321,231, 132,312,213,
123,321)

P3 =(123,321,321,231,231,321)

3*-container from 123 to 321
P, = <123,1g§,21§,gl§,12§,123,321)

P, = (123,321,231, 231, 321)
Py = (123,213,213,312,312,213, 123,123,213,

213,123,321,321,231,132, 132,312,312,
132,132,231,231,321,321,231,132, 132,
312,312,132,132,312,312,213, 123,321,

231,231,321,321)

3*-container from 123 to 231
P =123, 123,213,213,123,123,213,312,312,

132,132,312,312,132,132, 231,231,321,
321,231,231,321,321,123, 123,321, 231,

231,321,321,231)
P, = (123,331, 231,231)
Ps = (123,213,312, 132, 132,312,312,213, 213,

123,123,213,213,312,132,132,231)

3*-container from 123 to 231
P, = (123, 321 231)
Py = (123,313,213,133,123,213,213,312, 132,

132,312,312,213,213,123,123,213,213,
312 132 132 231,321,321,231,231, 321

P3 = (123 123 321 231 132 312 312 132 132,
312,312,132,231)

3*-container from 123 to 132
P, =(123,123,213,213,123,123,213,312, 132,
132)
Py = <123 213 312, 132 231 231 321,

i

132 312 213 123 123 213 213 312 312,
132)
P; =(123,321,321,231, 132)

3*-container from 123 to 132
Py =(123,123,213,213,123,123,213,312, 132)

P, = (123,321,231,231,321, 321, 123,123,213,

213,123,123,321,231,231, 132,312,312,
132,132,312,213,213,312,132,132,312,
312,132,132)

Py = (123,213,312,132,231,321,321,231,231,
321,321,231,132)

3*-container from 123 to 312

Py =123,123,213,213,123,123,213,312)

P, =(123,321,231,231, 321,321,231, 132,312,
312,132,132,312,213,213,123,123,213,
213,123,123,321,231,132,312,312, 132,
132,312,312)

Py =(123,213,312,132,231,321,321,231,231,
321,321,231,132,312)
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3*-container from 123 to 312
P, =(123,123,213,213,123, 123,213,312, 312)
P, = (123,213,312, 132,231,321, 321,231,231,
321,321,231,132, 132,312,312, 132,132,
312)

Py=(123.3

132,132,312, _13 213 312)

3*-container from 123 to 132
P = (123_T_2_3 213, 21_3_T§_3_1§_3 213, 31_,T31_,

132,312,312,213,213,123, 123,321,231,
231,132,312,312, 132,231, 321,321, 123,
13,312

123,321,321,231,132,312,213,2

132)
Py = (123,213,312, 132,231,231,321, 321,231,

132)
P3 = (123,321,231, 132, 132)

3*-container from 123 to 132

Py =(123,123,213,213,123,123,213,312,312,
132,132)

P, = (123,321,231, 132)

P3 = <123 213 312,132,132, 312 312 213,213,

321,231,231,321, 123, 123,321,321,231,

231,321,321,231,231,132, 132,312,312,
132)

3*-container from 123 to 312
P, = (123, 123,213,213,123,123,213,312,132,
132, 3_1_2_312)

P, =(123,321,231,132,312)
P; =(123,213,312,132,231,231,321, 321,231,

132,312,213,213,312,132,231,321, 321,

23,123, 321,321,231, 132, 312 312 132,
31,231,

1
2

3*-container from 123 to 312
P, = (123,123,213,213,312)

P, =(123,321,231,132,132,312,312,132, 132,

312)

Ps = (123,213,213, 123,123,321, 321,231,231,
331,321,231,231, 132, 132,231, 321, 321,
331,231,321, 123,123,213,312,312, 132,
132,312,312,213,213, 123,123,213, 312,
312)

3*-container from 123 to 132
P, =(123,123,213,213,123,123,213,312, 132,

132,312,312,312,132,231,231, 321, 321,

123,213,312, 132,231,321,321,231,231,
132,132)

P, = (123,321,321,231,231, 132y

P; =(123,213,312,312,213,123, 123,213,213,
123,321,321,231,132,132,312,312, 132)
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3*-container from 123 to 132

P, =(123,123,213,213, 123, 123,213,312, 132,
132,312,312,213,213,123, 123,213,312,
132,132,312,312, 132, 132)

P, =(123,321,321,231, 231, 321, 321,231, 231,
132,132, 312 213 123,123,321, 321,231,
321,321,231,231,132)

Psy = (123,213,312, 132)

3*-container from 123 to 312
Py = (123,213,312)

132, 312 312 132 132 312 213 123 123
213,213,312,132,132,312)

Py = (123,123,321,231,132,312,213, 123,123,
213,213,312,132, 132,231, 321,321,231,

231,321,123,123,213,312,312)

3*-container from 123 to 312
P, =(123,123,213,213,123,123,213,3

132,312,312,213,213,123, 123,21
P, =(123,213,312,312)

2,132,
,312)

=

132, 132 312 213 123 123 321 321 231
231,321,321,231,231,132, 132,312,312,
132,132,312)

3*-container from 123 to 132

Py =123, 123,213,213,123,123,213,312,132,
231,321,321,231,132,312,213,213, 312,
132)

Py = (123, g

wl\)
(O8]
=
—_
[BON]]
N
L»J
—
[\)
[USThe
—_
[\)
—_
L»J
N
N
(98 ]]
=

3*-container from 123 to 132

P, =(123,123,213,213, 123, 123,213,312, 132,
132,312,312,213, 213 123, 123,321,231,
231, 132,312,312, 132)

Py = (123, 213 312, 132 231 231,321,321, 231,

P = (123 321 231 132 132 312 213 213 312,
132,132)

3*-container from 123 to 312
P, = (123 123, 213 213 Ti3 123 2T3 312,312,

321 321 231 132 312)

P, = (123,213,312, 132,132,312, 312)

Py = (123,321,231,132,312,312, 132,132,231,
231,321,321,231, 132,312,213, 213,123,

123,213,213,312)
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}H =
2_

P =

= (123,213,

3*-container from 123 to 312
(123,123,213,312)
(123,321,231,231,132,132,312,312, 132,
132,312)

(123,213,213,312, 312,132, 132,312,213,
123, 123,213,213, 123,321,231, 231, 321,
321,123,123,213,312, 132,132,231, 231,

321,321,231,231,321,321,123,213,312,
312)

3*-container from 123 to 321

= (123,123,321)

132, 132 312 312 213 123 123 213 213
312,132,132,231,321,321,231,231,321)

—(1%3,213 312 312,132, 132 312,213, 123

132,231,321,321)

3*-container from 123 to 321

=(123,123,213,213,123,123,213,312, 132,

132,312,312,213, 123,321, 321,231,231,
331,321)

(123,321,231, 132,132,312, 213,123,321,
321,231, 132,132,312,213,123, 321,231,
231,132,312,312,213,123,321)
(123,213,312, 132,231,231, 321)

3*-container from 123 to 231

=(123,123,213,213,123,123,213,312, 132,

231)

3*-container from 123 to 231

=(123,123,213,213,123,123,213,312,132,

231,231)
(123,213,312, 132,231)

=(123,321,231,231, 321, 321, 231 132,312,

312, 132 132,312, 213 123 321,231, 132

3*-container from 123 to 321

=(123,123,213,213,123,123,213,312, 132,

231,321,321,231,231,321,321)
(123,213,312, 132,231, 321)

=(123,321,321,231, 132,312,312, 213,213,

123 123,213,312, 132 132,312, 312 132

123,123,321)

3*-container from 123 to 321
P = <123,123,213,213,123,321)
P, = S123,213,312,132,231,231,321,321,231,

~
w

|

~~
—
[\
&
(98]
\S]
—
W
l\)l
[\)
w
N
(98}
-
—_
u.)
[\)
b)
—
[\)
UJ
—
[\)
[\)
—
UJ

123,123,213,312 132 132 231 231 132
132,312,213, 123,321,321, 123,213,312
132,132,312,312,213,123,321,321)

3*-container from 123 to 231

P, = (123,123,313,213, 133, 123,213,313, 132,
132,312,312,213,213,123, 123,321, 231
231,132,312,312,132, 231,321,321, 1
123,321,321,231)

P, =(123,213,312,132,231,231, 321,321,231,
31)

P; =(123,321,231,132, 132,312, 213,213,312,

132,231)

31
23,

3*-container from 123 to 231
Py =(123,123,213,213,123,123,213,312, 132,

132,312,312, 132,231,231, 321,321, 123,

213,312,132,231)

P, =(123,213,312,132,231,231,321,321,231)
P; =(123,321,321,231,231, 132,312, 312 132,
132,312,213, 123,123,213,213,123,321,

321,231,231)

3*-container from 123 to 123

P, =(123,123,213,213,123, 123,213,312, 312,
132,132,312,312,132,132,231, 231, 321,
321,231,231,321,321,123)

P, = (123, 213 312 132,132,312,312,132,132,

Py = (123,321,231, 231, 321,321,331, 231, 321,
123,123)

3*-container from 123 to 123

P, =(123,123,213,213, 123,123,321, 321, 231,
231,321, 123)

P, =(123,213,213,312, 312,132, 132,312, 312,
132,132,231,231,321, 321,231, 231, 321,
321,123, 123)

Py =(123,321,231,231, 132,132,312,312, 132,

132,312,312,213,213,123, 123 213,213,
123)

P—‘I

3*-container from 123 to 213
P = (123, 123,213, 2{3_1%3_1%3 213_3{ 132,

132,312,312,213,213,123,123,213)
P, = (123, 213 312, 132 231 231,321,321, 231,

P3 = (123 321 321 231 231,132,312,312,132,
132,312,213)
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3*-container from 123 to 213
P = (123, 123,213,213,123, 123,213,312, 132,

132,312,312, 132,132,312,213)

P, = (123,321,231,231,321, 321, 123,213)
Py = (123,213,312,132,231,231,321, 321,231,

231,321,321,123,213,213, 123, 123, 321,
231,231, 132,312,312,132, 132,312,213,
213)
3*-container from 123 to 123
P, =(123,123,213,213, 123,123,321, 321, 123)
P, =(123,213,213,312,312,132, 132,231,231,
132,132,312,312,132,231,321, 321, 231,
231, 321 321,231,132, 132,312,312,213,

Py = (123,321, 321,231, 231,132, 312,312,213,

3*-container from 123 to 123
P, = (123, 123,213,213,123,123,213,312,132,

132,312,312, 132,132,312,213,213,312,
132 132 312 312,132,231,231,321, 123,
P, = (123,321,231,231, 321,321, 123,123
Py =(123,213,312,132,231,231,3

231,321,321,123)

3*-container from 123 to 213
P, = (123 123,213, 213 123,123,213,312,312,

Py = (123 321 231 132,132,231,321,321, 123,
213,213)

Py = (123,213,312,132, 132,312,312, 132,231,
321,321,231,231,321, 123,213,312, 132,
231,321,321,231,231,132, 132,312,312,

213)

3*-container from 123 to 213
Py =(123,123,213,213, 123,123,321, 321, 231,

231,321,123,213,213,123,123,213,213)
P, = (123,213,213,312,312, 132,132,312, 312,
132,132,231,231,321,321,231,231,321,
321,123,213)
Py = (123,321,231,231, 132,132,312, 312,132,
132,312,312,213)
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