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PAPER

Visual Software Development Environment Based on Graph
Grammars∗

Takaaki GOTO†a), Student Member, Kenji RUISE††, Takeo YAKU†††, and Kensei TSUCHIDA††††, Members

SUMMARY In software design and development, program diagrams
are often used for good visualization. Many kinds of program diagrams
have been proposed and used. To process such diagrams automatically and
efficiently, the program diagram structure needs to be formalized. We aim
to construct a diagram processing system with an efficient parser for our
program diagram Hichart. In this paper, we give a precedence graph gram-
mar for Hichart that can parse in linear time. We also describe a parsing
method and processing system incorporating the Hichart graphical editor
that is based on the precedence graph grammar.
key words: program diagrams, attribute graph grammar, graph editor,
Hichart, precedence graph grammar, SVG

1. Introduction

In software design and development, program diagrams are
often used for good visualization. Many kinds of pro-
gram diagrams, such as Hichart (Hierarchical flowchart lan-
guage), PAD (Problem Analysis Diagram), HCP (Hierarchi-
cal and Compact Description Chart) and SPD (Structured
Programming Diagram), have been used in software devel-
opment [1], [2]. Software development using these program
diagrams is on the increase, hence a means of data exchange
between different CASE-tools for different program flow
charts is desirable. In fact, DXL (Diagram eXchange Lan-
guage for tree-structured charts) was specified in the 1997
ISO for this purpose [3].

Large-scale program diagrams need to be parsed effi-
ciently and drawn automatically, and to enable this, the pro-
gram diagram structure needs to be formalized. A graph
grammar is a formal method that strictly defines the mech-
anisms such as generation and parsing. Research on graph
grammars includes studies by Frank [4], Nagl [5], Rozen-
berg [6], and others. Various programming environments
based on graph grammars have been proposed [6]. For ex-
ample, DiaGen targets general graphs, while IPSEN targets
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program semantics.
Our research adopts the program diagram Hichart.

Hichart is a program diagram methodology that was intro-
duced by Yaku and Futatsugi [7]. It has three key features:
(1) A diagram is a tree-flowchart that has the flow control
lines of a Neumann program flowchart, (2) The nodes of the
different functions in a diagram are represented by differ-
ently shaped cells, and (3) The hierarchy of the data struc-
ture represented by a diagram and the control flow are si-
multaneously displayed on a plane that distinguish it from
other program diagram methodologies. There has been a
substantial amount of research devoted to Hichart. A pro-
totype formulation of attribute graph grammar for Hichart
was reported in [8]. This grammar consists of Hichart syn-
tax rules, which use a context free graph grammar [9], and
semantic rules for layout. The authors have been developing
a software development environment based on graph the-
ory, which includes graph drawing theory and graph gram-
mars [2], [10]. So far, we have developed bidirectional trans-
lators that translate Pascal, C, or DXL source into Hichart
and which translate Hichart into Pascal, C, or DXL [2],
[10]. For instance, HiChart Graph Grammar (HCGG) is
introduced in [11]. HCGG is an attribute graph grammar
with an underlying graph grammar based on edNCE graph
grammar [6], and it is intended for use with DXL. It has
the problem that the HCGG is not considered to parse ef-
ficiently. HCPGG (Hichart Precedence Graph Grammar) is
introduced in [12]. It has precedence relations, and it is used
for efficient parsing. It also has a problem regarding prece-
dence conflicts.

The task of processing large-scale program diagrams
needs an efficient parser, and as yet, no research that we
know of has come up with an adequate way to make dia-
grams of very large programs automatically. A framework
that can ensure precise behavior and proof of parsing effi-
ciency is also needed.

Distributed software development is on the increase,
so it has become necessary for software specification doc-
uments to be shared on the Web. With regard to Web docu-
ments, XML and SVG have been proposed as standard doc-
ument and graphical formats for the Web. Scalable Vector
Graphics (SVG) [13] is a W3C Recommendation and a lan-
guage for describing two-dimensional graphics and graphi-
cal applications in XML. SVG can display graphical objects
on any readily available Web browser. With these formats,
users can share documentation including graphical objects
on the Web. We reported on automatic generation of SVG
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files and incorporated the generation method into a graphical
editor for Hichart by using attribute graph grammars [14].

In this paper, we construct an efficient parser for
Hichart by attribute graph grammar. We checked the current
Hichart/DXL graph grammar and found it is not a prece-
dence graph grammar. Consequently, we revised the graph
grammar to precedence graph grammar. Accordingly, we
use a precedence relation for Hichart graph grammar to de-
velop an efficient parser for diagrams. We propose an al-
gorithm for the precedence parser and its processing sys-
tem. The processing system is a graphical editor supporting
structure-free or free-hand editing with a parser. We also de-
scribe automatic generation of an SVG file that can be used
to draw aesthetic diagrams based on an attribute evaluation
of the derivation tree generated by the parser.

This paper is organized as follows: Section 2 give pre-
liminaries. In Sect. 3, we review the Hichart/DXL. Sec-
tion 4 describes the graph grammar for Hichart/DXL. In
Sect. 5, we describe the parsing of the graph grammar for
Hichart/DXL. Section 6 explains the Hichart Editor. In
Sect. 7, we give discussion. We conclude in Sect. 8.

2. Preliminaries

Here, we review the notations and definitions.

Definition 1: ([6], [15]) Let Σ be an alphabet of node la-
bels and Γ be an alphabet of edge labels. A graph over Σ
and Γ is a tuple H = (V, E, λ), where V is the finite set of
nodes, E ⊆ {(v, γ,w) | v,w ∈ V, v � w, γ ∈ Γ} is the set
of edges, and λ : V → Σ is the node labeling function.

E(v,w)
def
= {γ ∈ Γ | (v, γ,w) ∈ E}. The label tuple of two

nodes v,w ∈ V is lab(v,w)
def
= (λ(v), E(v,w), E(w, v), λ(w)).

�

In this paper, we consider directed graphs without
loops. A node on a graphs has attributes such as coordinates
and cell size.

Definition 2: ([6]) Two graphs H and K are isomorphic
if there is a bijection f : VH → VK such that EK =

{( f (v), γ, f (w)) | (v, γ,w) ∈ EH} and for all v ∈ VH ,
λK( f (v)) = λH(v). �

Definition 3: ([6]) The set of all concrete graphs over Σ
and Γ is denoted as GRΣ,Γ, and the set of all abstract graphs
is denoted as [GRΣ,Γ]. A subset of [GRΣ,Γ] is called a graph
language. �

Definition 4: ([6]) A graph with (neighbourhood con-
trolled) embedding over Σ and Γ is a pair (H,C) with H ∈
GRΣ,Γ and C ⊆ Σ × Γ × Γ × VH× {in, out}. C is the con-
nection relation of (H,C), and each element (σ, β, γ, x, d)
of C (with σ ∈ Σ, β, γ ∈ Γ, x ∈ VH , and d ∈ {in, out}) is
a connection instruction of (H,C). A connection instruc-
tion (σ, β, γ, x, d) will always be written as (σ, β/γ, x, d).
Two graphs with embedding (H,CH) and (K,CK) are iso-
morphic if there is an isomorphism f from H to K such that

CK = {(σ, β/γ, f (x), d) | (σ, β/γ, x, d) ∈ CH}. The set of all
graphs with embedding over Σ and Γ is denoted as GREΣ,Γ.

�

Definition 5: ([6]) An edNCE graph grammar is a tuple
GG = (Σ,Δ,Γ,Ω, P, S ), where Σ is the alphabet of node la-
bels, Δ ⊆ Σ is the alphabet of terminal node labels, Γ is the
alphabet of edge labels, Ω ⊆ Γ is the alphabet of final edge
labels, P is the finite set of productions, and S ∈ Σ−Δ is the
initial nonterminal. A production is of the form X → (D,C)
where X is a nonterminal node label, D is a graph over Σ and
Γ, and C ⊆ Σ×Γ×Γ×VD×{in, out} is the connection relation
which is a set of connection instructions. A pair (D,C) is a
graph with embedding over Σ and Γ. �

Definition 6: ([6]) A copy(P) denotes the infinite set of
all productions that are isomorphic to a production in P; an
element of copy(P) is called a production copy of GG. �

Definition 7: ([6]) Let (H,CH) and (D,CD) be two graphs
with embedding, in GREΣ,Γ, such that H and D are disjoint,
and let v be a node of H. The substitution of (D,CD) for v
in (H,CH), denoted as (H,CH)[v/(D,CD)], is the graph with
embedding (V, E, λ,C) in GREΣ,Γ such that

V = (VH − {v}) ∪ VD,
E = {(x, γ, y) ∈ EH | x � v, y � v} ∪ ED

∪{(w, γ, x) | ∃β ∈ Γ : (w, β, v) ∈ EH ,
(λH(w), β/γ, x, in) ∈ CD

∪{(x, γ,w) | ∃β ∈ Γ : (v, β,w) ∈ EH ,
(λH(w), β/γ, x, out) ∈ CD,

λ(x) = λH(x) if x ∈ VH − {v}, and λ(x) = λD(x) if x ∈ VD,
C = {(σ, β/γ, x, d) ∈ CH | x � v}
∪{(σ, β/δ, x, d) | ∃γ ∈ Γ : (σ, β/γ, v, d) ∈
CH , (σ, γ/δ, x, d) ∈ CD}. �

Definition 8: ([6], [15]) Let G = (Σ,Δ,Γ,Ω, P, S ) be an
edNCE graph grammar. Let Hi−1 = (VHi−1 , EHi−1 , λHi−1 ) and
Hi = (VHi , EHi , λHi ) be graphs in GREΣ,Γ. In addition, let
vi ∈ VHi−1 , and p′i : X → (D′i ,C

′
i ) ∈ P be a production copy

of G such that D′i and Hi−1 are disjoint. si = (p′i , vi,D′i , b
′
i) is

a derivation specification of G if p′i ∈ copy(P), λHi−1(vi) = X,
D′i � D, b′i : VD′i → VDi .

We write Hi−1 →vi,p′i Hi, or just Hi−1 →
si

Hi, if

λHi−1 (vi) = X and Hi = Hi−1[vi/(D′i ,C
′
i )]. Hi−1 →

si

Hi is

called a derivation step, and a sequence of such derivation
steps is called a derivation. �

Figure 1 shows an example of an application of a
production. In the Fig. 1 H = (VH , EH , λH) is a graph
with VH = {n1, n2}, EH = {(n1, α, n2)}, λH(n1) = a and
λH(n2) = X. The production copy p′ of p is as follows:
p′ : X → (D′,C′) where X = λH(n2), D′ = (VD′ , ED′ , λD′ )
such that VD′ = {n3, n4}, ED′ = {(n3, γ, n4)}, λD′ (n3) = b,
λD′ (n4) = Y and C′ = {(a, α/β, n3, in)}.

The production copy p′ is applied to the node n2 of
H. After that we get the graph H′ = (VH′ , EH′ , λH′ ) where
VH′ = {n1, n3, n4}, EH′ = {(n1, β, n3), (n3, γ, n4)}, λH′ (n1) =
a, λH′ (n3) = b, λH′ (n4) = Y .
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Fig. 1 Example of an application of a production.

Fig. 2 Example of a production with semantic rules.

The following definitions pertain to the attribute graph
grammar.

Definition 9: ([16]) An Attribute edNCE Graph Grammar
is a tuple AGG = 〈GG, Att, F〉, where

1. GG = (Σ,Δ,Γ,Ω, P, S ) is called an underlying graph
grammar of AGG. Each production p in P is denoted by
X → (D,C). Lab(D) denotes the set of all occurrences of
the node labels in the graph D.

2. Each node symbol Y ∈ Σ of GG has two disjoint
finite sets Inh(Y) and S yn(Y) of inherited and synthesized
attributes, respectively. The set of all attributes of symbol X
is defined as Att(X) = Inh(X) ∪ S yn(X). Att =

⋃
X∈Σ Att(X)

is called the set of attributes of AGG. We assume that
Inh(S ) = ∅. An attribute a of X is denoted by a(X), and
the set of possible values of a is denoted by V(a).

3. Associated with each production p = X0 → (D,C) ∈
P is a set Fp of semantic rules which define all the attributes
in S yn(X0)

⋃
X∈Lab(D) Inh(X). A semantic rule defining an at-

tribute a0(Xi0 ) has the form a0(Xi0 ) := f (a1(Xi1 ), ···, am(Xim )).
Here f is a mapping from V(a1(Xi1 ))× · · · ×V(am(Xim )) into
V(a0(Xi0 )). In this situation, we say that a0(Xi0 ) depends on
a j(Xij ) for j, 0 ≤ j ≤ m in p. The set F =

⋃
p∈P Fp is called

the set of semantic rules of G. �

Nodes generated by our graph grammar have attributes
such as coordinates and cell sizes. Attribute values are cal-
culated by evaluating attributes according to semantic rules
on the obtained derivation tree.

Figure 2 is an example of a production with seman-
tic rules. There are two attribute types, inherited attribute

Fig. 3 Example of a calculating precedence relations.

and synthesized attribute. Inherited attributes are calculated
from the root node, and the root node’s values are inherited
to the leaf nodes. The synthesized attributes are calculated
from leaf nodes to the root node. For example, in Fig. 2, x
is an inherited attribute and the attribute y is a synthesized
attribute.

The following describes the precedence graph gram-
mar. We apply the framework of precedence graph gram-
mars devised by Kaul to the edNCE graph grammars of
Rozenberg.

Let D = (Gi−1 →
si

Gi | 1 ≤ i ≤ n), n ∈ N, si =

(pi, L̃i, R̃i, b̃i) be a derivation sequence. si precedes s j if L̃ j

is an induced subgraph of R̃i, 1 ≤ i, j ≤ n. The reflexive and
transitive closure of this relation is denoted as ≤D. Note that
relations <D, >D and =D can be defined by using ≤D.

Let sD(v) = si if v ∈ VR̃i
, 1 ≤ i ≤ n.

Definition 10: ([15]) The derivation order of the nodes in
Gn is as follows: v�w⇔ sD(v) <D sD(w), v�w⇔ sD(v) >D

sD(w), v � w⇔ sD(v) =D sD(w), here v,w ∈ VGn and node
v and w is adjacent.

Definition 11: ([15]) The derivation specifications si, s j

are incomparable if neither si ≤D s j nor s j ≤D si. �

Definition 12: ([15]) v ��w if sD(v), sD(w) are incom-
parable. �,�,�, �� are the precedence relations between
nodes. The precedence relations between labels, RΘ, Θ ∈
{�,�,�, �� } is the set of all labG(v,w) s.t. there is a deriv-
able graph G, v,w ∈ VG, vΘw. �

Figure 3 shows an example calculation of precedence
relations. In Fig. 3 Ga = (VGa , EGa , λGa ) is a graph where
VGa = {n2, n3, n4}, EGa = {(n2, α, n3), (n2, α, n4)}, λGa (n2) =
a, λGa (n3) = B, and λGa (n4) = C. We construct a pro-
duction copy p′x of px as follows: px′ : X′px

→ (D′px
,C′px

)
where X′px

= λGa (n4), D′px
= (V ′px

, E′px
, λ′px

) such that
V ′px
= {n5, n6, }, E′px

= {(n5, γ, n6)}, λ′px
(n5) = b, λ′px

(n6) = X
and C′p1 = {(a, α/β, n5, in)}. Then we apply the produc-
tion copy p′x to node n4 of Ga. Finally the graph Gb is
obtained. The derivation specification of this application is
sα = (px, L̃α, R̃α, b̃α) where L̃α = λGa (n4), R̃α is isomorphic
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to the right hand side of production px and b̃α(n5) = v1,
b̃α(n6) = v2.

Now let us consider the precedence relations between
nodes and labels. These relations are computed according
to Definition 12. First, we obtain a derivation specifica-
tions sα that generate nodes n5 and n6. S D(n5) = sα and
S D(n6) = sα. Nodes n5 and n6 are generated by the same
derivation specification sα. Therefore, the precedence re-
lation between node n5 and n6 is n5 � n6. Moreover, the
precedence relation between the node labels of n5 and n6 is
lab(n5, n6) = (b, γ, ∅, X) ∈ R�.

Definition 13: ([15]) A graph grammar GG is confluent if
for all derivable graphs G1,G2,G3 and incomparable deriva-
tion specifications s1, s2 with D = (G1 →

s1

G2),D = (G1 →
s2

G3) there is a derivable graph G4 such that D = (G2 →
s2

G4)

and D = (G3 →
s1

G4) are derivation steps. Let p : X →
(D,C) be a production, Ix =de f {(σ, β, γ, x, in) | σ ∈ Σ, β, γ ∈
Γ, x ∈ VD}, Ox =de f {(σ, β, γ, x, out) | σ ∈ Σ, β, γ ∈ Γ, x ∈
VD}. p is symmetric if Ix = Ia(x),Ox = Oa(x) for automor-
phisms a : VD → VD, x ∈ VD. GG is symmetric if all
productions in GG are symmetric. GG is uniquely invert-
ible if every derivation step can be inverted uniquely only by
inspection of the substituted subgraph and its direct neigh-
bourhood. A nonterminal B is called reflexive if B can be
derived from B in at least one step. A precedence conflict
is a label tuple t that occurs in more than one precedence
relation. �

Definition 14: ([15]) A graph grammar that is confluent,
symmetric, and uniquely invertible, and has no reflexive
nonterminals and no precedence conflicts, is called a prece-
dence graph grammar. �

3. Hichart/DXL

Hichart [7] is a program diagram having the following char-
acteristics. (1) A diagram is a tree-flowchart that has the
flow control lines of a Neumann program flowchart; (2) The
nodes of the different functions in a diagram are represented
by differently shaped cells; (3) The hierarchy of the data
structure represented by a diagram and the control flow are
simultaneously displayed on a plane.

The Diagram eXchange Language for tree-structured
charts DXL is specified in the 1997 ISO [3]. The primary
purpose of DXL is to provide a means of exchanging data
between different CASE-tools for different program flow
charts. This purpose allows various CASE-tools to use spec-
ifications made in the past.

Figure 4 shows an example of an Hichart for DXL that
describes an example of DXL code on ISO/IEC 14568 [3].

4. Graph Grammar for Hichart/DXL

4.1 Attribute Graph Grammar for Hichart/DXL

In this section, we describe an attribute graph gram-

Fig. 4 Example of an Hichart for DXL.

mar that defines Hichart for DXL (Hichart/DXL) dia-
grams. It is called PGGHD(Precedence Graph Grammar for
Hichart/Dxl) , and it is defined using attribute edNCE graph
grammar [17].

Definition 15: A graph grammar for Hichart/DXL is a tu-
ple PGGHD = (ΣHD, ΔHD, ΓHD, ΩHD, PHD, S HD), where
ΣHD is the alphabet of node labels, ΔHD ⊆ ΣHD is the alpha-
bet of terminal node labels, ΓHD = { ∗ }, ΩHD = { ∗ }, PHD is
the finite set of productions, and S HD = { [module packet] }
is the initial graph. �

PGGHD is a context-free graph grammar that includes
70 productions and 888 attribute rules. Node labels [ ] and ””
denote a nonterminal and terminal node, respectively. The
node with the [module packet] label is the initial nontermi-
nal. PGGHD generates a directed graph that indicates a
Hichart diagram. However the Hichart diagram is drawn in
an undirected graph on a Hichart processing system for the
sake of visibility. We call a laterally connected relation a
parent-child relation and a longitudinally connected relation
a sibling relation. The node to the left side of the current
node is a parent node, the node to the right side is a child
node, an upper node is an older brother node and a lower
node is a younger brother. Hichart can implicitly distinguish
each relation from the positional relation of nodes. There-
fore PGGHD omits edge labels. PGGHD rewrites edge la-
bels from empty labels to empty labels.

Figure 5 shows an example of the productions and
semantic rules of PGGHD. The large rectangle labeled
[explanation module algorithm] is a nonterminal node. A
rewriting step of this production consists of removing a node
labeled [explanation module algorithm] from a given host
graph and substituting the graph consisting of [explanation]
and [module algorithm].

Each production has semantic rules. The semantic
rules compute the attributes for drawing a diagram, such
as the coordinates, and generating SVG files for a given
Hichart diagram.
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Fig. 5 Example of production and semantic rules of PGGHD.

4.2 Derivation of PGGHD

Let H be a given host graph and p′ : X′ → (D′,C′) be a
production copy of p : X → (D,C) ∈ P, where H and D are
disjoint.

We substitute (D,C) for a node in H as follows.

(1) Remove a mother node X′ and edges that connect X′
from host graph H,

(2) Embed the daughter graph D′ into H−, and
(3) Put edges between the nodes of D′ and the nodes that

were connected to the mother node in the H of H− by
using the connection instructions of C′.

We use the definition of the substitution in [6].
Figure 6 illustrates a derivation from the initial nonter-

minal labeled [module packet].

4.3 Precedence Relation for PGGHD

The existing graph grammar for Hichart/DXL has no theo-
retical guarantee that it can construct an effective parser. Be-
low, we describe how we changed the existing graph gram-
mar into a precedence graph grammar by referring to Kaul’s
precedence graph grammar [15]. We also prove and describe
an example of calculating a precedence relation.

4.3.1 Modification of Previous Graph Grammar

The existng Hichart/DXL graph grammar has precedence
conflicts. Figure 7 shows an example of such a precedence
conflict.

Let Ga be a subgraph of a graph generated by the pre-
vious graph grammar. A production copy of production 58
in Fig. 7 is applied to node n10 of graph Ga, from which
graph Gb is obtained. Similarly Gc is obtained after a pro-
duction copy of production 60 in Fig. 7 is applied to n13 of
Gb. Since the n13 generated by the derivation specification
sb appears on the left hand side of the derivation specifica-
tion sc, sb ≤ sc.

Fig. 6 Example of derivations.

Let us compute the precedence relation between nodes
n11 and n12. The derivation specifications that gener-
ated each node are S D(n11) = sb, S D(n12) = sb. n11

and n12 are generated by the same derivation specifica-
tion sb, so the precedence relation between n11 and n12 is
n11 � n12. The precedence relation between node label is
{(”if”, ∗, ∅, [branch statement list cushion ])} ∈ R�.

Next let us compute the precedence relation between
n11 and n14. Firstly, derivation specifications for nodes n11

and n14 are S D(n11) = sb and S D(n14) = sc.
This implies the n11 and n14 are respectively generated

by the derivation specifications sb and sc. Therefore, it holds
that sD(n11)�D sD(n14), that is, n11�n14. The precedence re-
lation between nodes label n11 and n14 is {(”if”, ∗, ∅, [branch
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Fig. 7 Example of a precedence conflict.

statement list cushion ])} ∈ R�. Consequently, a tuple
(”if”, ∗, ∅, [branch statement list cushion]) exists in two
precedence relations, which means there is a precedence
conflict.

No precedence conflict is required to be a precedence
graph grammar. Therefore we changed the existing graph
grammar so as to have no precedence conflict.

We changed Hichart structure so that parent nodes at
most one child node. Consequently, the generated graph
represents the inner structure of Hichart. For example, we
changed Gc of Fig. 7 to Gc of Fig. 8. Whereas the node n11

with “if then” label in Fig. 7 has two child nodes, the node
n11 with “if then” label in Fig. 8 has one child.

4.3.2 Properties of PGGHD

In this section, we describe some properties of PGGHD.
First, we prove the confluent and symmetric properties. Af-
ter that, we prove that PGGHD is a precedence graph gram-
mar.

Lemma 1: The grammar PGGHD is confluent.

Proof. Let Gx be a sentential form of the grammar PGGHD,
va and vb be nonterminal nodes of Gx, and pa and pb be
productions that can apply to va and vb. Here we consider
two derivation sequences Gx →

pa

Gxa →pb

Gxab and Gx →
pb

Gxb →pa

Gxba . To prove the confluence of PGGHD, we have

only to show that Gxab and Gxba are isomorphic.
First, consider the case in which there is no edge be-

tween va and vb of Gx. If there is no edge between va and
vb, the nodes do not affect each other. Hence, it is trivial
that PGGHD generates an isomorphic graph regardless of
the order in which the productions are applied.

Fig. 8 Example of a modification.

Fig. 9 Types of production.

Next consider the case in which there is an edge be-
tween va and vb of Gx. All connection patterns generated
by PGGHD are shown in Fig. 9. Black dots denote termi-
nal nodes, and boxes denotes nonterminal nodes. The case
in which there is an edge between va and vb of Gx occurs
only when the nodes have type IV in Fig. 9 (nodes have
a brother relation). Therefore, we have only to consider
the case in which nodes have a brother relation. In con-
nection type IV of Fig. 9, we can let va be an upper node
and vb be a lower node without loss of generality. We con-
trol the node-labeling of the productions so that only type
I, II, and III in Fig. 9 can apply va, and only type I, II, III
and IV in Fig. 9 apply vb As shown in Fig. 9, every produc-
tion of PGGHD inherits the connections of the mother node.
Thus when the productions pa and pb are applied in any or-
der of application, the connections between va and vb are
reserved and their resultant graphs are isomorphic. There-
fore, when the productions pa and pb are applied, PGGHD
generates isomorphic graphs independent of the application.
Hence, Gxab and Gxba obtained by Gx →

pa

Gxa →pb

Gxab and

Gx →
pb

Gxb →pa

Gxba are isomorphic. The above shows that

PGGHD is confluent. �

Figure 10 shows an example of confluence. Let G5 be
a graph derived by PGGHD, and s5 = (p4, n1, D̃5, b̃5), s6 =
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Fig. 10 Example of confluence.

Fig. 11 Example of a node that is connected to two nonterminal nodes.

(p5, n2, D̃6, b̃6) be derivation specifications. Figure 10 illus-
trates two different derivation sequences G5 →

s5

G6 →
s6

G8

and G5 →
s6

G7 →
s5

G8. The two derivation sequences gener-

ate an isomorphic graph regardless of the order in which the
productions are applied.

Lemma 2: The grammar PGGHD is symmetric.

Proof. Figure 9 shows the four production types of PGGHD.
All four types have only identity mappings as automor-

phisms. Therefore, Iv = Iav holds for every production of
PGGHD. Thus, all productions of PGGHD are symmetric,
and therefore PGGHD is symmetric. �

Lemma 3: The grammar PGGHD has no precedence con-
flicts.

Proof. PGGHD generates a tree structure from the root node
to the leaf node. Productions of Type I, Type II and Type
IV in Fig. 9 can be applied to the bottom node of a Hichart
structure. Let the bottom node be a node with no child and
no younger brother. Moreover PGGHD has no reflexive
nonterminal property.

PGGHD does not generate a node that is connected to
nodes with same node label. In Fig. 11, the node label non-
terminal A is always different from nonterminal B in PG-
GHD.

Suppose we obtain GaBC by deriving from GA in
Fig. 12. If we firstly generate a new node in the horizon-
tal direction, we can obtain only GaB type graph. In GaB,
the parent of the node [B] can not be a nonterminal node in
PGGHD. So, PGGHD can not generate a new node in the
vertical direction to obtain GaBC in the case of GaB. In or-

Fig. 12 Some graphs generated by PGGHD.

der to generate GaBC , it is necessary to generate GAC first by
applying production of Type IV. Therefore only the deriva-
tion GA → GAC → GaBC can generate GaBC graph. Thus
PGGHD has a restriction of derivation patterns and labeling
pair of node labels. Therefore a precedence conflict does not
occur in PGGHD. �

Theorem 1: The grammar PGGHD is a precedence graph
grammar.

Proof. There are no two productions that have the same label
tuple on the right-hand-side of the productions. Therefore,
the grammar PGGHD is uniquely invertible.

There is no nonterminal node such that it can be derived
from another nonterminal node with the same node label in
at least one step. Hence, there is no reflexive nonterminal
node in PGGHD.

From Lemma 1, Lemma 2, Lemma 3 and the above,
PGGHD is a precedence graph grammar. �

4.3.3 Example of Calculating Precedence Relations

Precedence relations are computed by a derivation sequence
and by referencing derivation specifications. A derivation
sequence is a sequence of derivation step, and derivation
specifications give detailed information such as the applied
production and mother node.

First, we compute the derivation sequence for a given
Hichart diagram. Next, we compute relations between each
derivation specification of the derivation sequence by using
the obtained transitive closure of the derivation specifica-
tions. After that, we calculate precedence between node of
a graph generated by PGGHD from the relation for each
derivation specification. There are four types of precedence
relation between nodes: �, �, � and �� . Finally, we com-
pute precedence relations between label tuples by using the
nodes precedence relations. Precedence relations are calcu-
lated in this manner between all nodes of the sentential form
for PGGHD.

We show an example precedence relation calculation
for Fig. 6. This example shows the result after applying
four productions to the initial nonterminal with the [mod-
ule packet] label. The derivation sequence of the example
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is G0 →
s1

G1 →
s2

G2 →
s3

G3 →
s4

G4.

Now, we add precedence relations to PGGHD. Using
Definition 8, the derivation specifications for Fig. 6 are as
follows.

s1 = (P1, [module packet], D̃1, b̃1)
s2 = (P3, [profile module list], D̃2, b̃2)
s3 = (P4, [profile], D̃3, b̃3)
s4 = (P5, [module list], D̃4, b̃4)

The node 3 with the [profile module list] label is a L̃2

of s2 and is an induced subgraph of R̃1 of s1. s1 pre-
cedes s2, that is s1 ≤D s2. Similarly, s1 ≤D s2 ≤D

s3 and s1 ≤D s2 ≤D s4, or more precisely ≤D=

{(s1, s2), (s2, s3), (s1, s3), (s2, s4), (s1, s4)}.
The way to compute a precedence relation between

nodes 6 with the ”profile” label and 8 with the [module]
label is as follows. s3 �� s4 because sD(6) = s3, sD(8) = s4.
Therefore, sD(6) �� sD(8). The precedence relation between
labels is labG(6, 8) = (”profile”, ∗, ∅,[module] ) ∈ R·×·.

The precedence relation between the node ”profile”
generated by p4 and node [module] generated by p5 is in-
comparable because the derivation specifications s3, s4 are
neither reflexive nor transitive closure.

We defined all the precedence relations for PGGHD.
The details of the grammar and precedence relation table
for PGGHD are described in [18].

5. Parsing of Graph Grammar for Hichart/DXL

5.1 Parsing Algorithm for PGGHD

This section describes the parsing algorithm for PGGHD.
This parser uses a stack for storing traversed nodes, and it
starts parsing from the root node of the input graph.

First, we review the shift and reduce operations [15].
An instantaneous description is (G,K,Ψ), where G is

the instantaneous graph, K is an ordered list of nodes in G,
and Ψ is a set of derivation specifications. Let (G,K,Ψ) be
an instantaneous description, K =< v1, . . . , vk >, k ≥ 1. Let
j be the minimum index 1 ≤ j ≤ k such that there is some
path in G from v j to vk along equal precedence. TOP(G, K)
is defined as G | {v j, . . . , vk}.

(G,K,Ψ) �s (G,Kw,Ψ) is a shift if (i) w ∈ VG does not
occur in K and (ii) lab(v, w) ∈ R�∪R� for some v in TOP(G,
K).

(G,K1K2,Ψ) �R (G′,K1w,Ψ ∪ {s}) is a reduce if (i) a
node w is not used in G or Ψ, (ii) s = (p, L̃, R̃, b̃), G′ →

s
G

is a derivation step, s � Ψ, K2 = VR̃, G | K2 = TOP(G,K)
is a precedence handle, and G′ | {w} = L̃, K1K2 denotes the
concatenation of both sequences K1 and K2.

The parsing algorithm for PGGHD is as follows;
The input for Algorithm 1 (PGGHD Parser) is a graph

that indicates the inner structure for the Hichart diagram.
PGGHD Parser repeats Procedure 1 (Precedence Analysis)
until host graph becomes the initial graph or a syntax error
is detected. If the input graph can be parsed, its parse tree is

Algorithm 1 PGGHD Parser
Input: Graph G with the root node r
Output: Parse Tree T for G
1: H := G; {H is a graph}
2: shifted-Nodes← r; {Push the root node r onto the stack shifted-Node}
3: while flag = true do
4: flag := Precedence Analysis(H, shifted-Nodes);

{When parsing is completed or is stopped due to a syntax error,
flag is false}

5: end while
6: if H is the initial graph then
7: A parse tree is generated by traversing the derivation sequence

obtained from the results of executing Precedence Analysis in the
reverse manner.

8: end if

procedure 1 Precedence Analysis
Input: Graph H, stack of shift Nodes K
Output: boolean flag
1: Array nodeList {an array of node type}
2: nodeList := getTop(H, K);
{get all nodes from K such that the nodes have the same precedence of
the Top and there is no node with a different precedence between the
Top and them}

3: if nodeList = null then
4: return false;
5: end if
6: for i=0 to number of nodeList do
7: if nodeList[i]’s child node doesn’t exist in K and child node has

higher precedence then
8: shift(child, K);

{push child node into K}
9: return true

10: else if nodeList[i]’s youngerBrother node doesn’t exist in K and
youngerBrother has ascending precedence then

11: shift(youngerBrother, K);
{push younger brother node into K}

12: return true
13: end if
14: end for
15: handle := getHandle(nodeList);
16: production := findProduction(handle);
{search a production where the right-hand-side is isomorphic to the
precedence handle}

17: if found a production then
18: H := ReplaceGraph(H, handle, production, K);
19: K := UpdateK(H, handle, production, K);
20: else
21: return false
22: end if
23: return true

generated by line 6 to 8 of PGGHD Parser.
In Precedence Analysis, the parser gets all nodes from

K such that the nodes have the same precedence as the Top
and there is no node with a different precedence between
the Top and them at line 2. In loop lines 6 to 14, the
parser tries to find nodes that can perform a shift of child
nodes or younger brother nodes. Note that this loop is exe-
cuted at most two times per executing the procedure Prece-
dence Analysis.

The shift is executed if the current node has a child or
younger brother and has higher or equal precedence com-
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pared to it. If there is no shift node, the parser does lines
15 to 22. If there is no shift node, the parser generates a
graph structure from nodeList as a precedence handle. The
parser searches for a production where the right-hand-side
is isomorphic to the precedence handle. If the parser finds
such a production, it updates graph and shift Nodes with the
production copy.

5.2 Example of Parsing

In Fig. 13, (a) describes an input graph H and shifted-Nodes
K is an ordered list of H. K is a stack that stores information
for the shifted nodes. The parser sets the root node of the
input graph to be the current node and stores the root node
information on stack K.

The parser operates as follows. First, the parser com-
putes the TOP(H, K), which is a list of nodes that has an
equal precedence relation between node labels from the top
of stack K. In (a), the result for TOP(H, K) has only one
node with the label ”m packet”. If the current node with
”m packet” label has an ascending precedence between it
and its child node, a shift is performed; that is, ”profile” is
stored in K. Subsequent shifts are repeated in a similar man-
ner.

In Fig. 13 (c), a precedence handle is found since there
is no higher node. The parser then searches for a production
in which the right-hand-side is isomorphic to the precedence
handle. In this case, the parser finds Production 10. The
parser then reduces the precedence handle to the left-hand-
side of the production. Figure 13 (d) illustrates the situation
after the graph has been reduced.

The above operations are repeated until the graph be-
comes the initial graph with the [module packet] label. Oth-
erwise the parser detects a syntax error.

5.3 Complexity of the Parsing Algorithm

In this section, we show that the time complexity of PG-
GHD Parser is linear with respect to the number of nodes in
an input graph.

Theorem 2: PGGHD Parser executes in O(n) where n is
the number of nodes in an input graph.

Proof. First, we investigate the complexity of Prece-
dence Analysis.

The procedure getTop at line 2 of Precedence Analysis
can be computed in O(1) because the right-hand-side of PG-
GHD has two nodes at most and getTop can determine a
handle by popping one or two nodes from the stack K.

The for loop between lines 6 and 14 executes in O(1).
At most two nodes are obtained by getTop, so the for loop
between lines 6 and 14 is repeated two times. The shift pro-
cedure at lines 8 or line 11 shifts the child node or younger
brother node once. Thus, the shift procedure executes shift
in O(1) time.

getHandle at line 15 can be computed in O(1). If there
is one node in the nodeList, a handle is computed in constant

Fig. 13 Example of parsing for an input graph.

time. If there are two nodes in the nodeList, a handle is
computed by checking the parent-child and brother relations
of (at most two) nodes in the nodeList. Therefore getHandle
executes in O(1).

The complexity of findProduction at line 16 is O(1).
findProduction compares a handle with productions of PG-
GHD. The order of the handle is at most 2 and that of the
right-hand-side of the production is also at most 2. More-
over, the number of productions is 70. Hence, findProduc-
tion executes in O(1).
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Fig. 14 Hichart editor screenshot for free-hand editing.

The complexity of ReplaceGraph at line 18 is O(1).
ReplaceGraph replaces a handle with the left-hand-side of
a production and makes it connect to the rest graph. Since
the maximum degree of graphs generated by PGGHD is 4,
this process can be done in O(1). Therefore, the complexity
of ReplaceGraph is O(1).

The above shows that Precedence Analysis executes in
O(1).

Next, we investigate the complexity of the PG-
GHD Parser algorithm.

The while loop between lines 3 and line 5 executes 8n
times. This parser reduces one node by executing Prece-
dence Analysis at most eight times. Hence, PGGHD Parser
only executes PrecedenceAnalysis at most 8n times for a
graph with n nodes.

On lines 6-8, the parse tree is generated by traversing
the derivation sequence obtained from the results of execut-
ing Precedence Analysis in the reverse manner once.

Therefore, the complexity of PGGHD Parser is O(n)
where n is the number of nodes in the input graph. �

6. Hichart Editor

We developed a graphical editor based on precedence graph
grammar for Hichart/DXL (PGGHD). The graphical editor
has features for parsing, aesthetic drawing, and generating
SVG files for Hichart/DXL diagrams. The SVG files are
generated by evaluating attributes for SVG. The graphical
editor consists of about 10000 lines of Java.

6.1 Features of Hichart Editor

The Hichart editor is a graphical editor supporting structure-
free or free-hand editing. Users can directly manipulate
a diagram with this editor, so that the generated diagram
can be analyzed by a parser based on the graph grammar.
Hichart diagrams are input into the editor. The editor out-
puts a Hichart code with a derivation tree and SVG files with
aesthetically drawn Hichart diagrams.

Figure 14 illustrates an example of Hichart editor
screens for free-hand editing. Figure 15 shows a screenshot
after the diagram of Fig. 14 has been automatically drawn
on it.

The main features of the Hichart editor are: (1) it

Fig. 15 Screenshot after evaluating layout attributes for the diagram in
Fig. 14.

Fig. 16 Flow of generating SVG files.

checks the correctness of Hichart diagrams by using the
parser, (2) it draws Hichart diagrams aesthetically (3) it gen-
erates an SVG file for a given program diagram, and (4)
ensures that the display for the SVG file on a general Web
browser directly corresponds to the diagram in the editor.

6.2 Method of Implementing Features

In this section, we describe the methods by which we im-
plement the features based on attribute graph grammars. At-
tributes allow us to describe a process explicitly. They also
have modularity with respect to program descriptions and
are written in a declarative manner. Therefore, system de-
velopers can easily maintain and write their own attributes.

6.2.1 Drawing Aesthetic Diagrams

Attributes of PGGHD such as coordinates are computed by
calculating semantic rules on the derivation tree. The num-
ber of semantic rules concerning coordinates is 781.

When users execute an editor command, nicely drawn
diagrams can be automatically drawn by evaluating layout
attributes. The evaluation is executed by traversing on the
derivation tree. Figure 15 shows the screenshot after the
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Fig. 17 Screenshot of a generated SVG file on Internet Explorer.

layout attributes of the diagram in Fig. 14 have been evalu-
ated.

6.2.2 Generation of SVG Documents with Aesthetic
Drawings

We introduce an attribute S S VG, which contains SVG source
codes, because its value and representation correspond to
the Hichart diagram. Then, we define semantic rules to sat-
isfy the constraints of drawing aesthetic Hichart diagrams.
The number of semantic rules concerning SVG is 107.

The SVG source codes are generated by evaluating
S S VG. Figure 16 illustrates the flow of generating SVG files.
The attribute evaluation is performed in a bottom-up man-
ner on the derivation tree. Figure 17 is an example of the
display of a Hichart diagram in SVG.

7. Discussion

We constructed a graph grammar for the program diagram
Hichart. We have been researching program diagrams for
twenty years. Lately, we have been studying tabular dia-
grams called Hiform for program specification forms. We
modeled a program specification table structure using a
graph and defined its graph grammar. We formalized the
program diagram Hichart based on graph grammar in order
to prepare a unified program diagram and program specifi-
cation.

Our graph grammar for Hichart generates a tree-
structure graph. There have been some studies on tree gram-
mars, [19]–[21]. Simpler tree grammars are sufficient for
generating Hichart diagrams. The application of tree gram-
mars to Hichart will be dealt with in the future.

8. Conclusion

We described the graph grammar PGGHD for Hichart/DXL
and proved that it is a precedence grammar. Moreover, we
designed and implemented a linear time parser for PGGHD
by using its precedence and constructed a processing system

for PGGHD.
Our attribute graph grammar approach is applicable

to other visual programming systems that handle tree-like
graphs. In the future, we will extend our approach to other
languages such as object-oriented language.
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