
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.1 JANUARY 2009
41

PAPER

RDFacl: A Secure Access Control Model Based on RDF Triple

Jaehoon KIM†a), Member and Seog PARK†b), Nonmember

SUMMARY An expectation for more intelligent Web is recently being
reflected through the new research field called Semantic Web. In this paper,
related with Semantic Web security, we introduce an RDF triple based ac-
cess control model having explicit authorization propagation by inheritance
and implicit authorization propagation by inference. Especially, we explain
an authorization conflict problem between the explicit and the implicit au-
thorization propagation, which is an important concept in access control for
Semantic Web. We also propose a novel conflict detection algorithm using
graph labeling techniques in order to efficiently find authorization conflicts.
Some experimental results show that the proposed detection algorithm has
much better performance than the existing detection algorithm when data
size and number of specified authorizations become larger.
key words: database security, access control, authorization conflict,
RDF/OWL data, Semantic Web

1. Introduction

Recently, we can find some efforts to secure Semantic Web
(SW). Qin and Atluri [1] introduced a class level access con-
trol considering authorization propagation by various ontol-
ogy inferences, and Reddivari et al. [2] introduced an Re-
source Description Framework (RDF) triple based access
control model considering various operations in an RDF
store. Jain and Farkas [3] introduced an RDF triple based
access control considering an authorization conflict problem
in RDF inference.

In this paper, we also introduce an access control model
based on the RDF triple, which considers SW inference.
However, compared with the existing studies, our model is
based on explicit authorization propagation over the ontol-
ogy hierarchy of upper and lower classes or properties. The
explicit propagation of authorizations is that when an autho-
rization is specified for an upper class or property, the same
access authorization is also applied to all lower classes or
properties over the ontology hierarchy by inheritance. This
explicit authorization propagation over the ontology hier-
archy, which is a graph, is necessary for more convenient
authorization specification of a security administrator as in
the eXtensible Markup Language (XML) access control [4]–
[7] exploiting the authorization propagation over a tree.
Through the explicit authorization propagation, a variety of
authorization specifications can be done at one time without
the need to be done separately and a security administrator

Manuscript received November 8, 2007.
Manuscript revised August 19, 2008.
†The authors are with the Dept. of Computer Science, Sogang

University, 1–1 Shinsu-Dong Mapo-Gu, Seoul, 121–742, Korea.
a) E-mail: jhkimygk@gmail.com
b) E-mail: spark@dblab.sogang.ac.kr

DOI: 10.1587/transinf.E92.D.41

can manage a much lower number of authorizations. Our
contribution is, first, to introduce an RDF triple based access
control model (named RDFacl) supporting the explicit au-
thorization propagation by inheritance as well as the implicit
authorization propagation by inference. Next, using these
two contrary propagations, we introduce an authorization
conflict problem in SW access control. As for the ontology
hierarchy, in this paper, we consider the basic subsumption
relationships in RDF, subClassO f and subPropertyO f , and
further consider the more complex subsumption relation-
ships in OWL like unionO f , intersectionO f , and oneO f .

With regard to detecting the authorization conflict, Jain
and Farkas [3] have suggested a somewhat inefficient algo-
rithm where all RDF triples are inspected. Therefore, in
this paper, we also propose an efficient conflict detection
method which inspects only the formerly specified autho-
rizations rather than all RDF instances. To efficiently detect
an authorization conflict under subsumption inferences, our
method inspects only the former authorizations having sub-
sumption relationships with a new authorization.

The remainder of the paper is organized as follows. In
Sect. 2, we review recent studies related to SW access con-
trol. Next, Sect. 3 briefly explains about the RDF triple and
the subsumption relationship, and through Sects. 4, 5, and
6 we introduce the RDFacl. Section 7 introduces the sug-
gested authorization conflict detection method, and Sect. 8
presents some experimental results. Section 9 finally con-
cludes this paper.

2. Related Work

XACML [4], Damiani et al. [5] and E. Bertino et al. [6],
[7] introduced the fine-grained access control models for
XML documents. According to specified access authoriza-
tions, element tags and attributes in an XML tree structure
are made to be selectively invisible to users. Even though
RDF/OWL documents are described in XML, the existing
XML access control models are not desirable as they cannot
check the security violation by ontology inference. That is,
when a set of access authorizations are explicitly specified
for RDF and OWL tags, they do not define which authoriza-
tions should be applied to inferred information.

Jain and Farkas’ study [3] is the closest work to ours.
However, in our study, we exploit the explicit authorization
propagation and suggest a more efficient authorization con-
flict detection method.

Qin and Atluri [1] considers the implicit authorization

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

42
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.1 JANUARY 2009

Fig. 1 A sample RDF graph.

propagation and authorization conflict problem for various
semantic relations in an ontology. However, their access
control policy is not based on the RDF triple structure.
Hence, their methods are not incorporated with RDF Se-
mantics [8] and OWL Semantics [9]. In addition, the secu-
rity object in their model is a class, but in our case it is a
property which is represented as the RDF triple. Hence we
can support the more fine-grained access control.

Kaushik et al. [10] introduces an access control model
for the fine-grained information disclosure of an RDF web
document. The main point of their study is to introduce a
formal framework to provide disclosure control over parts
of an ontology. In addition, they introduce applying sev-
eral methods of information hiding to RDF data, e.g., re-
moving a specific subtree in an ontology tree or renaming a
disallowed class or property according to an authorization.
However they do not consider the disclosure problem for
highly sensitive data by a prohibited inference. In fact, this
problem is closely connected with the authorization conflict
problem in this paper, because such an information disclo-
sure arises when two authorizations having conflict relation-
ship are both allowed.

In the paper [11], we already introduced the explicit
and the implicit authorization propagation, the authorization
conflict problem between two propagations, and the conflict
detection algorithm. In this paper, we revise some contents
in the previous article, add some experimental results which
were not shown in the previous article, and particularly we
expand such concepts into some subsumption relationships
of OWL.

3. RDF and OWL

An RDF document consists of RDF statements, which use
ontology concepts defined in an RDF Schema (RDFS). An
RDF statement is represented as a triple of [s, p, o], and an
RDF document can be represented as a graph consisting of

RDF triples. An RDFS statement can also be represented as
a triple.

Definition 1 (RDF graph and triple): An RDF graph is a
set of RDF triples. An RDF triple is represented as [s,
p, o], where s ∈ S UBJECT , p ∈ PREDICAT E, and
o ∈ OBJECT .

- The set S UBJECT includes URI (Uniform Resource
Identifier) nodes defining classes or properties in RDFS and
instances in RDF, and blank nodes.

- The set PREDICAT E includes URI nodes referenc-
ing properties in RDFS.

- The set OBJECT includes the URI nodes of the other
classes and instances related by p, blank nodes, and literals.

For example, in Fig. 1, the RDF triple [Weapon,
manu f acturedBy, WeaponCompany] has the class URI
constant Weapon as s, the property URI constant
manu f acturedBy as p, and the class URI constant
WeaponCompany as o. [Titan, NWQuantity, 127] has the
instance URI constant Titan as s and the literal 127 as o.
[Titan, locatedIn,] has a blank node as o. The RDF part
of Fig. 1 represents the sample RDF document of Fig. 2.

OWL is also based on the RDF triple and adds separate
vocabularies for defining various relationships between on-
tology concepts to the primitive vocabularies of RDF. For
example, the RDF graph of Fig. 3 (b) connects the follow-
ing RDF triples for the OWL document of Fig. 3 (a). Refer
Sect. 4.1 in the OWL Semantics [9] for the details of map-
ping OWL to RDF graph.

[NamedPizza, rd f :type, owl:Class]
[NamedPizza, owl:unionO f , :1]
[:1, rd f :type, rd f :List]
[:1, rd f : f irst, ItalianPizza]
[:1, rd f :rest, :2]
[:2, rd f : f irst, AmericanPizza]

KIM and PARK: RDFACL: A SECURE ACCESS CONTROL MODEL BASED ON RDF TRIPLE
43

<?xml version=“1.0”?>
<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:ex=“http://example.org/schemas/weapon#” xmlns:xsd =
“http://http://www.w3.org/2001/XMLSchema”>
<ex:NuclearWeapon rdf:ID=“Titan”>
<ex:manufacturedBy rdf:resource=“ex:CentralCo”/>
<ex:NWQuantity rdf:datatype=“xsd:integer”>127

</ex:NWQuantity>
<ex:locatdIn>
<rdf:Description>
<ex:country>USA</ex:country>
<ex:state>Arizona</ex:state>
</rdf:Description>
</ex:locatdIn>
</ex:NuclearWeapon>
<ex:SpecialWeapon rdf:ID=“Tomahawk”>
<ex:manufacturedBy rdf:resource=“ex:LockheedCo”/>
<ex:SWQuantity rdf:datatype=“xsd:integer”>138

</ex:SWQuantity>
</ex:SpecialWeapon>
</rdf:RDF>

Fig. 2 A sample RDF web document.

Fig. 3 An RDF graph for an OWL web document.

[:2, rd f :rest, rd f :nil]

Definition 2 (subsumption relationship): In RDF, if a class
ci is the subclass of another class c j (ci ⊂ c j, subClassO f),
ci and its instances inherit the properties of c j, and ci can be
interpreted as c j by inference. If a property pi is the sub-
property of another property pj (pi ⊂ p j, subPropertyO f),
pi can be interpreted as p j by inference. Similarly, in OWL,
if a class c j is the union of other classes ci and ck (c j = (ci ∪

ck, unionO f), ci and ck can be interpreted as c j by inference.
If a class c j is the intersection of other classes ci and ck (c j

= (ci ∩ ck, intersectionO f), c j can be interpreted as ci or ck

by inference.

4. Access Authorization

4.1 Security Object

In our authorization specification, security objects are RDF
triples. A security administrator can conveniently bind up
the target RDF triples into the following security object pat-
tern.

Definition 3 (security object pattern): A security object
pattern is also represented as an RDF triple [s, p, o], where s
and p can be substituted by variables $x and $y, respectively,
and o is always the variable $z (In this study, we do not con-
sider much more fine-grained access control according to o
values). Also, a blank node for s and o is not allowed.

For example, in the RDF graph of Fig. 1, for the se-
curity object pattern [$x, NWQuantity, $z], the matching
RDF triples are [NuclearWeapon, NWQuantity, literal]
and [Titan, NWQuantity, literal]. In particular, the pattern
[$x, $y, $z] matches all edges in the graph.

4.2 Specifying Access Authorization

Access authorizations are formally defined as follows.

Definition 4 (access authorization): An access authoriza-
tion is a five tuple of the form: <sub j, ob j, act, sign, type>.

- sub j is the subject to whom the authorization is
granted.

- ob j is the security object pattern.
- act refers to an action performed against the security

object. Since in this study we consider applying our access
control model to the fine-grained information disclosure of
RDF/OWL documents over Web, only read operation is con-
sidered.

- sign is (+) if access is allowed, and (−) if access is
forbidden.

- type is R (= Recursive) if an authorization should be
propagated to lower classes or properties by the subsump-
tion relationship, and L (= Local) if an authorization should
not be propagated. We will explain the details of authoriza-
tion propagation according to type in Sect. 5.

4.3 Hidden Portions of an RDF/OWL Document accord-
ing to an Authorization

We consider applying our access control model to in-
formation disclosure of RDF/OWL documents published
over Web. For example, according to the authorization
<Dave, [$x, manu f acturedBy, $z], read, −, R>, the tag
<ex:manu f acturedBy rd f :resource = “ex:CentralCo”> in

44
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.1 JANUARY 2009

Table 1 Hidden portions according to the value type of o.

URI constant Blank node Literal

- A property p should
be hidden from a class
or an instance s.

- p should be
hidden from s.

- p should be
hidden from s.

read
(−)

- Also, the o value of
an URI constant should
be hidden. However,
this does not mean that
the object referenced
by the URI should be
hidden. The referenc-
ing relationship is only
broken.

- Also, the o
value of a blank
node should be
hidden.

- Also, the o
value of a literal
should be hid-
den.

the sample RDF document of Fig. 2 must be invisible to the
subject Dave. In this subsection, we define which portions
of an RDF/OWL document must be hidden according to a
specified access authorization. The hidden portions are de-
cided by the value type of o ∈ {class or instance URI con-
stant, blank node, literal} in Definition 1. Table 1 summa-
rizes this.

Example 1: According to <Dave, [$x, manu f acturedBy,
$z], read, −, R>, the p = “ex:manu f acturedBy” and the
o = ‘rd f :resource = “ex:CentralCo”’ in Fig. 2 are hidden
from the instance s = “Titan”. However, the actual in-
stance CentralCo referenced by the instance URI constant
“ex:CentralCo” is not hidden. According to <Dave, [$x,
locatedIn, $z], read, −, R>, the p = “ex:locatedIn” and the
blank node <rd f :Description> . . .</rd f :Description> are
hidden. In the case of <Dave, [$x, NWQuantity, $z], read,
−, R>, the p = “ex:NWQuantity” and the literal 127 are
hidden.

Example 2: According to <Dave, [NuclearWeapon, $y,
$z], read, −, L>, Dave cannot show all properties of the class
NuclearWeapon. If all properties of a class or an instance
should be invisible, the whole class or instance should be
invisible, e.g., in Fig. 2, <ex:NuclearWeapon rd f :ID =
“Titan”> . . .</ex:NulcearWeapon> is hidden.

5. Explicit Authorization Propagation Policy

When the type of an authorization is R, the authorization
affects lower classes or properties by inheritance. In this
section, we first explain the authorization propagation re-
lated with the basic subsumption relationships in RDF Se-
mantics [8], subClassO f and subPropertyO f , and then re-
lated with some primary subsumption relationships in OWL
Semantics [9], unionO f , intersectionO f , and oneO f .

5.1 rd f s:subClassO f Relationship

As explained in Definition 2, if ci ⊂ c j, ci inherits the prop-
erties of c j. Therefore, we define that when an authorization
ca j is specified for a property pk of c j, ca j also affects the
property pk of ci. We denote this subClassO f propagation

as ca j+ → cai+ or ca j− → cai−. It is natural that the in-
stances of c j and ci follow the authorizations ca j and cai,
respectively.

Example 3: When ca j = <Dave, [S pecialWeapon,
S WQuantity, $z], read, −, R> is specified, ca j derives
<Dave, [NuclearWeapon, S WQuantity, $z], read, −, R>
and <Dave, [Missile, S WQuantity, $z], read, −, R> by
the propagation policy ca j− → cai−. When ca j = <Dave,
[S pecialWeapon, $y, $z], read, −, R> is specified, due to
p(ca j) = $y, ca j is also applied to lower classes inherit-
ing all properties of S pecialWeapon. That is, ca j derives
the following authorizations: <Dave, [NuclearWeapon,
S WQuantity, $z], read, −, R>, <Dave, [Missile,
S WQuantity, $z], read, −, R>, <Dave, [NuclearWeapon,
locatedIn, $z], read, −, R>, and <Dave, [Missile, locatedIn,
$z], read, −, R>.

Example 4: ca j = <Dave, [S pecialWeapon, *, *], read, −,
R> disallows accessing all their own properties of the lower
classes as well as all inherited properties. That is, ca j also
derives <Dave, [NuclearWeapon, $y, $z], read, −, R>, and
<Dave, [Missile, $y, $z], read, −, R>.

Definition 5 (* pattern): This pattern is represented as [s,
*, *] as in the above example. This is a special security
object pattern reserved for conveniently matching all prop-
erties of s’s lower classes as well as s.

5.2 rd f s:subPropertyO f Relationship

We define that if pi ⊂ p j, an authorization pa j for p j also af-
fects the property pi. We denote this subPropertyO f prop-
agation as pa j+ → pai+ or pa j− → pai−. Also, instances
having the property p j and pi follow the authorizations pa j

and pai, respectively.

Example 5: When pa j = <Dave, [ConventionalWeapon,
CWQuantity, $z], read, −, R> is specified, paj also de-
rives <Dave, [Ri f le, RQuantity, $z], read, −, R>. In
the case of paj = <Dave, [S pecialWeapon, $y, $z], read,
−, R>, paj also affects all subproperties of all proper-
ties of S pecialWeapon. For the security object * pattern
<Dave, [S pecialWeapon, *, *], read, −, R>, pa j also af-
fects all subproperties of all properties of all subclasses of
S pecialWeapon.

5.3 owl:unionO f Relationship

The above authorization propagation for the basic subsump-
tion relationships can be easily expanded into the more com-
plex subsumption relationships in OWL. First, let us con-
sider the unionO f relationship. As in Definition 2, this rela-
tionship states that a subsuming class contains all instances
of the subsumed classes. Therefore, when c j = (ci ∪ ck),
we can consider the explicit propagation ca j → cai as in the
subClassO f relationship.

KIM and PARK: RDFACL: A SECURE ACCESS CONTROL MODEL BASED ON RDF TRIPLE
45

Example 6: Figure 3 (b) shows the RDF graph for the
OWL document of Fig. 3 (a) (Refer Sect. 4.1 in the OWL
Semantics [9] for mapping OWL to RDF graph). When
ca j = <Dave, [NamedPizza, *, *], read, −, R> is spec-
ified, due to p(ca j) = *, ca j is also applied to the sub-
sumed classes. That is, ca j− derives the following autho-
rizations: <Dave, [ItalianPizza, $y, $z], read, −, R> and
<Dave, [AmericanPizza, $y, $z], read, −, R>.

This propagation can be similarly applied to the
owl:oneO f relationship which specifies the members of a
class are exactly the set of enumerated individuals.

5.4 owl:intersectionO f Relationship

The intersectionO f relationship states that a subsumed class
is exactly the intersection of the subsuming classes. There-
fore, when c j = (ci ∩ ck), we can consider the explicit prop-
agation cai → ca j. Note that since the instances of c j are
shared by the ci and ck, ci becomes the subsuming class and
c j becomes the subsumed class contrary to the unionO f re-
lationship.

Example 7: In Fig. 3, when cai− = <Dave, [S picyPizza, *,
*], read, −, R> is specified, cai− is also applied to the sub-
sumed class S picyAmericanPizza. That is, cai− derives the
authorization <Dave, [S picyAmericanPizza, $y, $z], read,
−, R>.

6. Implicit Authorization Propagation Policy and Au-
thorization Conflict Problem

In this section, we explain the implicit authorization propa-
gation by ontology inference, and analyze the authorization
conflict problem between the explicit propagation and the
implicit propagation.

6.1 rd f s:subClassO f Inference

The authorization conflicts in SW access control can be clas-
sified into two types. One is the explicit authorization con-
flict and another is the implicit authorization conflict. The
explicit authorization conflict addresses that there are sev-
eral authorizations explicitly having different sign values for
the same security object. On the contrary, the implicit autho-
rization conflict addresses that although there are no explicit
authorization conflict, a conflict can occur due to ontology
inference. Since the explicit authorization conflict is a trivial
problem, we concentrate on the implicit authorization con-
flict in this paper.

• ci ⊂ c j, ca j− → cai−, cai+
′ ⇒ ca j+

′ (con f lict) : This is
the unique condition for the implicit authorization conflict in
the subClassO f inference. Let us consider the RDF graph
of Fig. 4 where ci ⊂ cm ⊂ c j, and the authorization propa-
gation of the first row in the table. When the authorization

Fig. 4 Authorization conflict in subClassO f inference.

ca j− is first specified for pt j = [c j, pk, $z], the explicit au-
thorization propagation arises: ca j−→ cam−→ cai−. How-
ever, when the authorization cai+

′ is afterwards specified for
pti = [ci, pk, $z], there is the implicit authorization propaga-
tion cai+

′ ⇒ cam+
′ ⇒ ca j+

′. This is because the security
object pt j can be inferred from pti by the subClassO f in-
ference. Since sign(ca j+

′) � sign(ca j−), an authorization
conflict occurs. Similarly, when ci ⊂ c j, ca j+ → cai+, and
a new authorization ca j− with type = L is specified after-
wards, there is also a conflict. Remind of that type = L
indicates there is no explicit authorization propagation by
the Definition 4. Therefore, just the ca j+ is overwritten by
ca j−.

Example 8: ca j = <Dave, [Weapon, manu f acturedBy,
$z], read, −, R> drives cai = <Dave, [NuclearWeapon,
manu f acturedBy, $z], read, −, R> by the explicit authoriza-
tion propagation. Then suppose that the authorization cai+

′
= <Dave, [NuclearWeapon, manu f acturedBy, $z], read,
+, R> is re-specified. Since [Weapon, manu f acturedBy,
$z] can be inferred from [NuclearWeapon, manu f actured-
By, $z], cai+

′ must be also applied to [Weapon,
manu f acturedBy, $z]. That is, cai+

′ drives ca j+
′ = <Dave,

[Weapon, manu f acturedBy, $z], read, +, L> by the implicit
authorization propagation. Since sign(ca j+

′) � sign(ca j−),
this is conflict. Here, note that the type (= ‘R’ or ‘L’) is
just related with the explicit authorization propagation by
the Definition 4. The type has nothing to do with the im-
plicit authorization propagation. Therfore, we simply repre-
sent that all of the implicitly propagated authorizations have
just the type ‘L’ regardless of the ‘L’ or ‘R’ of the specified
authorization.

• ci ⊂ c j, ca j− → cai−, cai−′ � ca j−′ (con f lict- f ree) :
In the same manner, as for the second row of the table in
Fig. 4, let us consider ca j− → cam− → cai− and a new au-
thorization cai−′ specified afterwards for pti = [ci, pk, $z].
In this case, since cai−′ disallows accessing pti, any related
inference cannot occur. Hence, this case is conflict-free.

• ci ⊂ c j, ca j+→ cai+, cai−′� ca j−′ (con f lict- f ree) : Let
us consider ca j+ → cam+ → cai+ and a new authorization
cai−′ specified afterwards as in the third row of the table.

46
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.1 JANUARY 2009

Fig. 5 Authorization conflict in subPropertyO f inference.

As in the previous case, since cai−′ disallows accessing pti,
there can be no conflict.

• ci ⊂ c j, ca j+→ cai+, cai+
′ ⇒ ca j+

′ (con f lict- f ree): Let
us consider ca j+ → cam+ → cai+ and a new authorization
cai+

′ specified afterwards as in the fourth row of the ta-
ble. In this case, since cai+

′ ⇒ ca j+
′ and sign(ca j+

′) ≡
sign(ca j+), there is no conflict.

6.2 rd f s:subPropertyO f Inference

When pi ⊂ p j, pa j− → pai−, and pai+
′ ⇒ pa j+

′ as
in the subClassO f inference, there is a conflict. Fig-
ure 5 depicts this situation. For example, paj = <Dave,
[Weapon, Quantity, $z], read, −, R> drives pai = <Dave,
[NuclearWeapon, NWQuantity, $z], read, −, R> as
NWQuantity is the subproperty of Quantity. If the autho-
rization pai+

′ = <Dave, [NuclearWeapon, NWQuantity,
$z], read, +, R> is specified afterwards, this is conflict. This
is because [Weapon, Quantity, $z] can be inferred from
[NuclearWeapon, NWQuantity, $z] by the subPropertyO f
inference and sign(pa j+

′) � sign(pa j−).

6.3 owl:unionO f and owl:intersectionO f Inferences

First, when c j = (ci ∪ ck), ca j− → cai−, and cai+
′ ⇒ ca j+

′,
the unionO f inference also has a conflict. For example, sup-
pose that cai+

′ = <Dave, [ItalianPizza, $y, $z], read, −, L>
is specified afterwards for the Example 6. Since the instance
of ItalianPizza is also the instance of NamedPizza, cai+

′ ⇒
ca j+

′ and sign(ca j−) � sign(ca j+
′).

We can also consider the same conflict related with the
oneO f inference.

As for the intersectionO f inference, when c j = (ci

∩ ck), cai− → ca j−, and ca j+
′ ⇒ cai+

′, there also
is a coflict. For example, supposing ca j+

′ = <Dave,
[S picyAmericanPizza, $y, $z], read, +, L> is specified af-
terwards for the Example 7, ca j+

′ ⇒ cai+
′ and sign(cai−)

� sign(cai+
′).

7. Efficiently Detecting Authorization Conflict Using
Graph Labeling

Jain and Farkas [3] introduced a little inefficient algorithm
for detecting the authorization conflict. In their method,

whenever a new authorization is specified, the correspond-
ing security labels are first assigned to all RDF triples. Then
RDF inference is performed for all RDF triples, and for
each inferred triple, it is checked if there is a security vi-
olation. That is, their method simply checks all RDF in-
stances. This is inefficient when the number of instances
become larger. Therefore, we suggest an efficient conflict
detection method using graph labeling techniques [12], [13].
The basic idea is, based on the observation in the previ-
ous section, to check only the ancestor authorizations with
sign (−) when a new authorization with sign (+) is spec-
ified whereas to check only the descendant authorizations
with sign (+) when a new authorization with sign (−) and
type L is specified. Here, the ancestor/descendant au-
thorization means an authorization of which the security
object has subsumption relationship with the security ob-
ject of the new authorization. For example, aj = <Dave,
[S pecialWeapon, $y, $z], read, −, L> is the ancestor autho-
rization of ai = <Dave, [NuclearWeapon, $y, $z], read, +,
L> because s(a j) = S pecialWeapon is an ancestor node of
s(ai) = NuclearWeapon in the RDF graph of Fig. 1. In order
to efficiently identify the ancestor/descendant relationship,
we use the graph labeling techniques [12], [13]. In this pa-
per, we skip the details of the graph labeling techniques. We
only discuss how we can detect efficiently an authorization
conflict using the information of the ancestor/descendant re-
lationship.

The suggested detection algorithm of Fig. 8 selectively
tests the cases of authorization conflict according to the con-
flict decision table (CDT) of Figs. 6 (a) and (b). The CDT
summarizes the possibility of conflict according to the type
of s and p values in Definition 1, 3, and 5: s ∈ {class URI
constant, instance URI constant} and p ∈ {property URI con-
stant, $y, *}. In the case of s = $x, we can get the URI
constant of the highest upper class having the property p.
For example, since all classes have the property WCode but
the highest upper class is Weapon, s([$x, WCode, $z]) =
Weapon. We now prove the CDT through the following
examples. Note that since we have shown the subsump-
tion relationships in OWL are similar to the subClassO f
in Sects. 5 and 6, it is proven around the subClassO f rela-
tionship.

Example 9: Let us consider that an authorization R5 =
<Dave, [NuclearWeapon, $y, $z], read, +, L> is addition-
ally specified against the authorizations of Fig. 7. In this
case, R1 is the only authorization which can have conflict
with R5. Because S pecialWeapon is the ancestor class for
NuclearWeapon, R1 has (−) sign, and R5 has (+) sign.
Also, since s(R5) ∈ class URI, s(R1) ∈ class URI, p(R5)
= $y, and p(R1) = $y, this is absolutely conflict according to
the rule 1 in Fig. 6 (a). This is because “p(R5) = $y” means
that R5 is also specified for all properties inherited from
S pecialWeapon. This example also illustrates the rules 3,
13, and 15.

Example 10: Again, let us consider a new authorization
R5 = <Dave, [ConventionalWeapon, CWQuantity, $z],

KIM and PARK: RDFACL: A SECURE ACCESS CONTROL MODEL BASED ON RDF TRIPLE
47

Fig. 6 Conflict decesion tables (O: conflict, X: conflict-free,
?: verification is required).

R1: <Dave, [S pecialWeapon, $y, $z], read, −, R>
R2: <Dave, [Ri f le, $y, $z], read, +, L>
R3: <Dave, [ConventionalWeapon, CWQuantity, $z], read, +, R>
R4: <Dave, [Tomahawk, $y, $z], read, −, R>

Fig. 7 Sample authorizations specified in an RDF authorization store.

read, −, L>. In this case, R5 has conflict with R2 accord-
ing to the rule 5 in Fig. 6 (a): sign(R5) = −, sign(R2) =
+, s(R5) ∈ class URI, s(R2) ∈ class URI, p(R5) ∈ property
URI, and p(R2) = $y. “p(R2) = $y” means that R2 is also
applied to the property CWQuantity of Ri f le inherited from
ConventionalWeapon. This example also illustrates the rule
17.

Example 11: Let us consider a new authorization R5 =
<Dave, [NuclearWeapon, locatedIn, $z], read, +, L>.
Since sign(R1) = −, sign(R5) = +, s(R1) ∈ class URI,
s(R5) ∈ class URI, p(R1) = $y, and p(R5) ∈ property
URI, this requires a conflict verification according to the
rule 25 in Fig. 6 (a). In this example, the final decision is
conflict because the property locatedIn is inherited from
S pecialWeapon. However, if the property is not inherited,

that is conflict-free. This example also illustrates the rule
27. Similarly, in the case of the rule 29, it is required to
check whether or not the two property URIs are the same. If
equal, that is conflict, otherwise conflict-free.

Example 12: First, let us consider a new authorization R5
= <Dave, [Titan, $y, $z], read, +, L> and the former au-
thorization R1. Since sign(R1) = −, sign(R5) = +, s(R1)
∈ class URI, s(R5) ∈ instance URI, p(R1) = $y, and p(R5)
∈ $y, this is absolutely conflict according to the rule 7 in
Fig. 6 (a). This is because the instance Titan certainly inher-
its all properties from S pecialWeapon. Next, let us consider
R5 and R4. In this case, since Titan � Tomahawk, that is,
two instances are each other different objects, this is abso-
lutely conflict-free. Furthermore, since an instance which is
represented by URI must be unique in its web ontology, an
arbitrary authorization pairs both having an instance URI for
s is absolutely conflict-free. Theorem 1 represents this char-
acteristic of the instance URI which makes the authorization
conflict detection more simplified.

Theorem 1: (1) A descendant authorization, which has the
s value of the instance URI type and (+) sign, can have con-
flict with only ancestor authorizations which has the s value
of the class URI type and (−) sign. (2) An ancestor autho-
rization with the s value of the instance URI type is abso-
lutely conflict-free with any descendant authorization.

Proof: (1) Since the URI value of an instance is unique in
its web ontology, a descendant authorization ai with s(ai)
∈ instance URI and sign(ai) = + can have conflict with an
ancestor authorization a j with s(a j) ∈ class URI and sign(a j)
= −. (2) Next, since an instance can be interpreted into only
the instance of its upper class by the subsumption inference,
an ancestor authorization ai with s(ai) ∈ instance URI cannot
have conflict with any descendant authorization aj. �

By the case (1) in Theorem 1, the rules 8, 10, 12, 20,
22, 24, 32, 34, 36, 44, 46, 48, 56, 58, 60, 68, 70, and 72 in
the CDT are conflict-free. And by the case (2) in Theorem 1,
the rules 2, 4, 6, 14, 16, 18, 26, 28, 30, 38, 40, 42, 50, 52,
54, 62, 64, and 66 are conflict-free.

Example 13: In the subPropertyO f CDT of Fig. 6 (b), all
cases are conflict except the cases corresponding to Theo-
rem 1. The subPropertyO f CDT does not have the cases
of conflict-free for a non-inherited property as in Exam-
ple 11. This is because the subPropertyO f relationship di-
rectly defines the subsumption relationship among proper-
ties rather than classes. For example, let us consider a new
authorization R5 = <Dave, [NuclearWeapn, NWQuantity,
$z], read, +, L>. By the rule 25 of the subClassO f CDT,
this requires conflict verification against R1, but by the
rule 61 of the subPropertyO f CDT, this is absolutely con-
flict. Because although s(R1) = $y, it means the property
S WQuantity in the subPropertyO f relationship (See the
RDF graph of Fig. 1). A new authorizations R6 = <Dave,
[$x, WCode, $z], read, −, L> does not need to be checked
for the subPropertyO f CDT. It should be checked only for

48
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.1 JANUARY 2009

Algorithm Method1
Input: An authorization ai to be specified
Output: Conflict authorization set Con f lict S et

/* check the ancestor authorizations with (−) sign in the subClassO f , unionO f , intersectionO f , or oneO f relationships*/
1 if sign(ai) = ‘+’ then
2 RS := retrieve the ancestor authorizations with (−) sign in the subClassO f , unionO f , intersectionO f , or oneO f relationships;
3 if RS is not empty then
4 foreach rsi ∈ RS do
5 if ((p(ai) ∈ {property URI} ∧ p(rsi) = $y ∧ p(ai) � properties(s(rsi))) ∨ (p(ai), p(rsi) ∈ property URI ∧ p(ai) � p(rsi)))

/* this checks the case of Example 11 */
6 Con f lict- f ree; continue;
7 else
8 if s(rsi) ∈ instance URI then Con f lict- f ree; continue; /* this checks the case of Theorem 1 */
9 else
10 Con f lict;
11 Con f lict S et := Con f lict S et ∪ rsi.authorizationID

/* check the descendant authorizations with (+) sign in the subClassO f , unionO f , intersectionO f , or oneO f relationships*/
12 if sign(ai) = ‘−’ ∧ type(ai) = ‘L’ then
13 RS := retrieve the descendant authorizations with (+) sign in the subClassO f , unionO f , intersectionO f , or oneO f relationships;
14 if RS is not empty then
15 foreach rsi ∈ RS do
16 if ((p(rsi) ∈ {property URI} ∧ p(ai) = $y ∧ p(rsi) � properties(s(ai))) ∨ (p(ai), p(rsi) ∈ property URI ∧ p(ai) � p(rsi)))

/* this checks the case of Example 11 */
17 Con f lict- f ree; continue;
18 else
19 if s(ai) ∈ instance URI then Con f lict- f ree; continue; /* this checks the case of Theorem 1 */
20 else
21 Con f lict;
22 Con f lict S et := Con f lict S et ∪ rsi.authorizationID

/* check the ancestor authorizations with (−) sign in the subPropertyO f relationship*/
23 if sign(ai) = ‘+’ then
24 RS := retrieve the ancestor authorizations with (−) sign in the subPropertyO f relationship;
25 if RS is not empty then
26 foreach rsi ∈ RS do
27 if s(rsi) ∈ instance URI then Con f lict- f ree; continue; /* this checks the case of Theorem 1 */
28 else
29 Con f lict;
30 Con f lict S et := Con f lict S et ∪ rsi.authorizationID

/* check the descendant authorizations with (+) sign in the subPropertyO f relationship*/
31 if sign(ai) = ‘−’ ∧ type(ai) = ‘L’ then
32 RS := retrieve the descendant authorizations with (+) sign in the subPropertyO f relationship;
33 if RS is not empty then
34 foreach rsi ∈ RS do
35 if s(ai) ∈ instance URI then Con f lict- f ree; continue; /* this checks the case of Theorem 1 */
36 else
37 Con f lict;
38 Con f lict S et := Con f lict S et ∪ rsi.authorizationID
39 return Con f lict S et;

Fig. 8 Our suggested authorization conflict detection algorithm.

the subClassO f CDT. Because p(R6) = WCode is not in-
cluded in the subPropertyO f relationship.

8. Experiments

8.1 Experimental Setup

In this section, we compare our detection method with Jain
and Farkas’ method [3]. Since we could not obtain the opti-
mized implementation of Jain and Farkas’ method, we sim-
ulated it as follows. First, a DAG as in Fig. 9 is generated
according to the experimental parameter #C, #P, and #S in
Table 2. The circle represents a class and the rectangle rep-

resents a property. The parameter #S is the average number
of subClassO f relationships for each class. For example, in
Fig. 9, since c3 is the subclass of c1 and c4, its #S is two.
In this experiment, we simplified the inferences related with
unionO f and intersectionO f . They can be simply regarded
as a set of subClassO f s having the OR and AND arch as
in the DAG. For example, c2 = (c6 ∪ c7) and c8 = (c3 ∩
c4 ∩ c5). In the data structure of properties, the variable
be f ore sign stores the sign value assigned by a formerly
specified authorization and the variable a f ter sign stores
the sign value by the currently specified authorization. In
the data structure of classes, each class has storage spaces
for all inherited properties as well as its own properties. For

KIM and PARK: RDFACL: A SECURE ACCESS CONTROL MODEL BASED ON RDF TRIPLE
49

Fig. 9 Test DAG generation.

Table 2 Workload parameters for generating RDF authorizations and
data.

Parameter Range Description
#C 1 to 1,000 Number of classes in a DAG
#P 1 to 5 Average number of properties

for each class in a DAG
#S 1 to 20 Average number of subClassO f

for each class in a DAG
#A 1 to 500 Number of specified authorizations

example, all lower classes of c1 have the property p1.
Next, whenever a new authorization is inputted, the

following conflict check is performed for Jain and Farkas’
method. First, with a breadth-first traversal of the DAG,
the sign values of the formerly specified authorizations are
assigned to all variables of be f ore sign by the explicit au-
thorization propagation. This step makes all RDF triples
have their own most specific security sign value. Then the
sign value of the new authorization is assigned to some
corresponding variables of a f ter sign also with a breadth-
first traversal. Again, with a breadth-first traversal, it is
checked if there is any property with be f ore sign = ‘−’ and
a f ter sign = ‘+’. If such a property exists, it is a conflict.

Our suggested algorithm also uses the randomly gen-
erated DAG and authorizations. As a graph labeling tech-
nique, we used the prime number labeling scheme suggested
by Wu et al. [13]. All experiments were performed on a
Windows XP computer with 1 GB of memory and 3.20 GHz
Pentium(R) IV CPU; all codes were written in Java.

8.2 Experimental Results

We experimented according to the parameters in Table 2.
Having higher values of #C and #S means that the DAG be-
comes larger, that is, the size of RDF/OWL schema and data
becomes larger and more complex. Also, having a higher
value of #A means that there are much more authorizations
to be checked against the authorization conflict. First, the
graph of Fig. 10 shows the conflict detection time according
to #A when #C = 200 and #S = 20. In the experiment, a
new authorization was randomly generated for a test DAG,
and its authorization conflict check was performed against

Fig. 10 Detection time comparison according to #A when #C = 200 and
#S = 20.

Fig. 11 Detection time comparison according to #C when #A = 500 and
#S = 2.

the formerly specified authorizations. If there is no conflict,
the new authorization is added to the former authorization
set. This procedure was performed as much as the parame-
ter #A. The graph shows that our RDFacl has much lower
detection time than Jain and Farkas’ method according to
#A. We can also see that the difference becomes significant
as the number of authorizations increases.

Next, the graph of Fig. 11 shows the conflict detec-
tion time according to #C when #A = 500 and #S = 2. It
also shows that our RDFacl has significantly lower detec-
tion time and lower increasing rate. Through some addi-
tional experiments which vary the parameter values, we also
confirmed that there is a significant difference between two
methods. Although our experimental results are approxi-
mate due to the simulation of Jain and Farkas’s method, the
significant difference apparently shows that our suggested
method has more improved detection capability than the ex-
isting method.

Although in this paper we omitted showing how our
method stores access authorizations with graph labeling,
regarding the efficiency of memory usage, our suggested
method spends storage space approximately twice as much
as the simulated Jain and Farkas’s method. We believe that
the additional storage cost is not significant considering the
benefit of the improved detection time. In our implementa-

50
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.1 JANUARY 2009

Table 3 Storage space (Bytes) per one access authorization.

in the main table in the auxiliary table total
RDFacl 44 57 101
Jain’s 44 None 44

tion, in order to maintain the information related with graph
labeling, an auxiliary authorization table is separately re-
quired besides the main authorization table in the simulated
Jain and Farkas’s method. Table 3 shows the additional stor-
age cost per one access authorization in our method.

9. Conclusions and Future Work

The RDF authorization conflict problem is an important
problem in RDF access control because RDF data are re-
lated with ontology inference unlike XML data. In this pa-
per, we have explained the RDF authorization conflict prob-
lem based on two concepts of the explicit and the implicit
authorization propagation.

The key ontology inference in RDF is related
with the subsumption relationships, subClassO f and
subPropertyO f . Therefore, in this paper, we have focused
on analyzing the authorization conflict problem in the sub-
sumption inference. We also have shown that the analysis
results can be naturally applied to the primary subsump-
tion relationships in OWL, unionO f , intersectionO f , and
oneO f .

Currently, our future work is to expand the sug-
gested RDFacl into more complex ontological relationships
in OWL [14], e.g., Restriction, equivalentClass, sameAs,
equivalentProperty, and complementO f , and also analyze
the authorization conflict problem in related inferences.

Acknowledgments

We would like to thank the anonymous referees for their
valuable comments on earlier draft of this paper.

This study is supported in part by the Second Stage
of BK21. In addition, this work was supported by the
Korea Science and Engineering Foundation (KOSEF) grant
funded by the Korea government (MOST) (No. R01-2006-
000-10609-0).

References

[1] L. Qin and V. Atluri, “Concept-level access control for the semantic
Web,” Proc. ACM Workshop on XML Security 2003, pp.94–103,
Oct. 2003.

[2] P. Reddivari, T. Finin, and A. Joshi, “Policy-based access control for
an RDF store,” Proc. Policy Management for the Web Workshop,
pp.78–83, May 2005.

[3] A. Jain and C. Farkas, “Secure resource description framework: An
access control model,” Proc. 11th ACM Symposium on Access Con-
trol Models and Technologies, pp.121–129, June 2006.

[4] T. Moses, “OASIS extensible access control markup language
(XACML) Version 2.0,” OASIS Standard, Feb. 2005.

[5] E. Damiani, S.D.C. Vimercati, S. Paraboschi, and P. Samarati, “A
fine-grained access control system for XML documents,” ACM
Trans. Information and System Security, vol.5, no.2, pp.169–202,

2002.
[6] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti, “Specifying

and enforcing access control policies for XML document sources,”
World Wide Web Journal, vol.3, no.3, pp.139–151, 2000.

[7] E. Bertino and E. Ferrari, “Secure and selective dissemination of
XML documents,” ACM Trans. Information and System Security,
vol.5, no.3, pp.290–331, 2002.

[8] RDF Semantics, W3C Recommendation, http://www.w3.org/TR/
rdf-mt/

[9] OWL Web Ontology Language Semantics and Abstract Syntax,
W3C Recommendation, http://www.w3.org/TR/owl-semantics/

[10] S. Kaushik, D. Wijesekera, and P. Ammann, “Policy-based dissem-
ination of partial Web-ontologies,” Proc. 2005 Workshop on Secure
Web Services, pp.43–52, Nov. 2005.

[11] J. Kim and S. Park, “An RDF triple based access authorization spec-
ification considering subsumption relationships,” Proc. First Interna-
tional Workshop on Secure Semantic Web, pp.462–469, April 2008.

[12] V. Christophides, G. Karvounarakis, D. Plexousakis, M. Scholl, and
S. Tourtounis, “Optimizing taxonomic semantic Web queries using
labeling schemes,” Journal of Web Semantics, vol.11, no.1, pp.207–
228, Nov. 2003.

[13] G. Wu, K. Zhang, C. Liu, and J. Li, “Adapting prime number label-
ing scheme for directed acyclic graphs,” Proc. Database Systems for
Advanced Applications (DASFAA), pp.787–796, April 2006.

[14] OWL Web Ontology Language Overview, W3C Recommendation,
http://www.w3.org/TR/owl-features/

Jaehoon Kim received the B.S. and M.S.
degrees in computer science from Konkuk Uni-
versity in 1997 and 1999, respectively and the
Ph.D. degree in computer science from Sogang
University in 2005. He worked as a senior re-
searcher at Telecommunication R&D center in
Samsung Electronics Company from 2005 to
2006. From 2006, he is a research professor of
computer science at Sogang University. His ma-
jor research areas are Web database, database
security, data privacy, Semantic Web, and data

mining.

Seog Park received the B.S. degree in com-
puter science from Seoul National University,
Korea, in 1978, the M.S. and the Ph.D. degrees
in computer science from Korea Advanced In-
stitute of Science and Technology (KAIST) in
1980 and 1983, respectively. He is a profes-
sor of computer science at Sogang University,
Seoul, Korea. Since 1983, he has been working
in the Department of Computer Science of the
College of Engineering, Sogang University. His
major research areas are database security, real-

time systems, data warehouse, digital library and web database. Dr. Park
is a member of the IEEE Computer Society, ACM, and the Korea Informa-
tion Science Society. Also, he has been a member of Database Systems for
Advanced Applications (DASFAA) steering committee since 1999.

