
422
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

PAPER

An Efficient Initialization Scheme for SOM Algorithm Based on
Reference Point and Filters

Shu-Ling SHIEH†, Student Member, I-En LIAO††∗a), Kuo-Feng HWANG†††, and Heng-Yu CHEN†, Nonmembers

SUMMARY This paper proposes an efficient self-organizing map algo-
rithm based on reference point and filters. A strategy called Reference Point
SOM (RPSOM) is proposed to improve SOM execution time by means of
filtering with two thresholds T1 and T2. We use one threshold, T1, to define
the search boundary parameter used to search for the Best-Matching Unit
(BMU) with respect to input vectors. The other threshold, T2, is used as
the search boundary within which the BMU finds its neighbors. The pro-
posed algorithm reduces the time complexity from O(n2) to O(n) in finding
the initial neurons as compared to the algorithm proposed by Su et al. [16].
The RPSOM dramatically reduces the time complexity, especially in the
computation of large data set. From the experimental results, we find that
it is better to construct a good initial map and then to use the unsupervised
learning to make small subsequent adjustments.
key words: clustering methods, self-organizing map, unsupervised learn-
ing, reference point, filters

1. Introduction

Self-organizing map (SOM), originally suggested by Ko-
honen [7], is a very popular unsupervised neural network
model for the analysis of high-dimensional patterns in
data mining applications. It has been used to map high-
dimensional input space and reduce it to two dimen-
sions. Unfortunately, SOM suffered from the trial-and-error
method requiring a large amount of iterations for searching
a neighborhood preserved feature map [2], [20]. In this pa-
per, we propose an efficient self-organizing map method to
improve the performance of SOM. This paper proposes a
new algorithm that calculates the distance from all the input
points and distance from neuron to reference point in ad-
vance. In this way, it can filter out the neurons, which have
no chance to become chosen winning neurons and neigh-
borhood neurons. We used a threshold as the search bound-
ary in which to input and conduct vector searches for the
Best-Matching Unit (BMU). Another threshold is used as
the search boundary in which the BMU finds its neighbors.
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We ran our algorithm on the data set of a Yeast database and
the UCI KDD Archive to illustrate the performance of the
proposed method.

In our method, the usage of a reference point is in-
troduced not only for improving the search for the win-
ners among the input neurons but also in finding candidates
among the neighbors, which are adjacent to the winners. We
propose a reference point to improve efficiency of SOM. The
method reduces the time complexity from O(n2) to O(n) in
the steps of finding the initial neurons as compared to the
algorithm proposed by Su et al.

The remaining sections of this paper are organized as
follows: the next section briefly presents the Kohonen’s
SOM algorithm and related work on efficient SOM algo-
rithm; in the third section, we give a detailed description of
our algorithm and experimental results of the dataset from
the Yeast database and UCI KDD Archive are provided in
the fourth section. The conclusions are given in the last sec-
tion.

2. Related Work

SOM algorithm is applicable to large data sets. The goal
of SOM is to transform patterns of high dimensionality into
a low-dimensional topological map. The training algorithm
proposed by Kohonen for forming a feature map is stated as
follows [5].

• Initialization: Choose random values for the initial
weights wi.
• Winner Finding: Find the winning neuron c at time t,

using the minimum Euclidean distance criterion

c = arg min
i
‖ x − wi ‖, i = 1, 2, . . . ,M (1)

where x = [x1, . . . , xm] ∈ Rm represents an input vector
at time t, M is the total number of neurons, and ‖ · ‖
indicates the Euclidean norm.
• Weights Updating: Adjust the weights of the winner

and its neighbors, using the following rule:

wi(t + 1) = wi(t) + η(t)hci(t)[x j(t) − wi(t)], (2)

hci = exp

(
−‖ rc − ri ‖2

2σ2(t)

)
, (3)

where x j(t) represents an input data at time t, hci(t)
is the topological neighborhood function of the win-
ner neuron c at time t, η(t) is a positive constant called
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“learning-rate factor”, rc ∈ R2 and ri ∈ R2 are the loca-
tion vectors of nodes c and i, respectively. σ(t) defines
the width of the kernel. Both η(t) andσ(t) will decrease
with time. It should be emphasized that the success of
the map formation is critically dependent on the values
of the main parameters (i.e., hci(t) and η(t)), initial val-
ues of weight vectors, and the pre-specified number of
iterations.
In the case of a discrete data set and fixed neighborhood
kernel, the sum of squared-error of SOM can be defined
as follows:

S S E = Σn
j=1Σ

M
i=1hci ‖ x j − wi ‖2 (4)

Where n is the number of training samples, and M is
the number of map units. Neighborhood kernel hci is
centered at unit c, which is the BMU of input vector xs,
and evaluated for unit i.

Several research papers [1], [3], [14], [19], [21] have at-
tempted to shorten the processing time of SOM. Koho-
nen originally identified three speedup approaches, namely,
Shortcut Winner Search, Increasing the Number of Units
in SOM, and Smoothing [8]. The Shortcut Winner Search
approach refers to the algorithms for fast identification of
BMU. The Shortcut Winner Search scheme can greatly re-
duce the time for the winner search process for some big
maps. The basic idea of the second approach is to estimate
good initial values for a map that contains plenty of neu-
rons, based on a much smaller SOM. Finally, the smooth-
ing approach adopts an early stopping heuristic in which the
data driven fine tuning process is substituted by a smoothing
technique of the neural locations.

Several different approaches have been proposed to im-
prove the conventional SOM algorithm. Jun et al. [4] pro-
posed a self-organizing feature map algorithm based on in-
cremental ordering. Lo and Bavarian [13] addressed the ef-
fect of neighborhood function selection on the rate of con-
vergence of SOM algorithm. Fritzke [3] proposed a new
self-organizing neural network model that can determine
shape as well as size of the network during the simulation in
an incremental fashion. Kiang et al. [6] developed a “circu-
lar” training algorithm that tries to overcome some of the in-
effective or inaccurate topological representations caused by
the “boundary” effect. Koike et al. [9] proposed a two-stage
self-organizing map algorithm with a threshold operation.
Koike’s map algorithm showed that the two-stage SOM im-
proves the classification capability for high dimensional data
through numerical simulations.

If there were M map neurons in the Kohonen SOM,
then the total number of comparison operations to be per-
formed during learning by an exhaustive search of the win-
ners is O(M2) [8]. Liu and Xu [12] proposed a topolog-
ical principal component analysis model, which can en-
hance the learning speed. Koikkalainen and Oja [10] and
Truong [18] proposed a tree-structured SOM to improve the
winner search reducing the number of search operations
to O(M log M), where M is the total number of neurons.

A self-organizing topological tree with O(log M) was pro-
posed by Xu and Chang [22]. Kusumoto and Takefuji [11]
proposed SOM algorithms doing away with learning of
neighborhood vectors with O(log M). Note that if initial
weights of each neuron are random, it may not be possi-
ble to construct a topologically ordered map. As a result,
we will probably need more repetitions to refine the initial
map.

Su et al. [15]–[17] proposed an efficient initialization
scheme to construct an initial map. They use the self-
organizing feature map algorithm to construct a good ini-
tial map and make small subsequent adjustments. But their
initial phase utilizes time complexity O(n2), where n is the
total number of input points.

In this paper, we propose an efficient initialization
scheme for SOM algorithm based on reference point and
filters. The proposed algorithm reduces the time complexity
from O(n2) to O(n) in finding the initial neurons as com-
pared to the algorithm proposed by Su et al. The initializa-
tion scheme proposed by Su et al. is described as follows:

• Initialization of the neurons on the four corners
At first, select a pair of input data points whose point to
point distance is the largest within the two-dimensional
neural array of size K × L. The coordinates of the two
points are used to initialize the weights of the neurons
on the lower left corner (i.e. WK,1) and the upper right
corner (i.e. W1,L). Then, from the remaining training
data set, the coordinates of the point which is farthest
from the two selected points is used to initialize on the
upper left corner (i.e. W1,1). Thereafter, the fourth cor-
ner can also be found by seeking the farthest point to
these three points among the rest of the data points (i.e.
WK,L).
• Initialization of the neurons on the four edges

Initialize the weights of the neurons on the four edges
according to the following equations:

W1, j =
W1,L −W1,1

L − 1
( j − 1) +W1,1

=
j − 1
L − 1

W1,L +
L − j
L − 1

W1,1

f or j = 2, . . . , L − 1 (5)

WK, j =
WK,L −WK,1

L − 1
( j − 1) +WK,1

=
j − 1
L − 1

WK,L +
L − j
L − 1

WK,1

f or j = 2, . . . , L − 1 (6)

Wi,1 =
WK,1 −W1,1

K − 1
(i − 1) +W1,1

=
i − 1
K − 1

WK,1 +
K − i
K − 1

W1,1

f or i = 2, . . . ,K − 1 (7)

Wi,L =
WK,L −W1,L

K − 1
(i − 1) +W1,L
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=
i − 1
K − 1

WK,L +
K − i
K − 1

W1,L

f or i = 2, . . . ,K − 1 (8)

• Initialization of the remaining neurons
Initialize the remaining neurons according to the fol-
lowing equations:

Wi, j =
Wi,L −Wi,1

L − 1
( j − 1) +Wi,1

=
j − 1
L − 1

Wi,L +
L − j
L − 1

Wi,1

f or i = 2, . . . ,K − 1; j = 2, . . . , L − 1 (9)

3. Our Proposed Scheme

In this paper, a new strategy called Reference Point SOM
(RPSOM) is proposed for improving SOM performance by
using reference point and filters based on two thresholds.

Kohonen’s SOM method constructs an initial map ran-
domly. Even though it costs only O(1), it may not be able
to construct an ideal initial map. To cope with the initial-
ization problem, a conventional approach is to restart the
training procedure with other random weights. The price
paid for the trial-and-error method is that we have to waste
much time to solve the problem. Instead of using randomly
initialized weights, Su et al. proposed a simple initialization
scheme to construct a good initial map. However, the ini-
tial phase of their algorithm has time complexity of O(n2).
Hence we propose an algorithm to improve Su’s method by
reducing the time complexity of the initialization phase from
O(n2) to O(n).

To construct a good initial map, the basic idea is to
find an appropriate hypercube large enough to cover all the
training data points and then to press the hypercube into a
plane. In the initialization scheme of Su et al., they started
from finding four corners for building a good initial map. In
the proposed RPSOM algorithm, we improve Su’s method
by introducing a reference point to construct a good initial
map. It is likely that the selected four corners by our algo-
rithm are different from those by Su’s method, but the more
same corners there are, the more similar the two initial maps
will be.

In the initialization scheme, Su et al. first select a pair
of data points whose data distance is the longest one among
the data set. This will require n×(n−1)

2 comparisons. In the
proposed RPSOM algorithm, we select the first corner point,
which has the longest distance to the reference point, only
with n comparisons. Each of the other three corner points
can also be found in n comparisons. Hence, using a refer-
ence point to find the four corners among the data points will
improve the time complexity of the initialization scheme
proposed by Su et al. from O(n2) to O(n).

We apply a preprocessing step to calculate the dis-
tances between every data point and the reference point,
then we use the distances to determine if the distance of two
points should be computed. By evaluating the distance of

Fig. 1 Initialization scheme with the origin as reference point.

two arbitrary points P1 and P2 to the same reference point,
we get two values d1 and d2 , respectively. If the differ-
ence between d1 and d2 is small enough, then the Euclidean
distance between P1 and P2 is calculated. Otherwise, the
Euclidean distance is not computed.

Using reference point is the main theme of this research
to reduce the execution time of SOM algorithm. Theoreti-
cally, reference point can be any point in the data space.
However, the origin is a good choice for its easy computa-
tion of the distance between the origin and any input data
point. But using the origin as the reference point may affect
the search space of finding winner neurons for those data
sets that are distant from the origin. As the experimental re-
sults shown in the Subsection 4.5, the center of input data
points is a better choice for reference point compared to the
origin. In the following discussions, either the origin or the
central point is used as the reference point.

3.1 Initialization Scheme Algorithm Based on Reference
Point

In a large-scale database with high dimensional data points,
determining the four corners of the input points as proposed
by Su et al. will cost a lot of computation time. There-
fore, we use the following method to make improvements to
the initialization scheme proposed by Su et al., as shown in
Fig. 1.

1. Finding four corners of the input data set
We consider the point with the longest distance to the
reference point as the first corner (i.e. W1,L). Based on
this point, find another point among the data that has
the largest distance to W1,L, denoted WK,1. Then we lo-
cate the third corner (i.e. W1,1) based on the two points
known by searching the point with the largest distance
to W1,L and WK,1. Thereafter, the fourth corner can also
be located by seeking the farthest point to these three
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points among the rest of the data points (i.e. WK,L). The
proposed initialization scheme algorithm using refer-
ence point has the following steps:

a. Choose the reference point. For a data set con-
sisting of m-dimensional input points of size n, let
O = (o1, o2, o3, . . . , om) be the reference point. In
this paper, the reference point could be the origin
or the center of all data points. If the origin is the
reference point, then Oi = 0 for 1 ≤ i ≤ m. If the
center is the reference point, then Oi =

1
n

∑n
k=1 xk,i,

1 ≤ i ≤ m, where Xk = (xk,1, xk,2, xk,3, . . . , xk,m)
represents the kth input point.

b. Find a point Xp such that

p = arg max
q
‖ Xq − O ‖, q = 1, 2, . . . , n (10)

Let W1,L = Xp.

c. Choose Xp, using the following rule:

p=arg max
q
‖Xq −W1,L ‖, q=1, 2, . . . , n (11)

Let Wk,1 = Xp.

d. Choose Xp, using the following rule:

p = arg max
q

(‖ Xq −W1,L ‖
+ ‖ Xq −WK,1 ‖), q = 1, 2, . . . , n (12)

Let W1,1 = Xp.

e. Choose Xp, using the following rule:

p = argmax
q

(‖Xq −W1,L ‖ + ‖Xq −WK,1 ‖
+ ‖ Xq −W1,1 ‖), q = 1, 2, . . . , n (13)

Let WK,L = Xp.

2. Initializing the neurons on the four edges
After we get four corners on the plane, then the follow-
ing step is to arrange the neurons on these four edges
uniformly by applying the methods described on effi-
cient initialization scheme, as Eqs. (5) to (8).

3. Initializing the remaininig neurons
After getting the initial values of the neurons on four
edges, apply the Formula (9) to generate the initial val-
ues of the remaining neurons.

The first step of the Su et al. algorithm for an input data
set of size n is to initialize the neurons on the four corners,
Su’s algorithm requires n×(n−1)

2 + 2 × n comparisons. There-
fore, the time complexity of their algorithm is O(n2). How-
ever, by applying the reference point initialization scheme,
the computation time is linear. The time complexity will be
reduced to O(n).

In our experimental results, our initialization scheme
finds, the same four or three corners as those found by Su’s
scheme. But our scheme improves the efficiency by the or-
der of magnitude. Therefore, the reference point initializa-
tion scheme algorithm is an efficient and time-saving way in

initialization phase.
In the proposed scheme, the selection of the reference

point may affect the initial map. However, as the results of
our experiments show, the effect is insignificant because the
four corners found by using different reference points are
almost the same. Therefore, the dependence between ac-
curacy and reference point is very weak. On the contrary,
the accuracy is mainly dependent of the selections of two
thresholds T1 and T2, which will be evident in the subse-
quent discussions.

3.2 RPSOM Algorithm

The RPSOM algorithm is introduced in this section to im-
prove the performance of the traditional SOM. The proposed
RPSOM improves SOM effiency by means of filters based
on two thresholds. An input point uses the first threshold,
T1, to define the search boundary for finding the winning
neuron. The second threshold, T2, works as a boundary in
which the winning neuron finds its neighborhood neurons.
As shown in Fig. 2 and Fig. 3, we assume that the origin is
chosen as the reference point.

If an input point searches for the nearest neuron, it just
needs to notice the neurons whose distance to the reference
point is between |Id j−T1| and |Id j+T1| , where Id j represents
the distance of the input point x j and the reference point
as shown in Fig. 2. After finding the winning neuron for
an input, a similar method with threshold T2 is applied to
look for neighborhood neurons of the winner for updating
the weights, as shown is Fig. 3. The computation is speed
up by using filters of T1 and T2.

The whole procedure referred to as the RPSOM algo-
rithm is summarized as follows.

Step 1 Initialization Scheme
The initialization scheme is as described in Sect. 3.1.

Step 2 Winner Finding
We use the minimum Euclidean distance criterion to
find the winner neuron c at time t. It consists of the

Fig. 2 The threshold T1 works as search boundary in which input vector
finds the winning neurons.
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Fig. 3 The threshold T2 works as a boundary in which the winning neu-
ron finds its neighborhood neurons.

following two steps:

1. Compute the distance Id j between the data point
x j and the reference point for every input point.

Id j =

√√
m∑

k=1

(x j,k − ok)2, 1 ≤ j ≤ n. (14)

Compute the distance Ndi between the neuron i
and the reference point for every neuron.

Ndi=

√√
m∑

k=1

(wi,k − ok)2, 1 ≤ i ≤ M. (15)

2. Finding the BMU
If the difference Id j and Ndi is not greater than the
threshold T1, then compute Euclidean distances
between the neurons and the input point, and find
the nearest neuron as the winning neuron c. The
pseudo code is as follows:

For j=1 to n
winner min distance=∞
i = 1

If |Ndi − Id j| < T1 and i ≤ M do
dist inputdata and neuron
= ‖ x j − wi ‖

If dist inputdata and neuron
<winner min dististance

winner min distance
=dist inputdata and neuron

c = i
End if
i = i + 1

Else
Execute Kohonen’s SOM algorithm

End if
Next j

The first threshold T1 is to exclude neurons, which are
far away from input point and are very unlikely to be-
come the winner. According to Chebyshev’s inequality
and our experimental results, choosing T1 = μ + σ as
discussed in Sect. 4.5 will have the best results, where
μ and σ represent the arithmetic mean and the standard
deviation of the distances between every input point
and the reference point, respectively.
We get a conclusion from the experiments that the
greater that RPSOM thresholds (i.e. T1 and T2) are set,
the more accuracy the result will be. However, the
more computation would be required. Therefore, we
try to change the thresholds when time elapses. We
use larger thresholds at the very beginning of execut-
ing RPSOM, and deduce the thresholds gradually as
the process continues, to achieve the balance of accu-
racy and computations.

Step 3 Updating Weights
Calculate the distance Ndc between the winning neu-
ron c and the reference point. For arbitrary neuron i,
compute the distance between the neuron and the ref-
erence point as Ndi. If the difference between Ndi and
Ndc is not greater than a threshold T2, the neuron i is
thought to be a feasible neuron, and then the weight
of i should be renewed by a proper heuristic function
Hci(t). When the renewing happens, the distances of
these feasible neurons to the reference point should be
calculated and stored again. The pseudo code is as fol-
lows:

i = 1
If |Ndc − Ndi| < T2 and i ≤ M do

Hci(t) = exp(−‖rc−ri‖2
2σ2(t) )

Wi(t + 1) = Wi(t) + Hci(t)(x j(t) −Wi(t))
i = i + 1

Else
Execute Kohonen’s SOM algorithm

End if

In the pseudo code, x j(t) represents an input data at
time t; Hci(t) is the topological neighborhood function
of the winner neuron c at time t; η(t) is monotonic de-
crease, 0 < η(t) < 1.
The second threshold T2 , works as search boundary in
which the winning neuron finds its neighborhood neu-
rons for updating weights. According to our experi-
ments, choosing T2 = μ will have best results.

Step 4 Go to Step 2 until the pre-specified maximum num-
ber of epochs is reached.

4. Experimental Results

In our experiments, the program is written in Java using Bor-
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Table 1 Execution time comparison of initialization scheme of RPSOM and that of Su’s algorithm
running on 2-D artificial dataset.

Initialization scheme of RPSOM Initialization scheme of Su’s algorithm
Time < 1 ms 78 ms
Results These two methods generate the same four corners.

Table 2 Execution time comparison of initialization scheme of RPSOM and that of Su’s algorithm
running on a Yeast database.

Initialization scheme of RPSOM Initialization scheme of Su’s algorithm
Time 4.4 sec 1128 sec
Results These two methods generate the same four corners.

Table 3 Execution time comparison of initialization scheme of RPSOM and that of Su’s algorithm
running on a Census-Income database.

Initialization scheme of RPSOM Initialization scheme of Su’s algorithm
Time 10.7 sec 16382 sec
Results These two methods generate the same three corners.

Fig. 4 Execution time comparison of SOM and RPSOM running on Yeast database in 500 and 1000
epochs.

land JBuilder 9 Enterprise Edition. The platform used is In-
tel Pentium 4 3.2 GHz with 512 MB DRAM and 80 GB hard
disk running Windows 2000 Server Pack3.

All experiments ran our algorithms on the datasets
from a Yeast database and UCI KDD Archive to illustrate
the performance improvement of the proposed method. In

the experiment, the execution time of the Kohonen’s SOM
algorithm is reduced in half in our scheme. At the same
time, the sum of the squared error distance in our scheme is
also smaller than that of the traditional SOM.
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Fig. 5 Sum of squared-error distance comparison of SOM and RPSOM running on Yeast database in
500 and 1000 epochs.

4.1 The Data Sets Used in Our Experiments

We use three data sets to demonstrate the effectiveness of the
proposed RPSOM algorithm in our experiments. To achieve
a better clustering result and to avoid bad effects produced
by noises and outliers, all data sets have been pre-processed
using data cleaning normalization schemes.

1. 2-D artificial dataset
2-D artificial dataset (http://cilab.csie.ncu.edu.tw/course/
cluster/FCM’s Data.zip) is a computer simulation data
set. The data set contains 579 artificial data points with
2 columns each. The data consists of three shallow
elongated parallel clusters in the 2D plane. The dataset
was trained by the RPSOM initialization scheme and
Su’s scheme, respectively. Obviously, our scheme re-
duces the time complexity dramatically.

2. Yeast database
There are 2467 data records and each record has 81
columns in the Yeast database (http://genome-www.
stanford.edu/clustering/Figure2.txt). Thus far there are
6,000 yeast genes that have been sequenced. In this
database, there are 79 different experiments for 2467
yeasts genes. For example, the alpha factor is added at
different periods to observe the fluorescence of perfor-
mances. Positive values mean the experimental team
has shown a rapid increasing effect than the relevant

comparable team. Higher values, result in higher ef-
fects. Negative values mean the experimental team
has produced a reducing effect. Lower values result
in lower effects.

3. Census-Income database
In this experiment, we take the Census-Income
Database of UCI KDD Archive (http://kdd.ics.uci.edu)
as our input data set. This data set contains census data
extracted from the 1994 and 1995 Current Population
Surveys conducted by the U.S. Census Bureau. The
data contains 199523 records with 41 demographic and
employment related fields each. We select 20000 data
points, each of which consists of 12 non-numeric fields,
randomly from the Census-income database.

4.2 Comparison of Execution Time in the Initialization
Phase

The following tables are the results we got based on three
datasets, which are a 2-D artificial dataset, a Yeast database,
and a Census-Income database, respectively. We used the
initialization scheme by Su et al. and RPSOM to look for
the four corners from all data points of the three databases.
The experimental results show that the proposed RPSOM
finds either the same four corners (as shown in Tables 1 and
Table 2) or same three corners (as shown in Table 3) com-
pared to Su’s method, but the RPSOM has about two orders
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Fig. 6 Execution time comparison of SOM and RPSOM running on 20000 input data in 1500 and
2000 epochs.

of magnitude improvement in execution time for the initial-
ization phase.

4.3 Comparison of Execution Time and Clusters between
SOM and RPSOM Using the Yeast Database

In this experiment, we ran the traditional SOM and the
RPSOM on the Yeast database, and measured the results on
execution time and error distance. The numbers of neurons
we used were 4, 9, 16, 25, 36, 49, 64, 72, and 100, in 500
and 1000 epochs, respectively.

In the experimental results as shown in Fig. 4, the larger
the clustering number, the more the reduction of execu-
tion time. By error distance, it is estimated that RPSOM
is smaller than the traditional SOM for smaller clustering
number in 500 epochs, whereas the difference is not obvi-
ous given larger clustering. However, the results of error
distance as shown in Fig. 5 for two schemes are almost the
same in 1000 epochs.

4.4 Comparison of Execution Time and Clusters be-
tween SOM and RPSOM Using the Census-Income
Database

In this experiment, we ran the traditional SOM and the RP-
SOM on the Census-Income database, and measured the re-
sults on execution time and error distance. The numbers of
neurons we used were 10, 20, 30, 40, 50, 60, 70, 80, 90, and

100, in 1500 and 2000 epochs, respectively.
In the experimental results as shown in Fig. 6, the RP-

SOM can reduce the execution time by 40% when execut-
ing 100 neurons clustering in 1500 epochs for the Census-
Income database. By error distance, it is estimated that RP-
SOM is smaller than the traditional SOM for smaller cluster-
ing number in 1500 and 2000 epochs, whereas the difference
is not obvious given larger clustering as shown in Fig. 7.

4.5 The Execution Time with Different Reference Points
in the Yeast Database

The choice of reference point influences the search time re-
quired. In some cases, if we choose the origin or the median
as reference point, the result may cause the search area to
be too large to achieve the expected results. Therefore, this
experiment takes the central point of input data as the ref-
erence point and compares the execution time of these two
schemes.

The results show that the center choice is faster than
the origin choice in the Yeast database, as shown in Fig. 8.
Let us take clustering number 64 as an example. It is 2.92%
times faster. Choosing the central point as reference point
can avoid the problem of too large a search area when con-
structing the threshold.

In the experiment of the Yeast database, the larger the
number of clusters is, the more the ratio of computing is
reduced. By error distance, this experiment takes the central
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Fig. 7 Sum of squared-error distance comparison of SOM and RPSOM running on 20000 input data
in 1500 and 2000 epochs.

Fig. 8 The execution time of taking different reference point in 1000 epochs.

point and origin as the reference point within 1000 epochs.
The results shown in Fig. 9 are that the error distances are
almost the same.

In the next experiment, we focus on the accuracy of
finding winning neurons and the quantities of reduced com-
putation with different T1 filter criteria. From the results as

shown in Table 4 we found that the larger the filter is, the
lower the ratio of computation reduced. For example, con-
sider T1 = 6, which approximates μ + σ = 6.24, the ratio
of reduced number of comparisons is 28.84% and the ra-
dio of matched winner neurons reaches as high as 99.94%.
This experiment concludes that the central point as reference
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Fig. 9 The error distance of taking different reference point in 1000 epochs.

Table 4 The impact of different T1 thresholds for clustering Yeast database (μ = 4.88, σ = 1.36) into
64 clusters using center point as the reference point in 1000 epochs.

Threshold (T1) 2 3 4 5 6 7 8 9 10
Number of input
data entered 2467000 2467000 2467000 2467000 2467000 2467000 2467000 2467000 2467000
(2467 × 1000)
Number of match
winner neurons in 1864455 2351309 2440988 2459997 2465502 2466983 2466999 2466999 2467000
traditional SOM
and RPSOM
Number of mismatch
winner neurons in 386456 80138 26012 7003 1498 17 1 1 0
traditional SOM and
RPSOM
Number of input
without any neuron 216089 35553 0 0 0 0 0 0 0
inside the range
bounded by T1

Number of compar-
isons for finding 157888000 157888000 157888000 157888000 157888000 157888000 157888000 157888000 157888000
winner neurons by
the traditional SOM
(2467 × 1000 × 64)
Number of compar-
isons for finding 100540498 120102910 96013850 97741474 112351520 130622061 140992545 147951657 153020861
winner neurons by
RPSOM
Ratio of reduced
number of compar- 36.32% 23.93% 39.19% 38.09% 28.84% 17.27% 10.70% 6.29% 3.08%
isons
Ratio of matched
winner neurons 75.57580% 95.31046% 98.94560% 99.71613% 99.93928% 99.99931% 99.99996% 99.99996% 100%

point can speed up computation and avoid large threshold.
It is a good choice to select the reference point to be the
central point when the data is situated far from the origin.

5. Conclusions

In this paper, we propose a new SOM algorithm named Ref-
erence Point SOM (RPSOM) to speed up the execution time.
It can effectively reduce the time for doing clustering in a
large database. It can reduce time required by 20% when ex-

ecuting 100 neurons clustering in 1000 epochs for the Yeast
database.

In summary, the method described in this paper offers
three advantages. First, the initialization scheme of RPSOM
is more efficient than Su’s scheme. Our method reduces the
time complexity from O(n2) to O(n) in the steps for locating
the initial neurons. Second, a reference point based method
is proposed when SOM algorithm is looking for the winning
neuron and thereafter the neighboring neurons. It can reduce
the computation time for finding the winning and neighbor-
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ing neurons.
Finally, it can calculate the distances from all the input

points and neurons to the reference point in advance. In this
way, it can filter out those impossible winning neurons and
neighboring neurons. In addition, it can control the filtered
area by two thresholds. We also show that choosing the cen-
tral point of input data as the reference point is better than
choosing the origin. From the experiments, we find that the
performance with regard to improved execution time of the
RPSOM is much better than traditional methods.
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