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PAPER

An XML Transformation Algorithm Inferred from an Update
Script between DTDs

Nobutaka SUZUKI†a), Member and Yuji FUKUSHIMA†, Nonmember

SUMMARY Finding an appropriate data transformation between two
schemas has been an important problem. In this paper, assuming that an
update script between original and updated DTDs is available, we consider
inferring a transformation algorithm from the original DTD and the up-
date script such that the algorithm transforms each document valid against
the original DTD into a document valid against the updated DTD. We first
show a transformation algorithm inferred from a DTD and an update script.
We next show a sufficient condition under which the transformation algo-
rithm inferred from a DTD d and an update script is unambiguous, i.e., for
any document t valid against d, elements to be deleted/inserted can unam-
biguously be determined. Finally, we show a polynomial-time algorithm
for testing the sufficient condition.
key words: XML, data transformation, schema evolution

1. Introduction

Suppose that we maintain XML documents valid against
a DTD. If the DTD is updated, then we have to transform
each of the documents into a valid one against the updated
DTD. Transforming each document manually is surely im-
practical, so constructing an appropriate transformation al-
gorithm between original and updated DTDs is a very im-
portant problem.

In this paper, we propose a novel transformation ap-
proach based on an update script between original and up-
dated DTDs; assuming that the update script applied to a
DTD is known, we construct a transformation algorithm “in-
ferred” from the DTD and the update script. Here, an update
script to a DTD is a sequence of update operations, where
each update operation inserts/deletes an element or operator
in a content model of the DTD.

For example, let us consider DTD d1 shown in
Fig. 1 (a). Suppose that d1 is updated to a new DTD d2 by
an update script that (i) deletes “age” and (ii) aggregates a
subsequence “(address, zip, country)” of the content model
of “staff” into “addr info” (Fig. 1 (b)). Then for any XML
document t valid against d1, the transformation algorithm
inferred from d1 and the update script

1. deletes the “age” element in t, and
2. inserts a new “addr info” element into t as the parent

of “address”, “zip”, and “country” elements.
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For example, the XML document t1 in Fig. 1 (c) (repre-
sented as a tree without text strings) is transformed into t2
in Fig. 1 (d), which is valid against d2.

Let d be a DTD and S be a set of XML documents valid
against d. Suppose that a user updated d to a new DTD by
applying some update script s to d. Since s concretely repre-
sents how the user intends to modify d, s strongly suggests
how to transform each document in S . Therefore, if we can
obtain a transformation algorithm T inferred from d and s
as shown above, then we can say that T is a transformation
algorithm that faithfully reflects the user’s intention repre-
sented by s.

However, depending on a DTD d and an update script
s to d, the transformation algorithm T inferred from d and
s may become “ambiguous”, that is, for some document t
valid against d T cannot unambiguously determine which
elements in t should be deleted/inserted (conversely, if there
is no such tree, then T is called “unambiguous”). For ex-
ample, let us consider DTD d3 (Fig. 2 (a)). Suppose that
d3 is updated to a new DTD d4 by an update script that
aggregates subexpression “(section,section*,ack?)” of the
content model of “book” into “chapter” (Fig. 2 (b)). For the
tree t3 in Fig. 2 (c), we have two alternatives t4, t5 according
to the positions at which “chapter” elements should be in-
serted (Fig. 2 (d,e)). Thus T is ambiguous (T outputs one of
t4 and t5 arbitrarily). In general, an ambiguous transforma-
tion algorithm is undesirable since it may delete elements
that should not be deleted and may insert elements at un-
expected positions. Therefore, for a DTD d and an update
script s, we should be able to decide if the transformation
algorithm inferred from d and s is unambiguous.

In this paper, we first define update operations to
DTDs. Then, based on the update operations we show
a (possibly ambiguous) transformation algorithm inferred
from a DTD and an update script. Then we show suffi-
cient conditions under which the transformation algorithm
inferred from a DTD and an update script is unambiguous.
Finally, we show a polynomial-time algorithm for determin-
ing if, given a DTD d and an update script s, the transforma-
tion algorithm inferred from d and s satisfies the sufficient
conditions.

Related Work

Schema matching, query discovery, and other related prob-
lems have been extensively studied, e.g., [1], [2], [11], [13]–
[16], [20]. These studies except [20] consider finding an ap-
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Fig. 1 DTDs d1, d2 and XML documents t1, t2.

Fig. 2 DTDs d3, d4 and XML documents t3, t4, t5.

propriate matching or transformation between schemas, as-
suming that no update script between the schemas is known.
Ref. [20] considers the problem of adapting mappings to
schema changes. The study assumes that a mapping be-
tween (nested relational) schemas are explicitly provided,
thus the ambiguities discussed in this paper do not arise.

Several studies propose update operations to schemas.
Ref. [12] proposes update operations to represent the “diff”
between two DTDs. Ref. [10] proposes update operations
to tree grammars to preserve schema’s expressive power;
any updated grammar admits only trees to which trees valid
against its original grammar are embeddable. Refs. [9], [19]
propose update operations assuring that any updated schema
includes its original schema.

2. Definitions

An XML document is modeled as an ordered labeled tree
(attributes are omitted). Each node in a tree represents an
element. A text node is omitted, in other words, we assume
that each leaf node has an implicit text node. By l(n) we
mean the label (element name) of node n. In what follows,
we use the term tree when we mean ordered labeled tree.

Let Σ be a set of labels. In order to define update op-
erations to a DTD concisely, each regular expression is rep-
resented as a term in prefix notation. Formally, a regular

expression over Σ is recursively defined as follows.

• ε and a are regular expressions, where a ∈ Σ.
• If r1, · · · , rn are regular expressions, then ·(r1, · · · , rn)

and +(r1, · · · , rn) are regular expressions (n ≥ 1).
• If r1 is a regular expression, then ∗(r1) is a regular ex-

pression.

For example, we write ·(a, ∗(+(b, c))) instead of usual nota-
tion a(b+c)∗. The language specified by a regular expression
r is denoted L(r).

Let r be a regular expression. The set of positions of r,
denoted pos(r), is defined as follows.

• If r = ε or r = a for some a ∈ Σ, then pos(r) = {λ},
where λ denotes an empty sequence.
• If r = op(r1, · · · , rn) with op ∈ {+, ·, ∗}, then pos(r) =
{λ} ∪ {u | u = iv, 1 ≤ i ≤ n, v ∈ pos(ri)}, where n = 1 if
op = ‘∗’.

For example, let r = ·(+(a, b, c), ∗(d)). Figure 3 shows
the tree representation of r, in which each node is asso-
ciated with its corresponding position. Thus pos(r) =
{λ, 1, 2, 11, 12, 13, 21}.

Let u ∈ pos(r). The label at u in r, denoted l(r, u), and
the subexpression at u in r, denoted sub(r, u), are recursively
defined as follows.

• If r = ε or r = a for some a ∈ Σ, then l(r, λ) = r and
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Fig. 3 Tree representation of ·(+(a, b, c), ∗(d)).

sub(r, λ) = r.
• If r = op(r1, · · · , rn) with op ∈ {+, ·, ∗}, and

– if u = λ, then l(r, u) = op and sub(r, u) = r,
– if u = jv for some 1 ≤ j ≤ n and some v ∈ pos(r j),

then l(r, u) = l(r j, v) and sub(r, u) = sub(r j, v),

where n = 1 if op = ‘∗’.
For example, in Fig. 3 l(r, 1) = ‘+’, l(r, 21) = d, and
sub(r, 1) = +(a, b, c).

Let w be a word over Σ. By |w| we mean the length of
w, and by w[i] we mean the ith label of w. We define that
w[i, j] = w[i]w[i+1] · · ·w[ j] (1 ≤ i ≤ j ≤ |w|). For example,
if w = tsukuba, then w[2, 5] = suku.

A DTD d is a (possibly partial) mapping from Σ to the
set of regular expressions over Σ. For a label a ∈ Σ, d(a) is
the content model of a. A tree t is valid against d if for each
node n in t the sequence of labels on the children of n is in
L(d(l(n))). For labels ai, a j ∈ Σ, a j is reachable from ai if (i)
ai = a j or (ii) a j occurs in d1(ak) for some label ak reachable
from ai.

Let r be a regular expression. By r′ we mean the
superscripted regular expression resulting from r by su-
perscripting each label in r by its corresponding position.
By sym(r′) we mean the set of superscripted labels occur-
ring in r′. For example, if r = ·(+(a, b, c), ∗(+(d, b))),
then r′ = ·(+(a11, b12, c13), ∗(+(d211, b212))) and sym(r′) =
{a11, b12, c13, d211, b212}. Let ai be a superscripted label of
a. Then by (ai)� we mean the label resulting from ai by
dropping the superscript of ai, that is, (ai)� = a. Let w′
be a superscripted word (i.e., a sequence of superscripted
labels). We define that (w′)� = w′[1]� · · ·w′[|w′|]�. For
any regular expression r, it holds that L(r) = L(r′)�, where
L(r′)� = {(w′)� | w′ ∈ L(r′)}.

3. Update Operations to DTD

In this section, we define update operations to DTD d. There
are two types of update operations; the update operations of
type 1 relate to modifying labels in a content model, and the
update operations of type 2 relate to modifying operators in
a content model. Let a ∈ Σ be a label and u ∈ pos(d(a)) be
a position in d(a).

Type 1a: Inserting/deleting an element in a content model.

• ins elm(a, b, vi): Inserts a new label b at vi in d(a),
where vi ∈ pos(d(a)) with i is a positive integer
and b ∈ Σ ∪ {ε} (Fig. 4 (b,c)). This is applicable

to d only if d(b) is defined, l(d(a), v) ∈ {+, ·}, and
v(i − 1) ∈ pos(d(a)) (i.e., the operator at v has at
least i − 1 operands).
• del elm(a, vi): Deletes the label/ε at vi in d(a).

More formally, we have two cases according to
the operator at v.

– The case where l(d(a), v) = ‘+’: If
l(d(a), vi) = l(d(a), vk) for some k � i, then
l(d(a), vi) is deleted from d(a) (deleting one
of duplicated labels). Otherwise, l(d(a), vi) is
replaced by ε.

– The case where l(d(a), v) = ‘·’: In this case,
l(d(a), vi) is deleted from d(a) (Fig. 4 (a,b)).
This is applicable to d only if vk ∈ pos(d(a))
for some k � i (i.e., l(d(a), vi) has at least one
siblings).

Type 1b: Extracting a label in d(a) and aggregating a
subexpression of d(a) into a new label.

• ext elm(a, u): Extracts a label l(d(a), u) in
d(a). Formally, this operation replaces la-
bel l(d(a), u) in d(a) by regular expression
d(l(d(a), u)) (Fig. 4 (e,f)). This is applicable to
d only if sub(d(a), u) is a label in Σ and a �
l(d(a), u).
• agg elm(a, b, u): Aggregates subexpression sub(d

(a), u) into single label b. Formally, this opera-
tion (i) sets d(b) = sub(d(a), u) and (ii) replaces
sub(d(a), u) by label b (Fig. 4 (d,e)). This is appli-
cable to d only if d(b) is undefined.

Type 2: Inserting/deleting an operator (‘+’, ‘·’, or ‘∗’) in
d(a).

• ins opr(a, opr, vi, v j): Inserts a new operator
opr as the parent of the sibling subexpressions
at vi, · · · , v j in d(a), where opr ∈ {+, ·, ∗}
(Fig. 4 (c,d)). This is applicable to d only if (i)
i = j (opr has only one operand) or (ii) i < j,
opr ∈ {+, ·}, and opr = l(d(a), v) (nesting the op-
erator at v by opr).
• del opr(a, vi): Deletes an operator at vi in d(a)

(Fig. 4 (f,g)). This is applicable to d only if (i)
l(d(a), v) = l(d(a), vi) (unnesting the operator at
vi) or (ii) the operator at vi has only one operand.

Let op be an update operation to a DTD d. By op(d)
we mean the DTD obtained by applying op to d. Let
s = op1op2 · · · opn be a sequence of update operations
(n ≥ 0). s is applicable to d if opi is applicable to
opi−1(opi−2(· · · op1(d) · · ·)) for every 1 ≤ i ≤ n. We say
that s is an update script to d if s is applicable to d. For
an update script s = op1op2 · · · opn to d, we define that
s(d) = opn(opn−1(· · · op1(d) · · ·)). An update script of length
zero is denoted ε, where ε is an identity operator such that
ε(d) = d for any DTD d.

Example 1: Let d be a DTD, where d(staff) =
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Fig. 4 An update script s to a DTD d and a transformation according to s and d.

·(name,age,zip,email),d(name) = ·(firstname,lastname), and
d(l) = ε for any label l other than “staff” and “name”.
Let s = op1 · · · op6, where op1 = del elm(staff, 2),
op2 = ins elm(staff, street, 2), op3 = ins opr(staff, ·, 2, 3),
op4 = agg elm(staff, address, 2), op5 = ext elm(staff, 1),
and op6 = del opr(staff, 1). Then d and di =

opi(opi−1(· · · (op1(d)) · · ·)) for 1 ≤ i ≤ 6 are illustrated in
Fig. 4 (left). �

We say that a DTD d2 includes a DTD d1 if for any tree
t, t is valid against d2 whenever t is valid against d1. We
have the following lemma.

Lemma 1: Let d be a DTD and op be an update operation
to d. Then op(d) includes d if op satisfies one of the follow-
ing conditions.

1. op = ins elm(a, b, vi) and either (i) l(d(a), v) = ‘+’ or
(ii) l(d(a), v) = ‘·’ and b = ε.

2. op = del elm(a, vi) and either (i) l(d(a), v) = ‘·’ and
l(d(a), vi) = ε or (ii) l(d(a), v) = ‘+’ and l(d(a), vi) ∈
L(sub(d(a), vk)) for some k � i (i.e., the element at vi
is contained in some sibling).

3. op=ext elm(a, u) and l(d(a), u)∈L(d(l(d(a), u))).
4. op = ins opr(a, opr, vi, v j), where opr ∈ {+, ·, ∗}.
5. op = del opr(a, u) and either (i) l(d(a), u) ∈ {+, ·} or

(ii) l(d(a), u) = ‘∗’ and L(sub(d(a), u1)) = {ε}.
�

For example, in Fig. 4 ins opr(staff, ·, 2, 3) satisfies Condi-
tion (4) and del opr(staff, 1) satisfies Condition (5) of the
above lemma.

4. Transformation Algorithm Inferred from DTD and
Update Script

In this section, we show a (possibly ambiguous) transforma-
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tion algorithm inferred from a DTD and an update script.

4.1 Outline

We first show an outline of our transformation algorithm.
Let d be a DTD and op be an update operation to d. For
a tree t valid against d, our transformation algorithm T in-
ferred from d and op transforms t as follows.

1. If t is valid against op(d), then T does nothing.
2. Otherwise, T modifies t according to the type of op.

Type 1a: (1) If op = ins elm(a, b, u), then b is inserted
at u in d(a). Accordingly, for each position p in t
at which the b-label should be inserted, T creates
a new valid tree†whose root is labeled by b and
insert the tree at position p in t. For example, if
d(a) = ·(a, b) and op = ins elm(a, c, 3), then for
each node n in t labeled by a, a new valid tree
whose root is labeled by c is inserted as the third
child of n.
(2) If op = del elm(a, u), then the label, say b, at
u in d(a) is deleted or replaced by ε. Accord-
ingly, T first identifies the subtrees in t whose
roots match the label b, then T deletes the identi-
fies subtrees.

Type 1b: (1) If op = ext elm(a, u), then T identifies
the internal nodes in t that match the extracted
label in d(a), and deletes the identified internal
nodes from t. For example, if d(a) = ·(b, c) and
op = ext elm(a, 1), then each internal node in t
that matches b is deleted.
(2) If op = agg elm(a, b, u), then T inserts new b-
labeled nodes into t as the parents of sibling nodes
that should be aggregated. For example, if d(a) =
+(·(b, c), e) and op = agg elm(a, f , 1), then for
each pair of siblings labeled by b and c in t a new
node labeled by f is inserted as the parent of the
siblings.

Type 2: By Conditions (4) and (5) of Lemma 1, op =
del opr(a, u) and sub(d(a), u) = ∗(q) for some
regular expression q (op deletes the ‘∗’ from
∗(q)). Thus T identifies the nodes in t that match
∗(q) and deletes “excess” subtrees from the sub-
trees rooted at the identified nodes (since d(a) ad-
mits arbitrary repetitions of q but op(d)(a) does
not) and supplements “missing” trees to t (since
∗(q) matches ε but q may not).

Let d be a DTD and s = op1 · · · opn be an update script to d.
The transformation algorithm inferred from d and s applies
T1, · · · ,Tn to t, where Ti is the transformation algorithm in-
ferred from di−1 and opi and di−1 = opi−1(· · · (op1(d)) · · ·).

4.2 The Transformation Algorithm

We first show some definitions. Let r be a regular expres-
sion, u ∈ pos(r) be a position, q = sub(r, u) be a subexpres-
sion at u of r, w be a word such that w ∈ L(r), and w′ be a

superscripted word such that w′ ∈ L(r′) and that (w′)� = w.
We say that w′[i, j] maximally matches q′ if w′[i, j] ∈ L(q′)
and either (i) i = 1 and j = |w′| or (ii) w′[i′, j′] � L(q′) for
any i′, j′ with {i, · · · , j} ⊂ {i′, · · · , j′}. We define that

match(w′, q′) = {(i, j) |w′[i, j] maximally matches q′}.
For example, let r = ∗(·(a,+(b, c))) and q = sub(r, 12).
Then r′ = ∗(·(a11,+(b121, c122))) and q′ = sub(r, 12)′ =
+(b121, c122). If w′ = a11b121a11c122, then match(w′, q′) =
{(2, 2), (4, 4)}.

Let w be a word and bh be a superscripted label. We
say that a superscripted word w′ is a superscripted superse-
quence of w w.r.t. bh if removing every bh from w′ yields a
word w′′ such that (w′′)� = w.

Let d be a DTD and op be an update operation to d.
We show the transformation algorithm inferred from d and
op, denoted TransOpd,op as follows (subroutine Trans1a,
Trans1b, and Trans2 are shown later).

TransOpd,op(t)
Input: a tree t valid against d.
Output: a tree valid against op(d).

1. If t is valid against op(d), then return t.
2. Otherwise, do the following.

a. If op is of type 1a, then return Trans1ad,op(t).
b. If op is of type 1b, then return Trans1bd,op(t).
c. If op is of type 2, then return Trans2d,op(t).

Let us show three subroutines Trans1a, Trans1b, and
Trans2. We first show Trans1a.

Trans1ad,op(t)

1. If op = ins elm(a, b, vi), then for each node n labeled
by a in t, do the following. Note that by Condition (1)
of Lemma 1, l(d(a), v) = ‘·’.

a. Let n1, · · · , nm be the children of n in t. Find a
superscripted supersequence w′ of l(n1) · · · l(nm)
w.r.t. bh such that w′ ∈ L((op(d)(a))′), where bh

is the superscripted label in op(d)(a) inserted by
op.

b. For each ( j, j) ∈ match(w′, bh), create a new tree
valid against op(d) whose root is labeled by b and
insert the tree into t as the jth child of n.

2. If op = del elm(a, vi), then for each node n labeled by
a in t, do the following.

a. Let n1, · · · , nm be the children of n in t. Find a
superscripted word w′ such that w′ ∈ L(d(a)′) and
that (w′)� = l(n1) · · · l(nm).

b. By definition sub(d(a), vi)′ is a single super-
scripted label, say bh. For each ( j, j) ∈
match(w′, bh), delete the subtree rooted at n j from
t.

†We assume that the text values of such a new tree are empty
since they can hardly be estimated.
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3. Return t transformed above.

In step (1a) we have to find a superscripted supersequence
w′ of l(n1) · · · l(nm) w.r.t. bh such that w′ ∈ L((op(d)(a))′),
which can be obtained in O(|op(d)(a)|2 + |w′|) time, where
|op(d)(a)| = |d(a)| + 1 (details are shown in Appendix A).
In step (1b), a new tree can be constructed in O(|d|) time. In
step (2a), a superscripted word w′ such that w′ ∈ L(d(a)′)
and that (w′)� = l(n1) · · · l(nm) can easily be obtained by us-
ing the Glushkov automaton of d(a) (defined in Sect. 6.2),
which requires O(|d(a)|2 + |w′|) time. Thus Trans1ad,op(t)
runs in O(|t| · |d(a)|2 + |t| · |d|) time.

Example 2: Figure 4 (right) illustrates how tree t0 is trans-
formed by the transformation algorithm inferred from d and
s, where d and s are given in Example 1 and Fig. 4 (left).
Let us consider the intermediate transformations from t0 to
t1 and t1 to t2 in Fig. 4 (right).

(t0 ⇒ t1) Let d be the DTD in Fig. 4 (a). Then
d(staff) = ·(name, age, zip, email). Since op1 =

del elm(staff, 2), t0 is transformed by step 2 of Trans1a.
Consider the node n1 of t0. Since d(staff)′ =

·(name1, age2, zip3, email4), the superscripted word w′ of
l(n2)l(n3)l(n4)l(n5) = “name age zip email” such that
w′ ∈ d(staff)′ is “name1 age2 zip3 email4”. Thus
match(w′, age2) = {(2, 2)}, thereby the second child n3 of
n1 is deleted from t0.

(t1 ⇒ t2) Let d1 be the DTD in Fig. 4 (b).
Then d1(staff) = ·(name, zip, email). Since op2 =

ins elm(staff, street, 2), we have d2(staff) = ·(name,
street, zip, email) and t1 is transformed by step 1 of
Trans1a. Consider the node n1 in t1. Since d2(staff)′ =
·(name1, street2, zip3, email4), the superscripted superse-
quence w′ of l(n2)l(n4)l(n5) = “name zip email” w.r.t. street2

such that w′ ∈ L(d2(staff)′) is “name1 street2 zip3 email4”.
Thus match(w′, street2) = {(2, 2)}, and a new node n8 la-
beled by “street” is inserted into t1 as the second child of
n1. �

We next show Trans1b.

Trans1bd,op(t)

1. If op = ext elm(a, u), then for each node n labeled by
a in t, do the following.

a. Let n1, · · · , nm be the children of n in t. Find a
superscripted word w′ such that w′ ∈ L(d(a)′) and
that (w′)� = l(n1) · · · l(nm).

b. By definition sub(d(a), u)′ is a single super-
scripted label, say bh. For each ( j, j) ∈
match(w′, bh), delete the jth child n j of n from t.

2. If op = agg elm(a, b, u), then for each node n labeled
by a, do the following.

a. Let n1, · · · , nm be the children of n in t. Find a
superscripted word w′ such that w′ ∈ L(d(a)′) and
that (w′)� = l(n1) · · · l(nm).

b. For each ( j, k) ∈ match(w′, sub(d(a), u)′), insert a
new node labeled by b as the parent of n j, · · · , nk

into t.

3. Return t transformed above.

Trans1bd,op(t) runs in O(|t| · |d(a)|2) time.

Example 3: Let us consider the intermediate transforma-
tions from t3 to t4 and from t4 to t5 in Fig. 4 (right).

(t3 ⇒ t4) Let d3 be the DTD in Fig. 4 (d). Then
d3(staff) = ·(name, ·(street, zip), email). Since op4 =

agg elm(staff, address, 2), t3 is transformed by step 2 of
Trans1b. Consider the node n1 in t3. Since d3(staff)′ =
·(name1, ·(street21, zip22), email3), the superscripted word w′
of l(n2)l(n8)l(n4)l(n5) = “name street zip email” such that
w′ ∈ L(d3(staff)′) is “name1 street21 zip22 email3”. Thus we
have match(w′, ·(street21, zip22)) = {(2, 3)}. Therefore, a
new node n9 labeled by “address” is inserted as the parent
of the second and third children n8, n4 of n1.

(t4 ⇒ t5) Let d4 be the DTD in Fig. 4 (e). Then
d4(staff) = ·(name, address, email). Since op5 =

ext elm(staff, 1), t4 is transformed by step 1 of Trans1b.
Consider the node n1 in t4. Since d4(staff)′ =

·(name1, address2, email3), the superscripted word w′
of l(n2)l(n9)l(n5) = “name address email” such that
w′ ∈ L(d4(staff)′) is “name1 address2 email3”, thereby
match(w′, name1) = {(1, 1)}. Thus the first child n2 of n1

is deleted. �

Finally, we show Trans2. Note that for any DTD d
and any tree t valid against d, by Lemma 1 t is always valid
against op(d) if op = ins opr(a, opr, vi, v j). Thus we do
not have to transform t if op = ins opr(a, opr, vi, v j), and
it suffices to consider the case of op = del opr(a, u). We
need a definition. Let w′ be a superscripted word and bh

be a superscripted label. Then a variant of w′ w.r.t. bh is a
superscripted word obtained by deleting some bh’s from w′
and inserting bh’s into w′ at arbitrary positions.

Trans2d,op(t)

1. By Conditions (4) and (5) of Lemma 1, op =

del opr(a, u) and l(d(a), u) = ‘∗’. Thus sub(d(a), u) =
∗(q) for some regular expression q. For simplicity, we
assume that q is a single label b (the other case can be
handled similarly) and let q′ = bh. For each node n in t
labeled by a, do the following.

a. Let n1, · · · , nm be the children of n in t. Find a
superscripted word w′ such that w′ ∈ L(d(a)′) and
that (w′)� = l(n1) · · · l(nm).

b. Find a variant w′′ of w′ w.r.t. bh such that w′′ ∈
L((op(d)(a))′). For each node n j corresponding
to an occurrence of bh deleted from w′, delete the
subtree rooted at n j from t. For each occurrence
of bh inserted into w′, create a new tree tb valid
against op(d) whose root is labeled by b and insert
tb as a child of n at the position corresponding to
the occurrence of bh.

2. Return t transformed above.
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A variant w′′ of w′ in step (1b) can be obtained in
O(|d(a)|2+ |w′|) time (details are shown in Appendix B), and
tree tb can be obtained in O(|d|) time. Thus Trans2d,op(t)
runs in O(|t| · |d(a)|2 + |t| · |d|) time.

Let us now define the transformation algorithm inferred
from a DTD and an update script. Let d be a DTD and
s = op1 · · · opn be an update script to d. The transformation
algorithm inferred from d and s, denoted Transformd,s(t), is
defined as follows.

Transformd,s(t)
Input: a tree t valid against d.
Output: a tree valid against s(d).

1. If s = ε, then return t.
2. Otherwise, let di−1 = opi−1(opi−2(· · · (op1(d)) · · ·)) and

si−1 = op1op2 · · · opi−1. Return
TransOpdi−1,opi (Transformd,si−1 (t)).

Note that Transformd,s(t) outputs a single tree but
it may not be unique. Let TS d,s(t) = {t′ |
t′ can be the result of Transformd,s(t)}. We say that the
transformation algorithm inferred from d and s is unambigu-
ous if for any tree t valid against d, |TS d,s(t)| = 1. This
unambiguity is discussed in the subsequent two sections.

It is clear that Transformd,s(t) is “correct”.

Theorem 1: Let d be a DTD and s be an update script s to
d. Then for any tree t valid against d and any t′ ∈ TS d,s(t),
t′ is valid against s(d). �

Finally, let us consider the running time of Transformd,s(t).
By |t| we mean the number of nodes in t and by |d| we mean
the size of d. We first have the following lemma.

Lemma 2: TransOpd,op(t) runs in O(|t| · |d|2) time.

Proof (sketch): First, consider line 1 of TransOp. For an
unranked tree automaton A and a tree t, whether t ∈ L(A)
can be determined in O(|t| · |A|2) time [17]. Thus, whether t
is valid against op(d) can be checked in O(|t| · |op(d)|2) time,
where |op(d)| ≤ |d| + c for some constant c. Consider next
line 2. Let R be a regular expression in d with the maxi-
mum size. Trans1ad,op(t) runs in O(|t| · |R|2 + |t| · |d|) time,
Trans1bd,op(t) runs in O(|t|·|R|2) time, and Trans2d,op(t) runs
in O(|t|·|R|2+|t|·|d|) time, where O(|t|·|R|2+|t|·|d|) ⊆ O(|t|·|d|2).

�
Let d be a DTD, s = op1 · · · opn be an update script to d, and
let di−1 = opi−1(· · · (op1(d)) · · ·). If opi = ins elm(a, b, u)
and for some ancestor position v of u l(di−1(a), v) = ‘∗’,
then opi is starred. If for some i, j with i ≤ j opi =

ins elm(a, b, u), opj = ins elm(c, e, v), and c occurs in
dj−1(b), then op j is nesting. We define that Dmax =

max{|d|, |op1(d)|, · · · , |s(d)|}. We now have the following
theorem.

Theorem 2: Let d be a DTD, s = op1 · · · opn be an update
script to d, and t be a tree valid against d. If the following
condition holds, then Transformd,s(t) runs in O(n3 · |t| ·D3

max)
time.

C1) For every 1 ≤ i ≤ n, if opi is an ins elm() operation,
then opi is neither starred nor nesting.

Proof (sketch): Assume that Condition (C1) holds. Let us
consider how the size of t increases w.r.t. s. Among the six
operations defined in Sect. 3, only ins elm() and agg elm()
may increase the size of t. We have the following observa-
tions.

• For a tree t′, the number of nodes inserted into t′ by
an agg elm(a, b, u) operation is at most the number of
nodes in t′ labeled by a. Moreover, label b cannot occur
in t′ by definition.
• Let op be an ins elm() operation that is neither nesting

nor starred. For each node n in a tree t′, at most one new
tree, say t′′, is inserted as the child of n by op, where
|t′′| ∈ O(Dmax). Thus, the number of nodes inserted
into t′ by op is in O(|t′| · Dmax).

Therefore, if s contains k ins elm()’s and l agg elm()’s, the
size of input tree t grows at most k · l · Dmax · |t| by s. This
and Lemma 2 imply that Transformd,s(t) runs in O(n · (k · l ·
Dmax · |t|) · D2

max) time, where k ≤ n and l ≤ n. �
It is open whether Transformd,s(t) runs in polynomial time
in the case where Condition (C1) does not hold.

5. Sufficient Conditions for Unambiguous Transforma-
tion

In this section, we first show that deciding whether the trans-
formation algorithm inferred from a DTD and an update
script is unambiguous is PSPACE-hard. We next show suf-
ficient conditions for the decision problem.

5.1 PSPACE-hardness

The unambiguity problem is to decide, for a DTD d and
an update script s, whether the transformation algorithm in-
ferred from d and s is unambiguous. In this subsection, we
show that the unambiguity problem is PSPACE-hard.

Theorem 3: The unambiguity problem is PSPACE-hard
even if an update script consists only of one update oper-
ation.

Proof: We use the inclusion problem for regular expres-
sions, which is to decide, for two regular expressions r1

and r2, whether r1 includes r2. This problem is PSPACE-
complete [18]. For an instance of the inclusion problem, we
construct an instance of the unambiguity problem, as fol-
lows. Let a, b, c be labels occurring in neither r1 nor r2.

• Let d be a DTD, where d(a) = +(·(∗(b), ∗(b), r1),
·(∗(b), ∗(b), r2)) and d(l) = ε for any label l occurring
in d(a).
• s = ins elm(a, c, 22).

We have op(d)(a) = +(·(∗(b), ∗(b), r1), ·(∗(b), c, ∗(b), r2)).
Let T be the transformation algorithm inferred from d and
s. We show that r1 includes r2 iff T is unambiguous.
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Fig. 5 A tree t valid against d but not s(d).

Assume first that r1 includes r2. Then it is easy to show
that for any tree t valid against d, t is also valid against s(d),
and thus t is not transformed by T . Thus T is unambiguous.

Assume next that r1 does not include r2. Consider the
tree t shown in Fig. 5. Then t is valid against d but not valid
against s(d). Since s = ins elm(a, c, 22), T tries to insert a
node labeled by c into t, but there are k + 1 positions in t at
which such a node can be inserted. Hence T is not unam-
biguous. �

Thus, it is unlikely that the unambiguity problem can
be solved efficiently. In what follows, we consider effi-
ciently testable sufficient conditions for the unambiguity
problem.

5.2 Sufficient Conditions

In this subsection, we show sufficient conditions for the un-
ambiguity problem. In Sect. 6, we will show a polynomial-
time algorithm for testing the sufficient conditions.

For an input tree t, the result of TransOpd,op(t) may not
be unique due to the following reasons.

U1) In step (1b) of Trans1a, match(w′, bh) depends on the
superscripted supersequence w′ selected in step (1a).

U2) In step (1b) of Trans1a, there may be more than one
trees valid against op(d) whose root is labeled by b.

U3) In step (2b) of Trans1a, match(w′, bh) depends on the
superscripted word w′ selected in step (2a). A sim-
ilar argument also applies to steps (1b) and (2b) of
Trans1b.

U4) In step (1b) of Trans2, there may be more than one
variant w′′ of w′.

Let us first show a simple sufficient condition related to
(U2). We define a DTD that admits exactly one valid tree.
For a DTD d and a label b, we say that d(b) is simple if for
any label a reachable from b, |L(d(a))| = 1. For example,
let d be a DTD, where d(a) = ·(b, c, e), d(b) = ·( f , g), and
d(c) = d(e) = d( f ) = d(g) = ε. Then d(a) is simple. We
have the following lemma.

Lemma 3: For any DTD d, there is exactly one tree valid
against d whose root is labeled by b iff d(b) is simple. �

A DTD d is simple if for every label b such that d(b) is
defined, d(b) is simple. Assuming that only simple DTDs
are available, none of the ambiguities of (U1) to (U4) arises.
Thus we have the following.

Theorem 4: Let d be a DTD and s = op1 · · · opn be an
update script to d. If d, op1(d), · · · , s(d) are simple, then the

transformation algorithm inferred from d and s is unambigu-
ous. �

Since the above DTD is too restrictive, let us next con-
sider more general ones. We show definitions related to
(U1) and (U3). Consider first (U3). A regular expression
r is one-unambiguous if the Glushkov automaton of r is de-
terministic [6] (Glushkov automaton is defined in Sect. 6.2).
The XML specification [4] requires any content model in
a DTD to be one-unambiguous (non-normatively). If r is
one-unambiguous, then for any word w ∈ L(r), there is ex-
actly one superscripted word w′ such that w′ ∈ L(r′) and
that (w′)� = w [6]. Thus, if every content model is one-
unambiguous, then the superscripted word w′ in (U3) can
uniquely be determined. Consider next (U1). We define a
regular expression that admits only superscripted superse-
quences such that the positions at which bh should be in-
serted can unambiguously determined. Let d be a DTD,
op = ins elm(a, b, vi), and bh be the superscripted label in
(op(d)(a))′ inserted by op. We say that d(a) is unambiguous
w.r.t. the insertion of bh if for any word w ∈ L(r) and for
any superscripted supersequences w′,w′′ of w w.r.t. bh such
that w′,w′′ ∈ L(op(d)(a)), (i) |w′| = |w′′|, and (ii) for any
1 ≤ k ≤ |w′|, w′[k] = bh iff w′′[k] = bh.

Example 4: Let d be a DTD, d(a) = ·(∗(b), ∗(b)), and op =
ins elm(a, c, 2). Then (op(d)(a))′ = ·(∗(b11), c2, ∗(b31)).
Consider a word bb ∈ L(d(a)). There are three superscripted
supersequences of bb w.r.t. c2 belonging to L((op(d)(a))′);
c2b31b31, b11c2b31, and b11b11c2. Thus d(a) is not unam-
biguous w.r.t. the insertion of c2. �

Since ε and ‘∗’ in a content model allow a label to occur “op-
tionally” and “repeatedly”, a content model d(a) containing
ε or ‘∗’ is not necessarily unambiguous w.r.t. the insertion
of a superscripted label, even if d(a) is one-unambiguous.
We say that a DTD d is limited if d(a) is one-unambiguous
and contains neither ε nor ‘∗’ for every content model d(a)
of d. We have the following lemma (the proof is shown in
Appendix C).

Lemma 4: Let d be a DTD and op = ins elm(a, b, vi) be
an update operation to d. If d and op(d) are limited, then
d(a) is unambiguous w.r.t. the insertion of bh, where bh is
the superscripted label inserted by op. �

If only limited DTDs are available, it suffices to check the
ambiguity of (U2), and if only one-unambiguous DTDs are
available, it suffices to check the ambiguities of (U1), (U2),
and (U4). Thus we have the following.

Theorem 5: Let d be a DTD, s = op1 · · · opn be an update
script to d, and d j = op j(· · · (op1(d)) · · ·).

1. Assume that d0, · · · , dn are limited. Then the transfor-
mation algorithm inferred from d and s is unambiguous
if the following condition holds.

R1) For every 1 ≤ j ≤ n, if opj = ins elm(a, b, vi)
and l(d j−1(a), v) = ‘·’ for some a, b ∈ Σ and some
vi ∈ pos(dj−1(a)), then d j(b) is simple.

2. Assume that d0, · · · , dn are one-unambiguous. Then the
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transformation algorithm inferred from d and s is un-
ambiguous if the following condition holds as well as
Condition (R1).

R2) For every 1 ≤ j ≤ n,

– if op j = ins elm(a, b, vi) and l(d j−1(a), v)
= ‘·’ for some a, b ∈ Σ and some vi ∈
pos(d j−1(a)), then d j−1(a) is unambiguous
w.r.t. the insertion of bh, where bh is the su-
perscripted label inserted by opj, and

– if op j = del opr(a, u) for some a ∈ Σ and
some u ∈ pos(dj−1(a)), then Condition (5) of
Lemma 1 holds w.r.t. dj−1 and op j. �

Finally, let us consider a sufficient condition for the
unambiguity problem, without any assumption on DTD
such as “limited” and “one-unambiguous”. We give defini-
tions related to (U3). We define a regular expression such
that match(w′, sub(r, u)′) can unambiguously determined.
Let r be a regular expression, u ∈ pos(r) be a position,
and w ∈ L(r) be a word. We say that r is unambigu-
ous w.r.t. sub(r, u) and w if for any superscripted words
w′,w′′ such that (w′)� = (w′′)� = w and that w′,w′′ ∈
L(r′), match(w′, sub(r, u)′) = match(w′′, sub(r, u)′). We say
that r is unambiguous w.r.t. sub(r, u) if r is unambiguous
w.r.t. sub(r, u) and w for any w ∈ L(r).

Example 5: Let d be the DTD in Fig. 2 (a) and let d(b) =
∗(·(s, ∗(s),+(a, ε))), where labels b, s, and a stand for
“book”, “section”, and “ack”, respectively. We have d(b)′ =
∗(·(s11, ∗(s121),+(a131, ε132))). Let q′ = sub(d(b), 1)′ =
·(s11, ∗(s121),+(a131, ε132)). For a word w = ssa ∈ L(d(b)),
we have two superscripted words w′ = s11s11a131 and
w′′ = s11s121a131 of w such that w′,w′′ ∈ L(d(b)′). Since
match(w′, q′) = {(1, 1), (2, 3)} and match(w′′, q′) = {(1, 3)},
d(b) is not unambiguous w.r.t. q = sub(d(b), 1). �

We now obtain a sufficient condition for the unambiguity
problem.

Theorem 6: Let d be a DTD, s = op1 · · · opn be an update
script to d, and d j = op j(· · · (op1(d)) · · ·). Then the transfor-
mation algorithm inferred from d and s is unambiguous if
for every 1 ≤ j ≤ n, at least one of the following Conditions
(S1) to (S5) holds.

S1) One of Conditions (1) to (5) of Lemma 1 holds
w.r.t. d j−1 and op j.

S2) op j = ins elm(a, b, vi) for some a, b ∈ Σ and some
vi ∈ pos(d j−1(a)), d j−1(a) is unambiguous w.r.t. the in-
sertion of bh, and d j(b) is simple, where bh is the su-
perscripted label inserted by opj.

S3) op j = del elm(a, vi) for some a ∈ Σ and some
vi ∈ pos(d j−1(a)), and d j−1(a) is unambiguous
w.r.t. l(d j−1(a), vi).

S4) opj = ext elm(a, u) for some a ∈ Σ and some
u ∈ pos(d j−1(a)), and d j−1(a) is unambiguous
w.r.t. l(d j−1(a), u).

S5) opj = agg elm(a, b, u) for some a, b ∈ Σ and

Fig. 6 Trees t1, t2, t3, and t4.

some u ∈ pos(d j−1(a)), and d j−1(a) is unambiguous
w.r.t. sub(dj−1(a), u).

Proof (sketch): Assume that at least one of Conditions (S1)
to (S5) holds for every 1 ≤ j ≤ n. Then the ambiguities of
(U1) and (U2) are avoided by Condition (S2), the ambiguity
of (U3) is avoided by Conditions (S3), (S4), and (S5), and
the ambiguity of (U4) is avoided by Condition (S1). �

The next example shows that the above condition is not
necessary.

Example 6: Let d1 be a DTD, where

d1(a) = ·(b, e),

d1(b) = ·(∗(c), ∗(+(c, d))),

d1(c) = d1(d) = d1(e) = ε.

Let s = op1op2 be an update script to d1, where op1 =

agg elm(b, f , 21) and op2 = del elm(a, 1). Let d2 = op1(d1)
and d3 = s(d2). We have

d2(a) = ·(b, e),

d2(b) = ·(∗(c), ∗( f )),

d2( f ) = +(c, d),

d2(c) = d1(d) = d1(e) = ε,

and

d3(a) = ·(e),

d2(e) = ε.

Consider how the tree t1 in Fig. 6 (a) is transformed accord-
ing to s. It is easy to verify that d1(b) is not unambiguous
w.r.t. sub(d1(b), 21), thereby Condition (S5) does not hold.
Thus, according to op1 t1 can be transformed into two trees
t2 and t3 (Fig. 6 (b,c)). Then, according to op2, both t2 and
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t3 are transformed into the same tree t4 (Fig. 6 (d)). In gen-
eral, it is easy to see that for any tree t valid against d1,
|TS d1,s(t)| = 1 whereas op1 satisfies none of Conditions (S1)
to (S5). �

6. Testing the Sufficient Conditions

In this section, we show a polynomial-time algorithm for
testing the the sufficient conditions. We have to solve the
following problems.

P1) In Condition (R1) of Theorem 5 and Condition (S2) of
Theorem 6, we have to determine if a content model is
simple.

P2) In Conditions (S3), (S4), and (S5) of Theorem 6, we
have to determine if a regular expression d(a) is unam-
biguous w.r.t. a subexpression of d(a).

P3) In Condition (R2) of Theorem 5 and Condition (S2) of
Theorem 6, we have to determine if a regular expres-
sion d(a) is unambiguous w.r.t. the insertion of bh.

In the subsequent subsections, we show how to solve the
above problems.

6.1 Checking the Simplicity of a DTD

Consider first (P1). Recall that content model d(b) is simple
if for any label a reachable from b, |L(d(a))| = 1. It is easy
to show that, given regular expression r, |L(r)| = 1 iff for an
ε-free NFA M such that L(M) = L(r), all the paths from the
initial state to the final state in M have the same sequence
of labels. This implies that testing if |L(r)| = 1 can be done
in O(|r|2) time. In particular, if r is one-unambiguous, then
whether |L(r)| = 1 can be checked in O(|r|) time since the
Glushkov automaton of r (defined below) can be constructed
in linear time [6]. Thus, we have the following lemma.

Lemma 5: Let d be a DTD and b be a label. Then whether
d(b) is simple can be checked in O(|d|2) time. In particular, if
d is one-unambiguous, then this check can be done in O(|d|)
time. �

6.2 Checking the Unambiguity of a Regular Expression
w.r.t. a Subexpression

Consider next (P2). Let r be a regular expression. In order to
determine whether r is unambiguous w.r.t. a subexpression
of r, we use the Glushkov automaton of r [3], [6] defined as
follows. First, we define the initial set Ir and the final set Fr.

1. If r = ε, then Ir = Fr = {E}, where E is a new label (Ir

and Fr contain E if ε ∈ L(r)).
2. If r = a for some a ∈ Σ, then Ir = Fr = {ai}, where ai

is the superscripted label such that r′ = ai.
3. If r = +(r1, · · · , rn), then Ir = Ir1 ∪ · · · ∪ Irn and Fr =

Fr1 ∪ · · · ∪ Frn .

4. If r = ·(r1, · · · , rn), then

Ir = (Ir1 − {E}) ∪ · · · ∪ (Iri−1 − {E}) ∪ Iri ,

Fr = Frj ∪ (Frj+1 − {E}) ∪ · · · ∪ (Frn − {E}),
where

i =

{
n if E ∈ Irk for every 1 ≤ k ≤ n,
min{k |E � Irk , 1 ≤ k ≤ n} otherwise,

j =

{
1 if E ∈ Frk for every 1 ≤ k ≤ n,
max{k |E � Frk , 1 ≤ k ≤ n} otherwise.

5. If r = ∗(r1), then Ir = Ir1 ∪ {E} and Fr = Fr1 ∪ {E}.
Let ai be a superscripted label occurring in r′. The set of
successors of ai in r′, denoted S ucc(ai, r′), is defined as fol-
lows.

1. If r′ = ai, then S ucc(ai, r′) = ∅.
2. If r′ = +(r′1, · · · , r′n) and ai occurs in r′k (1 ≤ k ≤ n),

then S ucc(ai, r′) = S ucc(ai, r′k).
3. If r′ = ·(r′1, · · · , r′n) and ai occurs in r′k (1 ≤ k ≤ n), then

S ucc(ai, r′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S ucc(ai, r′k)
if k = n or ai � Frk ,

S ucc(ai, r′k) ∪ (Irk+1 − {E})∪
· · · ∪ (Ir j − {E})

if k < n and ai ∈ Frk ,

where

j =

{
n if E ∈ Iri for every k + 1 ≤ i ≤ n,
min{i | E � Iri , k + 1 ≤ i ≤ n} otherwise.

4. If r′ = ∗(r′1), then

S ucc(ai, r′)

=

{
S ucc(ai, r′1) if ai � Fr1 ,
S ucc(ai, r′1) ∪ (Ir1 − {E}) otherwise.

The Glushkov automaton of r is a 5-tuple (Q,Σ, δ, qI , F),
where Q is the set of states, δ is the transition function, qI

is the initial state, and F is the set of final states defined as
follows.

• Q = sym(r′) ∪ {qI},
• δ(qI , a) = {a j | a j ∈ Ir, (a j)� = a} for every a ∈ Σ, and
δ(a j, a) = {ak | ak ∈ S ucc(a j, r′), (ak)� = a},
• F =

{
Fr ∪ {qI} if ε ∈ L(r),
Fr otherwise.

Example 7: Let r = ·(a, ∗(+(a, b))). Then r′ =

·(a1, ∗(+(a211, b212))). We have Ir = {a1}, Fr =

{a1, a211, b212}, and S ucc(a1, r′) = S ucc(a211, r′) =

S ucc(b212, r′) = {a211, b212}. The Glushkov automaton of
r is illustrated in Fig. 7. �

It is easy to show by induction that for any regular ex-
pression r, L(r) = L(Gr).

We test the unambiguity by using a graph called testing
graph† of a Glushkov automaton. Let Gr = (Q,Σ, δ, qI , F)

†We use a modified version of testing graph, originally defined
in [8].
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Fig. 7 The Glushkov automaton of ·(a, ∗(+(a, b))).

be the Glushkov automaton of r. A pair (ai, a j) of states in Q
is compatible if (i) ai = a j = qI , or (ii) there is a compatible
pair (ak, al) such that, ai ∈ δ(ak, a), a j ∈ δ(al, a), and that
(ai)� = (a j)� = a. Then the testing graph of Gr is a graph
T (Gr) = (N, E), where

N = {(ai, a j) | (ai, a j) is a compatible pair of Q},
E = {(ak, al)

a→ (ai, a j) |ai ∈ δ(ak, a), a j ∈ δ(al, a)}.
The following lemma holds by definition.

Lemma 6: Let r be a regular expression and Gr =

(Q,Σ, δ, qI , F) be the Glushkov automaton of r. There are
superscripted words w′,w′′ ∈ L(r′) such that (w′)� = (w′′)�

and that |w′| = |w′′| = l iff there is a path (qI , qI)
(ai1 )�→

(ai1 , a j1 )
(ai2 )�→ · · · (ail )�→ (ail , a jl ) in T (Gr) such that w′[k] = aik

and w′′[k] = a jk for every 1 ≤ k ≤ l and that ail , a jl ∈ F. �

We say that a compatible pair (ai, a j) is accepting if
ai, a j ∈ F. Now the unambiguity can be checked as follows.

Theorem 7: Let r be a regular expression, u ∈ pos(r) be a
position, q = sub(r, u) be a subexpression of r, and Gr be the
Glushkov automaton of r. Then r is unambiguous w.r.t. q iff
the following two conditions hold.

1. For any node (ai, a j) in T (Gr) from which some ac-
cepting node is reachable, either ai, a j ∈ sym(q′) or
ai, a j ∈ sym(r′)\sym(q′).

2. For any edge (ai, a j)
a→ (ak, al) in T (Gr) such that

some accepting node is reachable from (ak, al), if
ai, a j, ak, al ∈ sym(q′), then either

a. ak � S ucc(ai, q′) and al � S ucc(a j, q′), or
b. ak ∈ S ucc(ai, q′) and al ∈ S ucc(a j, q′).

Proof: Only if part: Assume that at least one of Condi-
tions (1) and (2) does not hold. Then by Lemma 6 it is
easy to show that there are words w′,w′′ ∈ L(r′) such that
(w′)� = (w′′)� and that for some i, j (1 ≤ i ≤ j ≤ |w′|) w′[i, j]
maximally matches q′ but w′′[i, j] � L(q′). Thus, r is not
unambiguous w.r.t. q by definition.

If part: Assume that r is not unambiguous w.r.t. q.
Then there are words w′,w′′ ∈ L(r′) such that (w′)� = (w′′)�
and that for some i, j (1 ≤ i ≤ j ≤ |w′|) w′[i, j] maximally
matches q′ but w′′[i, j] does not maximally match q′. First,
if w′′[k] � sym(q′) for some i ≤ k ≤ j, then by Lemma 6
Condition (1) does not hold. Assume on the other hand that

w′′[k] ∈ sym(q′) for any i ≤ k ≤ j. This and the fact
that w′′[i, j] does not maximally matches q′ imply that (i)
w′′[i − 1] ∈ sym(q′) and w′′[i] ∈ S ucc(w′′[i − 1], q′), (ii)
w′′[ j + 1] ∈ sym(q′) and w′′[ j + 1] ∈ S ucc(w′′[ j], q′), or
(iii) w′′[k + 1] � S ucc(w′′[k], q′) for some i ≤ k < j. In
the case of (iii), it is clear that Condition (2) does not hold.
Consider the case of (i) (the case of (ii) can be shown sim-
ilarly). Since w′[i, j] maximally matches q′, we have ei-
ther (a) w′[i − 1] � sym(q′) or (b) w′[i − 1] ∈ sym(q′) but
w′[i] � S ucc(w′[i − 1], q′). This and Lemma 6 imply that at
least one of Conditions (1) of (2) does not hold. �

Lemma 7: Let r be a regular expression and q be a subex-
pression of r. Then whether r is unambiguous w.r.t. q
can be checked in O(|r|4) time. In particular, if r is one-
unambiguous, then this check can be done in O(|r|2) time.

Proof: Assume first that r is not one-unambiguous. Then
the Glushkov automaton Gr of r can be constructed in O(|r|2)
time [5], and the testing graph T (Gr) can be constructed in
O(|r|4) time. Moreover, the condition in Theorem 7 can be
checked in linear time w.r.t. T (Gr). Second, if r is one-
unambiguous, then the lemma follows from the fact that Gr

can be constructed in linear time. �

6.3 Checking the Unambiguity of a Regular Expression
w.r.t. the Insertion of a Superscripted Label

Finally, let us consider (P3). We show how to decide if a
regular expression is unambiguous w.r.t. the insertion of a
superscripted label.

To check this unambiguity we slightly modify the test-
ing graph of a Glushkov automaton. Let r be a regular ex-
pression, Gr = (Q,Σ, δ, qI , F) be the Glushkov automaton of
r, and bh ∈ Q be a superscripted label. We first define a con-
tracted transition function δ′ w.r.t. bh, which is obtained by
contracting each pair of transitions from ai to bh and from bh

to a j into one transition from ai to a j. Formally, δ′ is defined
so that for any ai, a j ∈ Q, a j ∈ δ′(ai, a) iff

• a j ∈ δ(ai, a), ai � bh, and a j � bh, or
• bh ∈ δ(ai, b) and a j ∈ δ(bh, a),

where a = (a j)� and b = (bh)�. A pair (ai, a j) of states
is compatible (w.r.t. δ′) if (i) ai = a j = qI , or (ii) there
is a compatible pair (ak, al) such that, ai ∈ δ′(ak, a), a j ∈
δ′(al, a), and that (ai)� = (a j)� = a. Then the contracted
testing graph of Gr w.r.t. bh, denoted Tbh (Gr), is a graph
(N, E), where

N = {(ai, a j) | (ai, a j) is a compatible pair of Q},
E = {(ak, al)

a→ (ai, a j) |ai ∈δ′(ak, a), a j ∈δ′(al,a)}.
For an edge (ak, al)

a→ (ai, a j) ∈ E, if (i) ai ∈ δ(ak, a) but
bh ∈ δ(al, b) and a j ∈ δ(bh, a), or (ii) a j ∈ δ(al, a) but bh ∈
δ(ak, b) and ai ∈ δ(bh, a), then we say that (ak, al)

a→ (ai, a j)
is odd. If a node (ai, a j) ∈ N satisfies one of the following
conditions, then (ai, a j) is called accepting.

1. ai ∈ F and a j ∈ F.
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2. bh ∈ δ(ai, b), bh ∈ δ(a j, b), and bh ∈ F.
3. (i) ai ∈ F, bh ∈ δ(a j, b), and bh ∈ F, or (ii) a j ∈ F,

bh ∈ δ(ai, b), and bh ∈ F.

In particular, if (ai, a j) satisfies Condition (3), then (ai, a j)
is oddly accepting. Now the unambiguity can be checked as
follows.

Theorem 8: Let d be a DTD, op = ins elm(a, b, vi) be
an update operation to d such that l(d(a), v) = ‘·’, bh be
the superscripted label inserted by op, and Gop(d)(a) be the
Glushkov automaton of op(d)(a). Then d(a) is unambigu-
ous w.r.t. the insertion of bh iff the following three condi-
tions hold.

1. For any odd edge (ak, al)
a→ (ai, a j) in Tbh (Gop(d)(a)), no

accepting node is reachable from (ai, a j).
2. Tbh (Gop(d)(a)) contains no oddly accepting node.
3. bh � δ(bh, b), where δ is the transition function of

Gop(d)(a).

Proof (sketch): Let w be a word. Since l(d(a), u) = ‘·’,
w ∈ L(d(a)) iff there is a superscripted supersequence w′ of
w w.r.t. bh such that w′ ∈ L((op(d)(a))′). Thus the theorem
can be proved as follows.

Only if part: It is easy to show that if one of Condi-
tions (1) to (3) does not hold, then d(a) is not unambiguous
w.r.t. the insertion of bh.

If part: Assume that d(a) is not unambiguous w.r.t. the
insertion of bh. Then for some word w ∈ L(d(a)), there are
superscripted supersequences w′,w′′ of w w.r.t. bh such that
w′,w′′ ∈ L((op(d)(a))′) and that for some k (1 ≤ k ≤ |w′|)
• w′[i] = w′′[i] for every 1 ≤ i ≤ k − 1, but w′[k] = bh

and either w′′[k] � bh or |w′′| = k − 1.

Assume that k > 1 (the case where k = 1 can be shown
similarly). We have two cases to be considered according to
|w′′|.

The case where |w′′| ≥ k: We have w′′[k] � bh. Sup-
pose first that w′[k− 1] = w′′[k− 1] � bh. Since w′′[k] � bh,
there is an index k′ > k such that w′[k′] matches w′′[k].
If k′ = k + 1, then Condition (1) does not hold (since
(w′[k − 1],w′′[k − 1])

a→ (w′[k′],w′′[k]) is an odd edge). If
k′ > k+1, then w′[k] = w′[k+1] = bh, thereby Condition (3)
does not hold. Suppose next that w′[k−1] = w′′[k−1] = bh.
Then w′[k − 1] = w′[k] = bh, thus Condition (3) does not
hold.

The case where |w′′| = k−1: If w′[k−1] = w′′[k−1] �
bh, then (w′[k − 1],w′′[k − 1]) must be an oddly accepting
node and Condition (2) does not hold. If w′[k− 1] = w′′[k−
1] = bh, then w′[k − 1] = w′[k] = bh, thereby Condition (3)
does not hold. �
The following lemma can be shown similarly to Lemma 7.

Lemma 8: Let d be a DTD and op = ins elm(a, b, vi) be
an update operation such that l(d(a), v) = ‘·’. Then whether
d(a) is unambiguous w.r.t. the insertion of bh can be checked
in O(|d(a)|4) time, where bh is the superscripted label in-
serted by op. In particular, if d(a) is one-unambiguous, then
this check can be done in O(|d(a)|2) time. �

Finally, the complexities of checking the sufficient con-
ditions are summarized as follows.

Theorem 9: Let d be a DTD, s = op1 · · · opn be an up-
date script to d, k be the number of ins elm() operations in
s, l be the number of del opr() operations in s, and Rmax

be a regular expression with maximum size occurring in
d, op1(d), · · · , s(d).

1. Whether d, op1(d), · · · , s(d) are simple/limited/one-
unambiguous can be checked in O(|d|2+n·|Rmax|2) time.

2. Assuming that d, op1(d), · · · , s(d) are limited, Condi-
tion (R1) of Theorem 5 can be checked in O(k · Dmax)
time.

3. Assuming that d, op1(d), · · · , s(d) are one-
unambiguous, Conditions (R1) and (R2) of Theorem 5
can be checked in O(k · |Rmax|2 + l · |Rmax| + k · Dmax)
time.

4. The condition in Theorem 6 can be checked in O(n ·
|Rmax|4 + k · D2

max) time.

Proof: Consider first (1). In order to check if d, op1(d),
· · · , s(d) are simple (limited, one-unambiguous), it suf-
fices to check (i) whether d is simple (resp., limited, one-
unambiguous) and (ii) whether r is simple (resp., limited,
one-unambiguous) for every updated content model r in
op1(d), · · · , s(d). Whether a regular expression r is one-
unambiguous can be determined in O(|r|2) time [6]. By this
and the discussion about Lemma 5, it is easy to show that
(i) can be checked in O(|d|2) time and (ii) can be checked
in O(n · |Rmax|2) time. Second, (2) follows from Lemma 5.
Consider (3). By Condition (5) of Lemma 1 we have to
check if L(q) = {ε} for a subexpression q = sub(d(a), u1) of
d(a), which can be determined in O(|q|) time by using the
Glushkov automaton of q. This and Lemmas 5 and 8 imply
that (3) holds. Finally, (4) holds by Lemmas 5, 7, and 8. �

7. Conclusion

In this paper, we first proposed a transformation algorithm
inferred from a DTD and an update script. Then we show
sufficient conditions under which the transformation algo-
rithm inferred from a DTD and an update script is unam-
biguous. Finally, we presented a polynomial-time algorithm
for testing the sufficient conditions.

As a future work, we have to improve the algorithm
so that the algorithm covers more effective application area.
We need to make experiments in order to examine if the
transformation algorithm can be applied to actual XML doc-
uments and DTD updates, and the result of Theorem 2 im-
plies that we should improve the complexity of the algo-
rithm and verify this experimentally.

We would like to investigate whether real DTDs tend
to admit unambiguous transformation. The unambiguity of
regular expression w.r.t. subexpression is a weaker condition
than one-unambiguity of regular expression, and Ref. [7]
states that only four of 60 real DTDs contain regular expres-
sions that are not one-unambiguous. This might suggest that
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real DTDs tend to permit unambiguous transformation.
We also have to make considerations on update opera-

tions further. First, there are some restrictions on our update
operations to DTDs. For example, a del opr(a, u) opera-
tion can be applied only if the operator at u is nesting or
has just one operand. We have to consider relaxing such re-
strictions. Second, in this paper we can neither define a new
content model nor undefine an existing content model. We
should consider incorporating such update operations into
our transformation algorithm.
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Appendix A: Finding a Superscripted Supersequence
of a Word w.r.t. the Insertion of a Super-
scripted Label

Let d be a DTD, op = ins elm(a, b, vi) with l(d(a), v) = ‘·’,
and bh be the superscripted label in op(d)(a) inserted by op.
Let w ∈ L(d(a)) be a word and consider finding a super-
scripted supersequence w′′ of w w.r.t. the insertion of bh. We
use a function γ that maps each superscripted label in d(a)′
to its corresponding superscripted label in (op(d))(a)′. Let
w′ ∈ L(d(a)′) be a superscripted word such that (w′)� = w
and let w′′ = γ(w′[1]) · · · γ(w′[|w′|]). Then it suffices to in-
sert bh’s into w′′ at appropriate positions so that the result-
ing superscripted word matches (op(d)(a))′. Thus a super-
scripted supersequence of w w.r.t. the insertion of bh can be
obtained as follows.

1. Construct the Glushkov automaton Gd(a) of d(a).
2. By using Gd(a), find a superscripted word w′ such that

w′ ∈ L(d(a)′) and that (w′)� = w.
3. Let w′′ = γ(w′[1]) · · · γ(w′[|w′|]).
4. Construct the Glushkov automaton Gop(d)(a) =

(Q,Σ, δ, qI , F) of op(d)(a). Do the following.

a. If w′′[|w′′|] � F, then append bh to w′′.
b. For each i = |w′|, |w′| − 1, · · · , 1, if w′′[i] �

S ucc(w′′[i − 1], (op(d)(a))′), then insert bh be-
tween w′′[i − 1] and w′′[i].

c. If w′′[1] � S ucc(qI , (op(d)(a))′), then insert bh be-
fore the head of w′′.

5. Return w′′.

Example 8: Let d(a) = ∗(+(a, ·(b, c))) and op =

ins elm(a, d, 122). Then d(a)′ = ∗(+(a11, ·(b121, c122))),
op(d)(a) = ∗(+(a, ·(b, d, c))), and (op(d)(a))′ = ∗(+(a11,
·(b121, d122, c123))). Let w = bcabc ∈ L(d(a)),
and consider finding a superscripted supersequence of
w w.r.t. the insertion of d122. In step 2, we obtain
w′ = b121c122a11b121c122, thus in step 3 we have w′′ =
γ(b121)γ(c122)γ(a11)γ(b121)γ(c122) = b121c123a11b121c123.
Consider step 4. It is easy to see that c123 �
S ucc(b121, (op(d)(a))′), thereby one d122 is inserted be-
tween w′′[4] and w′′[5] and another d122 is inserted
between w′′[1] and w′′[2]. Hence we obtain w′′ =
b121d122c123a11b121d122c123. �

It is easy to show that a superscripted supersequence of
w w.r.t. the insertion of bh can be found in O(|op(d)(a)|2+|w|)
time.

Appendix B: Finding a Variant of a Word

Let d be a DTD and op = del opr(a, u) with l(d(a), u) = ‘∗’.



SUZUKI and FUKUSHIMA: AN XML TRANSFORMATION ALGORITHM
607

Then sub(d(a), u) = ∗(q) for some subexpression q of d(a).
For simplicity, assume that q′ is a single superscripted label,
say bh. Let w ∈ L(d(a)) be a word and w′ be a superscripted
word such that w′ ∈ L(d(a)′) and that (w′)� = w. Then a vari-
ant w′′ of w′ w.r.t. bh such that w′′ ∈ L((op(d)(a))′) can be
found similarly to Appendix A. The only difference is that
we also have to delete “excess” bh’s. More concretely, let
w′′ = γ(w′[1]) · · · γ(w′[|w′|]). To obtain a desirable variant
of w′ w.r.t. bh, we have to

v1) insert “missing” bh’s into w′′ and
v2) delete “excess” bh’s from w′′

so that the resulting superscripted word matches (op(d)(a))′.
(v1) can be done similarly to step 4 of the method in Ap-
pendix A, and (v2) can be done by contracting each block
of consecutive bh’s in w′′ to single bh.

Appendix C: Proof of Lemma 4

Let d be a limited DTD and op = ins elm(a, b, vi) be an up-
date operation to d such that op(d) is limited. We show that
for any word w ∈ L(d(a)), there is exactly one superscripted
supersequence w′′ of w w.r.t. the insertion of bh such that
w′′ ∈ L((op(d)(a))′), where bh is the superscripted label in-
serted by op.

Let w ∈ L(d(a)) be a word. Since d(a) is one-
unambiguous, there is exactly one superscripted word w′
such that w′ ∈ L(d(a)′) and that (w′)� = w. Let Gd(a) be the
Glushkov automaton of d(a). Then qI = w′[0] → w′[1] →
· · · → w′[|w′|] is the unique simple path in Gd(a) representing
w, where qI is the initial state and w′[|w′|] is a final state. By
applying op to d(a), bh is inserted into Gd(a). If for any 1 ≤
i ≤ |w′| bh is not inserted between w′[i − 1] and w′[i], then
w′ is the unique superscripted supersequence of w w.r.t. the
insertion of bh such that w′ ∈ L((op(d)(a))′). Assume on
the other hand that bh is inserted between w′[i− 1] and w′[i]
for some i. Let γ be a function that maps each superscripted
label in d(a)′ to its corresponding label in op(d)(a)′. Then
w′′ = γ(w′[1]) · · · γ(w′[i − 1])bhγ(w′[i]) · · · γ(w′[|w′|]) is the
unique superscripted supersequence of w w.r.t. the insertion
of bh such that w′′ ∈ L((op(d)(a))′). Actually, (i) bh occurs
neither “optionally” nor “repeatedly” since op(d) is limited,
and (ii) bh cannot occur between w′[ j− 1] and w′[ j] for any
1 ≤ j ≤ |w′| with j � i since op(d) is limited and thus
w′′[0]→ w′′[1]→ · · · → w′′[|w′′|] must be a simple path in
the Glushkov automaton of op(d)(a).
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