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Design of a High-Throughput CABAC Encoder
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SUMMARY  Context-based Adaptive Binary Arithmetic Coding
(CABAQC) is one of the algorithmic improvements that the H.264/AVC stan-
dard provides to enhance the compression ratio of video sequences. Com-
pared with the context-based adaptive variable length coding (CAVLC),
CABAC can obtain a better compression ratio at the price of higher com-
putation complexity. In particular, the inherent data dependency and vari-
ous types of syntax elements in CABAC results in a dramatically increased
complexity if two bins obtained from binarized syntax elements are han-
dled at a time. By analyzing the distribution of binarized bins in different
video sequences, this work shows how to effectively improve the encod-
ing rate with limited hardware overhead by allowing only a certain type of
syntax element to be processed two bins at a time. Together with the pro-
posed context memory management scheme and range renovation method,
experimental results reveal that an encoding rate of up to 410 M-bin/s can
be obtained with a limited increase in hardware requirement. Compared
with related works that do not support multi-symbol encoding, our devel-
opment can achieve nearly twice their throughput rates with less than 25 %
hardware overhead.
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1. Introduction

Context-based adaptive binary arithmetic coding (CABAC)
and context-based adaptive variable length coding (CAVLC)
are the two entropy coding methods defined in the latest
video compression standard H.264/AVC[1]. CABAC is
based on the binary arithmetic coding with the probability
model being dynamically adjusted by early coded syntax el-
ements such as the macroblock (MB) type, motion vector
and residual coefficient. CAVLC adopts the variable length
coding with the help of early coded syntax elements to se-
lect the lookup table. Compared with CAVLC, CABAC can
obtain a better compression ratio at the price of higher com-
putation complexity. In CABAC, the range of least probable
symbols (Ryps) depends on not only the probability distri-
bution employed in Q-coder [2] but also the actual value of
range R. This leads to a more accurate result than employ-
ing only the Q-coder and QM-coder [3]-[5], the origins of
CABAC, with an increase in the complexity of CABAC en-
coders. Moreover, CABAC uses a complex context-adaptive
scheme, with 398 context models for further compression,
and also introduces the encoding of equally probable sym-
bols. This special procedure is implemented so that these
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symbols are processed with a lower cost than normal ones.

The difficulty of designing high-performance CABAC
encoders comes from the fact that the current operation de-
pends on the previous results which restrict parallel and
pipelined architectures used for throughput improvement.
For high-definition video applications such as 720p HD
(1280 x 720), high-throughput designs are usually required
to meet the real-time constraint. In contrast to a processor-
based design approach which is generally employed for
fixed bit-width operations, an application-specific design
approach can effectively handle variable bit-width opera-
tions required in CABAC encoding. Li[6] adopted a dy-
namic pipelined architecture for a binary arithmetic coder
(BAC); however, its throughput is limited by the bubble in-
sertion due to the multi-cycle operation in the normalization
stage. To further improve throughput, a fully pipelined ar-
chitecture was designed for a BAC accelerator [8],[9]. In
[11]-[13], the authors proposed a complete CABAC, in-
cluding syntax binarization, BAC, context management, and
bit packaging, for easier integration in system-on-chip de-
signs. These designs require a single cycle to deal with
one bin in the optimal scenario. In [14]-[16], a software-
hardware co-design methodology was adopted to realize the
whole CABAC system. Although the maximum through-
put can reach four bins per clock cycle, it only handles the
coefficient-related syntax elements. Moreover, the commu-
nication overhead between software and hardware could be
a critical issue in [14]-[16]. Other works such as [7],[10]
were focused on combining the CABAC encoder and de-
coder due to their similar coding flow.

Because CABAC deals with various types of syntax el-
ements, the controller’s complexity increases dramatically if
multiple symbols are encoded per clock cycle. The recursive
coding characteristic of CABAC also obstructs improve-
ments in the encoding rate. In our work, a high-throughput
CABAC encoder is implemented with only a slight increase
in hardware overhead. The unique features in our develop-
ment can be summarized as follows: 1) By analyzing the
distribution of binarized bins and the syntax element pro-
cessing flow, only a certain type of syntax elements with
a high possibility of occurrence is processed two bins at a
time. In this manner, the resulting throughput can be greatly
increased with limited hardware overhead. 2) The critical
path in the binary arithmetic coder is further reduced by re-
ordering the procedure of range renovation. After the binary
arithmetic coding, renormalization is performed to meet the
precision of interval if the range of interval is lower than the
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predefined lower bound. This data dependency will cause
pipeline stalling if the renormalization procedure requires
more than one cycle in a pipelined design. In our work,
the range renovation is completed exactly within one cycle;
therefore, the pipeline stalling is eliminated and the resulting
throughput is increased accordingly. 3) An efficient mem-
ory arrangement scheme is developed to support the multi-
symbol encoding. Our memory arrangement scheme also
takes into account the context initialization to reduce the
time required for initialization before encoding a new slice.
Experimental results validate the advantages of employing
the proposed design methods.

The rest of this paper is organized as follows. In Sect. 2,
we briefly review the CABAC encoding process. The pro-
posed CABAC architecture is described in Sect. 3. Exper-
imental results are shown in Sect.4. The conclusions are
given in Sect. 5.

2. Overview of CABAC Encoding

The original alphabet in CABAC is replaced with only two
notations: Least Probable Symbol (LPS) and Most Prob-
able Symbol (MPS). The approximation of multiplication
within the BAC procedure is also imported to reduce the
computational time required to update the bounds of the in-
terval. With these modifications, the interval renovation can
be modified as follows:
If the input symbol is equal to MPS,

Lyew = Lo
Ryew = Ryps = Rota — Rrps (1
If the input symbol is equal to LPS,

Luew = Lota + Rups = Loia + Rola — Rips
Rnew = RLPS (2)

where Ry, and L,,,, respectively, represent the range size
and the lower bound of a new interval; R, and L, cor-
respond to the range size and the lower bound of the old
interval; R;pg and Ry/ps denote the size of subintervals as-
sociated with LPS and MPS, respectively.

Figure 1 shows a generic block diagram of CABAC,
which is composed of three elementary components: a bi-
narizer, a context modeler, and BAC.

2.1 Binarizer

The binarizer transforms non-binary syntax elements into

context mode/ uﬂiate
|

regular| Context T _Regula_r_
Modeler 1" [Coding Engine|

DOl iy Emtine]
Coding Engine]

bin string | termination | |
| Coding Eninel

Binary
Arithmetic Coder,

syntax
element|

Fig.1 The CABAC block diagram.
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bin sequences, the so-called bin strings. This operation not
only simplifies the original M-ary arithmetic coder into a
binary arithmetic coder, but also reduces the complexity of
probability renovation while using the regular mode. Within
the binarizer, each syntax element has a corresponding bi-
narization technique, including unary, truncated unary, k-th
order Exp-Golomb, and fixed length coding, as specified in
the H.264/AVC standard.

2.2  Context Modeler

One of the most important properties of CABAC is its ability
to utilize a clean interface between the probability modeling
and the coding procedure. In the modeling stage, a prob-
ability model called context, specifying the probability of
LPS and MPS, is assigned to the current bin. Each context
consists of one valMPS and one pStateldx, where valMPS
defines what MPS is and pStateldx indicates the probability
state of LPS. In the subsequent coding stage, the actual cod-
ing engine is then applied to generate a sequence of bits as a
coded representation of these bins according to the selected
context. Since the context determines the coded bitstream
and its efficiency, it is crucial to design an adequate model
that explores the statistical dependencies to a large extent
and keeps this model up to date during the coding proce-
dure.

Four basic types of context are specified in CABAC.
The first one is based on the related bin values of the two
neighboring elements to the left and on top of the current
syntax element. The second one is only defined for two syn-
tax element types, mb_type and sub_mb_type. For this kind
of context, the values of prior coded bins (bg, by, by ...b;—1)
are used to choose the context for the current bin with the
ith index. Both the third and fourth types are applied to the
residual data only. The third one depends on the scanning
order, not on the past coded data. There are two scanning
orders defined in H.264/AVC. One is the zigzag scan for the
frame mode; the other is the field scan for the field mode.
They are used in reordering 4 X 4 DCT residual blocks. The
fourth one specifies the modeling functions that involve the
evaluation of the accumulated number of coded coefficient
levels prior to the current bin.

2.3  Context Initialization & Renovation

All the contexts must be initialized at the beginning of cod-
ing a slice. Each context is initialized according to the quan-
tization parameters of the current slice (SliceQPy), m and n,
where m and n are initialization parameters defined in the
H.264/AVC standard. The initialization parameters m and
n may be different for each context, and the initialization
procedure is based on the following equations:

CtxState =Max(1,Min(126,((m*SliceQPy) >>4)+n));
pStateldx = (CtxState < 63)?

(63—CtxState) : (CtxState—64);
valMPS = (CtxState < 63)70 : 1;
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After initialization, pStateldx and valMPS will be assigned
to each context as the initial state. Since pSrateldx denotes
the probability state of LPS, the probability renovation can
be replaced by the variation of pStateldx. Therefore, if the
input symbol is equal to MPS, pStateldx is increased; oth-
erwise pStateldx is decreased during the CABAC encoding
procedure.

2.4 Binary Arithmetic Coder

The binary arithmetic coder supports three execution modes:
the regular, bypass, and termination modes. When there is
a high correlation between the current coding bin and early
coded bins, the regular mode is used and the context that
records the associative probabilities are imported to deal
with the bin. From Eqgs. (1) and (2), Ryps is based on the
current range R[7:6] (the two most significant bits of R) and
pStateldx (see Table 9-35 in the H.264/AVC standard); each
pStateldx has four values of Ry pg; one of the four values of
R, ps is chosen according to R[7:6].

The arithmetic coding is done by recursive subinter-
val division. Thus, the range size of the interval becomes
smaller and smaller as the arithmetic coding proceeds. In
contrast, the precision needed to represent R becomes larger
and larger during the coding procedure. To prevent an in-
crease in the required precision, renormalization is used
when R becomes lower than the predefined lower bound
(256). Renormalization is done by recursively multiplying R
by 2 until it is larger than the predefined lower bound; hence,
R is always higher than 256 before the next bin is coded. The
times of renormalization depends on the number of leading
zero (LZ) bits of R. The bypass mode is used if the cor-
relation of bins is low, e.g., the coefficient levels. Since the
probabilities of 0’s and 1’s are both 0.5, no context is needed
and only one left shit operation is necessary to renormalize
the computed R to prevent it from being lower than 256. The
termination mode is adopted only when two syntax element
types, i.e., mb_type and end_of _slice, are coded to terminate
CABAC coding.

3. Proposed CABAC Encoder Architecture

The number of cycles needed to encode one syntax element
is proportional to the number of bins generated by the bi-
narizer. The encoding rate can then be increased by allow-
ing multiple bins to be processed at a time. However, by
doing so, the complexity of controllers and the associated
data path components are increased. How to derive a high-
throughput CABAC encoder with only a slight increase in
hardware overhead is thus a challenging task.

We observed that when handling syntax elements, most
generated bins and their processing orders are rather reg-
ular. Simulation results also reveal that most bins are ac-
quired from binarized syntax elements associated with the
residual data, including the significant coefficient (SC) map,
signs of residual coefficients, and residual coefficient levels.
Table 1 shows the distribution of binarized bins among dif-
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ferent video sequences. In this table, the number of bins
obtained from both the SC map and coeficient levels occu-
pies up to 75 % of the total number of bins. This implies
that dealing with only these syntax elements can efficiently
speed up the encoding rate. In this manner, we can improve
the resulting throughput with only a slight increase in the
controller’s complexity.

Figure 2 depicts the block diagram of the proposed
CABAC encoder. The main building blocks are described
in the following subsections.

3.1 Syntax Element Processing Flow

According to the syntax element processing flow specified
in the H.264/AVC standard, the coding flow associated with
the residual data (SC map and coefficient levels) is rather
simple compared with the entire encoding system. The over-
head of handling residual data can thus be greatly alleviated
if we process two bins per clock cycle only when encoding
the SC map and coeflicient levels. As a result, the binarizer
has to provide one or two bins per clock cycle based on the
type of syntax elements. In our development, it is assumed
that the bins obtained from the binarizer are consumed im-
mediately. This implies that the bin generation rate of the
binarizer is exactly equal to the bin consumption rate of the
binary arithmetic coder; this avoids the need for additional
buffers to store the generated bins.

Table 1  Distribution of binarized bins.

Sequences | # of Bins SC Map Coefficient Levels| Total
akiyo 1699082 | 430020 (25.31%) | 401296 (23.62%) | 48.93%
mother | 2044590 | 425958 (20.83%) | 355163 (17.37%) | 38.20%

hall 2980897 | 885242 (29.70%) | 830308 (27.85%) | 57.55%
news 3568014 | 1044353 (29.27%) [ 1037967 (29.09%) | 58.36%
silent 4141896 (1267472 (30.60%) | 1047218 (25.28%)| 55.88%
foreman | 5318555 | 1510215 (28.40%) 1273117 (23.94%)| 52.34%

coastguard | 9522209 |3841470 (40.34%) 2885745 (30.31%)| 70.65%
mobile [13454760[5185887 (38.54%)|4733768 (35.18%)| 73.72%
stefan  |18200193|6775738 (37.23%) 6926396 (38.06%)| 75.29%

SE | Syntax Information| LZ pase)
Memory Generator[—®| Binary
R.ps | Arithmetic
y v Rips LOOKUPL 3| Coder (BAC)
SE SE Table
Extraction Updater T I
7 Y ) oo
. onte
v | bin »| Memory Parser
SE |l Updater
FSM | Binarizer FIFO
context
controller

LA T l L] ¥ v

SE Memory| | Context Memory Context bitstream
Controller | JAddress Generator] | Memory | | APpender

SE: Syntax Element LZ: Leading Zero

Fig.2

Block diagram of the proposed CABAC encoder.
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3.2 Syntax Element Extraction

The context selection for some specific bins is based on a
modeling function of the related bin values of previous syn-
tax elements in neighboring macroblocks (MBs) to the left
of and on top of the current MB as stated in Sect.2.2. As a
result, syntax elements of the current MB must be stored for
choosing appropriate contexts in future coding procedure.
In fact, we can store only required information instead of
the raw syntax elements to reduce memory space. Applying
such a modification in our development, merely 152 bits of
memory space are sufficient to store the extracted informa-
tion of one MB. Note that exactly one row of MBs within
the current slice must be held because only those MBs to
the left of and on top of the current one may be referred
to. Hence, the size of the single-port SEE (syntax element
extraction) memory is proportional to the picture width in
terms of MB.

3.3 Context Memory Arrangement

The context memory is partitioned into two distinct parts in
our design because different strategies are used to deal with
bins associated with the residual block and remaining con-
texts. The first part, denoted as SigLast context memory, is
used to handle two bins per clock cycle for the SC map in
the residual block and the second one, named as ExSigLast
context memory, is allocated to process remaining contexts.
Note that dual-port SRAM is adopted to implement the con-
text memory for supporting concurrent read and write oper-
ations in our development.

Figure 3 (a) shows the arrangement of SigLast con-
text memory which consists of contexts associated with
the SC map. Because at most two bins may be en-
coded for the SC map, each entry in SigLast context mem-
ory contains four 7-bit contexts (two for “significant” and

-t 14 bits - 14 bits » A | mb skip flag
scan position 0 | scan position 1 mb_skip_flag
scan position 2 | scan position 3 mb_skip_flag
scan position 4 | scan position 5 mb_type
scan position 6 | scan position 7 | | mb type
scan position 8 | scan position 9 »
scan position 10 | scan position 11
scan position 12 ] scan position 13
| significant [last_significant | 2
s 7ot 7bits

(a) SigLast context memory. (b) ExSigLast context
memory.

<41 bit—p-4— 6 bits —p

valMPS

pStateldx

(c) Structure of context in (a) and (b).

Fig.3

Context memory arrangement.
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two for “last_significant”). The scan position numbers in
Fig. 3 (a) are arranged based on the scan order as stated in
Sect. 2.2. Each context in a scan position comprises the val-
ues of valMPS (1bit) and pStateldx (6bits), as depicted in
Fig. 3 (¢), to determine the value of R, ps.

The ExSigLast context memory shown in Fig.3 (b)
stores the remaining contexts with each entry consisting of
only one context. Note that the contexts associated with co-
efficient levels in the residual block are stored in ExSigLast
context memory because the same context can be recur-
sively used while encoding contiguous bins of coefficient
levels. In this manner, the updated context can be used im-
mediately to encode the current bin to save memory space
and still support the need of multi-symbol encoding for the
coefficient levels. In other words, the updated context can
be directly sent to the binary arithmetic coder when written
back into ExSigLast context memory. Moreover, accord-
ing to CABAC encoding flow, different slice coding pro-
cedures (I, P or B slice) will involve different sets of con-
texts; therefore, only the required contexts are loaded to
ExSigLast context memory during context initialization pro-
cedure. As a result, it takes only storage of 128*7 bits, in-
stead of 276*7 bits, to store all the contexts except for those
associated with the SC map.

Because there are 398 contexts in CABAC encoding
and context initialization should be done before delivering
the first MB of the current slice to the CABAC core, the en-
coding performance will be strongly affected by the frequent
initialization process if not properly handled. To reduce the
initialization latency, the initialization table is divided into
five smaller ones according to the syntax element type and
the slice type since only a part of contexts are used in dif-
ferent slice coding procedures. Figure 4 depicts the parti-
tioned initialization table in which two of the sub-tables are
associated with the SC map and three are for the remaining
syntax elements. Note that the contexts associated with the
SC map and those with the remaining syntax elements can
be initialized concurrently to further reduce the initializa-
tion time because they are allocated in different parts of the
context memory. The avoidance of loading unused contexts
also helps to reduce the initialization time.

significant &
last_significant
Original SC map
initialization
table other syntax
elements

5 smaller
initialization tables

Fig.4 Initialization table partitioning.
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3.4 Binary Arithmetic Coder Design

Equations (3), (4) and (5) show the renovation of R and L
when two bins are encoded at the same time. In Egs. (3)
and (4), bin; and bin, denote the 1st and 2nd bin coming
from binarizer; R;ps; and R, ps, are the range of LPS for the
bin; and bin, respectively. Intuitively, Ry ps> depends on the
value of Ry,,,, which is determined by the value of bin;. To
get Loy, Liner and Ly,» are the increases should be added to
L4 according to the value of bin; and bin, respectively.

{ (Roa — Ripsy), if bing = valMPS,
Rtemp =

Rypsi, otherwise )
R = (Riemp — Rrps2), if biny = valMPS$,
"\ Repsas otherwise
L= 0, if bin; = valMPS$,
el = (Rya — Ripsy), otherwise
Lo if biny = vaiMPS,
inc2 = (Remp — Rips2),  otherwise
Lnew = Lold + Lincl + LincZ (5)

Because the required operations in Egs. (3) and (4) are
the same and the derivation of the range R, is indepen-
dent of the value of L, we can employ a two-stage pipelined
structure to improve the operation frequency. That is, those
operations related to R are accomplished in the first stage;
the derived values (L;,1 and L;,) are then added to the old
value of L to obtain the new L (Ly,,,). Since the binary arith-
metic coder has to deal with either one or two bins in one cy-
cle depending on the content of syntax elements, we can im-
plement those related operations on R in the first stage as a
cascaded structure of two identical units. The unit designed
to handle one bin at a time is shown in Fig. 7 (a) which can
be directly mapped from Fig. 5 (a). When the output is con-
nected to the input R of the following identical unit, the cas-
caded structure can then be used to take care of two bins at
a time. Because there are only two simple addition opera-
tions in the second stage, the resulting critical path delay of
R renovation in the first stage becomes the bottleneck of the
pipelined structure. As a result, reducing the critical path of
R renovation can further improve the encoding rate.

Figure 5(a) gives the pseudo-codes of R renovation
according to the reference software of H.264/AVC. From
Fig. 5 (a), we observe that R must be renormalized (see the
RenormE function) while the value of R is lower than the
predefined lower bound. However, the times of renormal-
ization cannot be known until the new R is determined ac-
cording to the current bin value (binVal). Therefore, the
critical path delay is dominated by the accumulated delay
for accomplishing the required operations to find Ryps and
the following normalization process. To relax this data de-
pendency, we adopt a two-step normalization scheme to re-
duce the critical path delay. In the first step, normalization
is done depending on the value of pStateldx which is known
in advance; therefore, it can be executed in parallel with the
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R_Renovation (valMPS, pStateldx, binVal)
pRIdx=R [7:6];
R; ps=rangeTabLPS[pStateldx][pRIdx];
Rups=R - Ryps;
if (binVal != valMPS) R=R; ps;
else R=R\ps;
RenormE();  //Described below
End
RenormE()
if (R<256)
{R=R<<1; Renormk();} //Recursive normalization
else
exit(); //Leave the Renormk()
End

(a) Pseudo-code of R renovation according to reference software.

R_Renovation_Modified (valMPS, pStateldx, binVal)
pRIdx=R [7:6];
R, ps=rangeTabLPS|pStateldx][pRIdx];
LZ a5 =LZG(pStateldx); //Refer to Fig. 6 (b)

Ryps™R - Ry ps;

R ps= (R ps<<(LZ (base))):

if (binVal == valMPS) R=R,ps;

else R=R; ps;

R=(R[8]!=1)2(R<<1):R; //At most one left-shift
End

(b) Modified flow of R renovation.

Fig.5 R renovation flow.

required operations to find Ryps. In the second step, at most
a simple left shift will be required as shown in Fig.5 (b),
discussed as follows.

To justify the derivation of Fig.5 (b), we partition the
R renovation procedure into two cases. (C.1) R = Ryps: In
such a case, one to seven times of renormalization might
be done according to the number of leading zeros (LZs) in
Ryps (see Fig.5(a)). This implies that the number of re-
quired renormalization operations is unknown before com-
puting the value of R;ps. However, as can be observed from
Table 9-35 (Specification of R;ps depending on pStateldx
and R[7:6]) in the H.264/AVC standard, the difference of
LZs for a given pStateldx is not larger than one regardless
of the value of R[7:6]. As an example, Fig. 6 (a) shows one
of the rows in Table 9-35. For pStateldx = 36, the value of
Ry ps is ranged from 22 to 37, which means that the num-
ber of LZs is either 3 for (37);9 = (000100101),, or 4
for (22);9p = (000010110),. Since at least three times of
renormalization are required, these three operations are per-
formed in the first step of renormalization. The extra renor-
malization is deferred to the next step if necessary. Note that
this property holds for all the rows in Table 9-35 as listed in
Fig. 6 (b), in which the second column shows the number of
LZs of the four R;ps’s; the last column denotes the mini-
mum number of LZs for each pStateldx. (C.2) R = Ryps:
In this case, the value of Ryps should be larger than 128 be-
fore encoding the next bin because the conditions R > 256
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R[7:6]
pStateldx 5 T > 3

36 22% 27 32 | 37**

*(22)10=(000010110),
#4(37),~(000100101 ),
(a) Example of the LZs for the four Ryps’s assuming pStateldx = 36.

pStateldx |No. of LZs in four Rips’S | LZ pase)
0'2 1 1
3-12 2-1
1315 2 >
16-25 3-2
26-29 3 3
30-38 4-3
30-42 %! 4
43-52 5-4
53-57 5 5
58-62 6-5
63 7/ 7

(b) Summary of LZs for different values of pStateldx.

Fig.6  Derivation of LZ pgse).

and Ryps > (1/2) * R are always satisfied. This implies that
at most one renormalization is needed. The scenario is the
same in the final step while R; pg is chosen.

Based on the discussion above and Fig. 5 (b), Fig. 7 (b)
depicts the modified structure of R renovation, in which
subtraction is performed concurrently with the barrel shift-
ing, and the extra renormalization step, if needed, is ac-
complished by using a simple multiplexing operation. In
Figs.5(b) and 7 (b), the notation LZ ;) is used to denote
the minimum number of leading zeros for a given pStateldx.
With this modification, the resulting critical path delay can
then be shortened, thus enhancing the overall operating fre-
quency.

3.5 Parser and Appender

If the range of the interval is lower than the predefined lower
bound, renormalization will be done and some leading bits
of L will be shifted out to meet the precision of the inter-
val. However, if the shifted bits are “0111...,” the result
may be later modified to “1000...”. This is the so-called
carry propagation problem. Since the shifted bits may need
to be corrected in the future coding procedure, they cannot
be sent until they are asserted correctly. Therefore, a large
FIFO may be used to store these un-verified bits. Instead of
holding un-verified bits, they can be packed as a token and
then stored in FIFO [14]. The packed token format is given
in Fig. 8 (a), where stuf flag specifies that the stuffing word
is 16’h0000 (stuf flag = 0) or 16’hFFFF (stuf flag = 1),
stuf _-words_num denotes the number of stuffing words and
leading _bitstream contains the value to be transmitted ahead
of the stuffing words. Figures 8 (b) and (c) illustrate the
transformation between tokens and transmitted bitstreams.
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|Subtractor Barrel |LZwbase)
_I Shifter
A

MUX isMPS
LzC y
Barrel [8]
Shifter

(a) Original structure. (b) Modified structure.

Fig.7  Structures of R renovation.

stuf flag | stuf_words_num | leading_bistream

(a) Token format.

tokenl 0 | 1 |0101 11100011 1001 |

bitstream

| 0101 1110 0011 1001 | 0000 0000 0000 0000 |

(b) Example with stuf flag =0 and stuf words_num =1.

token| 1 |

~

2 |0101 1110 0011 1001 |

~—

bitstream —

|0101 11100011 1001 | 1111 1111 1111 1111 | 11111111111 111

—

(c) Example with stuf flag =1 and stuf” words_num =2.

Fig.8 Transformation between tokens and bitstream.

Finally, an appender is used to unpack these tokens, produce
the actual transmitted bitstream, and deliver them to exter-
nal circuits. With the packed token format, more unsent bits
could be held using the same FIFO size.

4. Experimental Results and Performance Analysis

The proposed CABAC encoder, designed with a 6-stage
pipelined architecture, was coded in Verilog hardware de-
scription language, simulated extensively based on the test
patterns acquired from the reference software, and synthe-
sized using 0.18 um processes. Tables 2 and 3 respectively
list our synthesized results and performance comparisons
with related works. Compared with [7], [13] and [18] which
do not support multi-symbol encoding, our development can
achieve twice their throughput rates with limited hardware
overhead (less than 25 %). Note that the much higher area
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Table 2  Synthesis and results of CABAC encoders.
Technology | Speed .
Area Normalized Area
(um) (MHz)
Ours |TSMC 0.18| 216 |0.432 mm?%/43.2K gates 1
[13] |TSMC 0.18| 190 0.355 mm* 0.82
[18] |TSMC 0.13| 200 34.2K gates 0.79
[71 |[TSMC 0.18| 230 |0.534 mm?* 53.4K gates 1.23
[16] | AMS 035 | 186 19.4K gates 0.449

Table3  Performance comparison with other designs.

Processing Rate .
Design 3\1/)5;;1) (bin /cy%le Throughput (M-bin/s)
Average |Max Average Max
Ours 216 1.5-1.9 2 324-410 432
[13] 190 1 1 190 190
[18] 200 0.67 1 134 200
[7] 230 0.6 1 138 230
[16] 186 | 1.9-23 (HW) | 4 | 353-428 (HW) | 744

requirement in [7] comes from its additional support for
CABAC decoding.

The reason why the area requirement in [16] is much
less than others is because their hardware design handles
only the syntax elements of residual coefficients, and other
syntax elements are processed by the embedded processor.
Although the processing rate of their hardware design can
reach 2.3 bins per cycle, the overall encoding rate is limited
by the processor because the optimal processing rate of the
processor is 10 cycles per bin as mentioned in their previous
work [14]. In order to estimate the throughput of [16], we
assume the percentage of bins associated with residual coef-
ficients is 75 % which is the best scenario in Table 1. There-
fore, the estimated average throughput of Osorio’s HW/SW
co-design is [2.3%0.75+(1/10)%0.25]% 186 = 325 (M-bin/s)
when considering the SW performance. The throughput of
our design is [2 * 0.75 + 1 % 0.25] = 216 = 378 (M-bin/s).
Furthermore, if the performance degradation caused by the
communication between HW and SW is considered, the es-
timated average throughput of Osorio’s design will become
lower. As a result, our design still outperforms Osorio’s
work.

To gain insight into the effectiveness of the proposed
CABAC encoder, experiments were built to simulate video
sequences with parameters listed in Table 4, where the Level
in AVC/H.264 defines the upper bound of bit rates for trans-
mission. We use the AVC/H.264 reference software to en-
code the video sequences and enable the rate controller to
reach the maximum bit-rate constraint. The syntax elements
generated from the reference software are then sent to the
proposed CABAC encoder to verify the results and check
the number of required cycles to complete the task. From
Table 4, one can observe that the proposed design can pro-
cess Level 3.2 720p HD video sequences at a clock rate of
less than 27 MHz. Note that the equivalent clock rate is de-
fined as the total cycles multiplying (60/181) in this case.
Based on the experimental results in Table 4, it is expected
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Table 4  Simulation results for example sequences.
Sequences mobcal | parkrun | shields [stockholm
Level 3.2
Resolution 1280x720
Bitrate (k-bit/sec) 20000
Frame Rate 60
(frame/sec)
Total Frames 181
Total Cycles | 80197927 | 77723077 | 75704950 | 79442736
Equivalent Clock
Rate (MHz) 26.73 25.91 25.23 26.48

that the proposed CABAC encoder can handle Level 5.0
(3673 x 1536) video sequences when it is operated at its
maximum operation frequency, i.e. 216 MHz.

5. Conclusions

A new architecture for implementing high-throughput
CABAC encoders has been presented in this paper. Using
the developed schemes, the resulting CABAC encoding rate
can be greatly increased with limited hardware overhead.
The main features of our design are summarized as follows.
1) An efficient memory arrangement scheme is applied to
reduce the hardware requirement and the time required for
memory initialization. 2) Based on a prior analysis of bin
distribution, the throughput rate is effectively improved by
allowing only certain types of syntax elements to be pro-
cessed two bins at a time. 3) The operating frequency is
increased by adjusting the data flow in the binary arithmetic
coder. 4) The procedure of range renovation can be accom-
plished within one cycle to avoid pipeline stalling. 5) A
bit-packaging scheme is adopted to deal with the problem
of long carry propagation at the output of CABAC encoder
using a limited buffer size. Our design can achieve an en-
coding rate of up to 410 M-bin/s under the best case scenario
with limited hardware overhead.
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