
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009
705

PAPER

Learning and Control Model of the Arm for Loading

Kyoungsik KIM†,††a), Student Member, Hiroyuki KAMBARA††,†††, Member, Duk SHIN††††, Nonmember,
and Yasuharu KOIKE††,†††, Member

SUMMARY We propose a learning and control model of the arm for
a loading task in which an object is loaded onto one hand with the other
hand, in the sagittal plane. Postural control during object interactions pro-
vides important points to motor control theories in terms of how humans
handle dynamics changes and use the information of prediction and sensory
feedback. For the learning and control model, we coupled a feedback-error-
learning scheme with an Actor-Critic method used as a feedback controller.
To overcome sensory delays, a feedforward dynamics model (FDM) was
used in the sensory feedback path. We tested the proposed model in sim-
ulation using a two-joint arm with six muscles, each with time delays in
muscle force generation. By applying the proposed model to the loading
task, we showed that motor commands started increasing, before an ob-
ject was loaded on, to stabilize arm posture. We also found that the FDM
contributes to the stabilization by predicting how the hand changes based
on contexts of the object and efferent signals. For comparison with other
computational models, we present the simulation results of a minimum-
variance model.
key words: motor control, FDM, loading, actor-critic, feedback-error-
learning

1. Introduction

Many studies have been done to find the mechanism that hu-
mans use to generate arm movements. Arm movements can
be classified into two groups, postural control and reach-
ing movements. Among the arm movements, mainly reach-
ing movements have been studied, and the associated pro-
files, roughly straight hand paths with bell-shaped veloc-
ity, are well reconstructed by the assumption that the cen-
tral nervous system (CNS) optimizes cost functions related
to trajectory or muscle activations [1]–[3]. In the optimiza-
tion models, predictions are mostly compared with hori-
zontal reaching movements, which do not account for the
influence of gravity. On the other hand, postural control
has been studied relatively less, perhaps because postural
control is considered comparatively easy or less important.
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However, it has its own complexities, especially in environ-
ments under sudden dynamics changes in the sagittal plane.
In such an environment, stable postural control will be dif-
ficult unless control problems (e.g. predictions of environ-
mental changes, how to use visual and somatosensory in-
formation, delays in the sensory path) are correctly solved.
Moreover, since there are infinitely numerous combinations
of muscle activities for maintaining a position, postural con-
trol is an ill-posed problem. This is an important issue of
motor control to be considered. In addition, arm movements
in real life are affected by gravity and postural control occurs
in many daily-life interactions, such as being handed a glass
of water. Therefore, postural control in the sagittal plane
is a valuable topic to study for generalizing motor control
theories of the arm.

In a psychophysical experiment where a subject per-
forms a loading task, loading an object onto one hand with
the other hand, in the sagittal plane, it is confirmed that mus-
cle forces are gradually increasing before the object contacts
the hand [4]. This result indicates that muscle forces are ad-
justed in a feedforward way. It is, however, not clear how
humans can learn and control motor commands in a feedfor-
ward way without prior dynamics knowledge, nor what the
motor control model consists of.

One viable controller for realizing the feedforward way
in biological systems is to use an inverse model [5]. The in-
verse model inverts the causal flow of the biological system,
which generates from a given state of the arm motor com-
mands that produced that state. Is solely an inverse model
enough as a controller of the arm? Humans are able to re-
spond in environments with sudden dynamics changes, such
as a loading task or catching a ball, despite time delays of
about 50-100 ms in the somatosensory loop when transfer-
ring sensory signals from sensory receptors to effector or-
gans (e.g. arms and legs). For this to be possible, we believe
a motor control model needs a module to compensate for
possible movement errors due to time delays. Errors would
not be generated if the inverse model outputted accurate mo-
tor commands for all environmental changes. It is, however,
quite unlikely to have accurate inverse models for all cases
in our daily lives. Therefore, the motor control model needs
a feedback controller. In addition, a feedforward dynamics
model (FDM) would be used in the feedback loop for state
predictions and acquiring context information from the envi-
ronment [6]. The usage of the FDM in the brain when inter-
acting with objects is represented by Grip-force-load-force
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coupling [7], [8]. It is also thought that the FDM minimizes
the effects of sensory delays [9], [10].

In this study, we proposed a motor control model for
loading based on the aforementioned principles. In the pro-
posed model, an inverse statics model (ISM) is used as the
inverse model, which handles the static component of the
inverse dynamics. Therefore, when a desired state (e.g.
joint angles) is given, the ISM outputs motor commands
that make the arm converge to the corresponding equilib-
rium position. A feedback-error-learning scheme [11] is ap-
plied to train the ISM. Although Direct Inverse Model-
ing [12] and Forward and Inverse Modeling [9] can be used
to train the inverse model, feedback-error-learning has more
advantages because it acquires the inverse model while con-
trolling biological systems that have redundancy. Alterna-
tively, the Actor-Critic method which is one of the major
frameworks for temporal difference (TD) learning in the Re-
inforcement Learning [13] is adapted to train the feedback
controller in feedback-error-learning. Since it is difficult to
imagine that we are born with a trained feedback controller,
learning should be performed in a trial-error manner to ac-
quire it [14], [15]. Finally, a FDM is used in the feedback
path to overcome sensory delays. The validity of the pro-
posed framework was already shown in the previous study,
[14] for reaching movements.

The objective of this study was to determine how hu-
mans control the arm in an environment where sudden dy-
namics changes occur (e.g. loading) and how to use the in-
formation of prediction and sensory feedback. Calling the
proposed model a learning and control model, we use the
term “learning” to convey that the proposed model can ac-
quire control laws without prior dynamics knowledge. In the
simulation of the proposed model, a loading task was per-
formed. Hand trajectories, motor commands and hand force
were represented using a two-joint arm with six muscles that
have delays in signal transfer. Results showed that motor
commands gradually increased, before the object made con-
tact with the hand to stabilize posture based on predicted
information from the FDM. The simulation data showed
tendencies similar to the psychophysical experimental data
in the view of hand trajectories and hand force.

2. Proposed Model

2.1 Learning and Control Model

The learning and control model is shown in Fig. 1. In the
simulation, the state space, θ = (θS , θE , θ̇S , θ̇E), consists
of angles and angular velocities of the shoulder and elbow
joint. However, angular velocities in the desired state space,
θd = (θdS , θ

d
E , 0, 0), are always set to 0 because the aim of the

task is to maintain the arm at a desired position. Therefore,
the ISM is used as an inverse model instead of an inverse
dynamics model (IDM) which includes angular velocity and
acceleration.

As shown in Fig. 1, the ISM receives the desired state
θd and outputs feedforward motor commands uff for six

Fig. 1 Learning and control model using feedback-error-learning and
Actor-Critic method. When a desired state, θd , is given, the forward dy-
namics model predicts the state of the arm at nΔt ahead using context infor-
mation and motor commands, in order to control the arm that has sensory
delay. Then, the ISM outputs motor commands for the arm to hold the de-
sired state. The actor outputs motor commands to modify predicted errors
between the desired state and predicted state.

muscles. Meanwhile, Actor receives the state error θe be-
tween the desired state θd and predicted state θ̂, and pro-
duces feedback motor commands ufb for six muscles. The
sum of uff and ufb is fed to the controlled object, “Arm”, as
motor commands, usum. Then, the actual state θ is updated
according to the dynamics of the controlled object and the
environment. Meanwhile, motor commands and context sig-
nals are inputted to the FDM to generate the predicted state,
θ̂.

Next, we calculate the reward r, a function of the pre-
dicted state that evaluates how close the predicted state is
to desired state. Based on the reward and value function
outputted from Critic, a reinforcement signal δ is calcu-
lated [16]. Improvements of Actor and Critic are carried out
by δ. If δ is positive, it means that usum just taken worked
better than expected. Thus, the tendency to select usum will
be strengthened. Whereas if δ is negative, then the tendency
to select usum will be weakened. Meanwhile, the output of
Actor ufb is used as the error signal for improving the ISM.
Then, the ISM learned to make the ufb zero.

2.2 Implementations of Actor-Critic, ISM and FDM

2.2.1 Actor-Critic Method

We used TD (λ) learning and a continuous Actor-Critic
method for the implementations of Actor-Critic [16] since
the treated spaces and time are continuous. Normalized
gaussian network (NGNet) [16] were used as a function ap-
proximator for Actor-Critic. The inputs to Actor and Critic
are both θ(t)e. We denote this θ(t)e simply as x(t) for com-
pactness of notation (x(t) � θ(t)e).

In the Actor-Critic method, Critic learns so that the
value function V(x(t)) for input state, x(t), is estimated cor-
rectly using reward values and outputs estimated evaluation
value that presents how desirable the input state is. Mean-
while, Actor learns optimal control law μ(x(t)) and selects
an action uactor(t) based on the law so as to move x(t) to a
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higher evaluation. The estimate of value function is

V(x(t)) =
N∑

k=1

wC
k bk(x(t)) (1)

and the i-th output of Actor, uactor
i (t) is determined as

uactor
i (t) = g

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

wA
i,kbk(x(t)) + σ(t)ni(t)

⎞⎟⎟⎟⎟⎟⎠ − 0.5 (2)

where bk(x(t)) is a basis function of NGNet [16], N is the
number of basis functions. wC

k and wA
i,k is the weights for the

Critic and Actor networks. The function g() is the sigmoid
function to saturate the output. ni(t) is the white noise for
exploration to find a better motor command, and σ is used
to determine the magnitude of noise. σ is defined as

σ(t) = ˆ|δ| (3)

where ˆ|δ| is a value that takes the average of absolute δ(t)
for the previous trial (see Sect. 3.3 for the explanation of the
trial).

TD error is calculated for the learning of Actor-Critic
as follows

δ(t) = r(t) − 1
τ

V(x(t)) + V̇(x(t)) (4)

where r(t) is a reward and τ is a decay time constant of the
value function [16]. The weights in Critic are updated by

ẇC
k = β

Cδ(t)eC
k (t) (5)

where βC is the learning rate and eC
k (t) is an eligibility trace

that presents how much effect the kth basis function has had
on Critic’s outputs up to time t [13]. The eligibility trace is
exponentially weighted as

eC
k (t) =

∫ t

0
exp

(
− t − s
κ

)
bk(s) ds (6)

where κ is a decay time constant. At the same time, the
weights in Actor are updated as

ẇA
i,k = β

Aδ(t)eA
i,k(t) (7)

where βA is the learning rate and eA
i,k(t) is the eligibility trace.

The equation of eligibility trace is as follows

eA
i,k(t) =

∫ t

0
h(t − s)di,k(s) ds

dA
i,k(s) = σ(s)ni(s)bk(x(t)) (8)

Here fuction h(z) is the impulse response of a second order
low pass filter applied to the motor commands usum to sim-
ulate sensory delays [17]. The eligibility trace of Actor is
weighted with the shape of the filter. The impulse response
function is defined as

h(z) =
bc

c − b
(
exp(−bz) − exp(−cz)) (9)

where b is 10.80 and c is 16.52. The function is normalized
so that its size becomes 1.

2.2.2 Inverse Statics Model (ISM)

The network of the ISM is as follows

uISM
i (t) = g

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

qi,kbISM
k (θd(t))

⎞⎟⎟⎟⎟⎟⎠ (10)

bISM
k (θd(t)) is a normalized gaussian basis function [16]. N

is the number of the basis functions. qi,k is a weight from the
kth basis function to the ith output. g() is a sigmoid function.
The update rule of the ISM is

q̇i,k = β
ISMũactor

i (t)bISM
k (θd(t)) (11)

where ũactor
i (t) is the lowpass filtered Actor’s output.

ũactor
i (t) =

∫ t

0
h(t − s)uactor

i (s) ds (12)

βISM is a learning coefficient that changes depending on TD
error. The value of βISM increases with decreased TD error
and is expressed as follows

βISM = β0 exp

⎛⎜⎜⎜⎜⎜⎝− ˆ|δ|2
s2

lr

⎞⎟⎟⎟⎟⎟⎠ (13)

ˆ|δ| is a value that takes the average of absolute δ(t) for the
previous trial. β0 and slr are constants. Note that this er-
ror signal ufb does not work correctly until the improvement
of Actor reaches some level. For this reason, we make the
learning rate of the ISM increase as TD error, δ, decreases.
This idea comes from the fact that the magnitude of the TD
error decreases as the improvement of Actor and Critic ad-
vances. It is one of the properties in reinforcement learn-
ing [13].

2.2.3 Forward Dynamics Model (FDM)

FDM predicts states of the arm at time nΔt later based on
current motor commands, usum, and the size of the object
as context information. When interacting with an object,
one needs to estimate the weight of the object to consider
how the object affects control. The weight can be estimated
from material and size of the object. Here, we simply decide
the weight using a linear relationship between the size and
the weight as object weight [g] = 100*object size (e.g. if
the object size is 0.6, then the weight is decided as 600 g).
Another parameter used in the FDM is the timing of that
the object is considered. Even if one knows the existence
of the object from visual information at the beginning of the
task, the time when the object should be considered in the
control mechanism must be decided. Here, we assumed that
the context information of the object is considered in the
mechanism and inputted to the FDM from t = tcontact − mΔt
where tcontact is the time at which the object contacts the
hand.

Meanwhile, the implementation of the FDM is done by
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using a dynamics equation (see Sect. 3.1, Sect. 3.2 and Ap-
pendix A). In fact, the FDM should be trained in a real bio-
logical system. However, for simplicity of learning, dynam-
ics equations are used to implement the FDM in this simu-
lation. Note that the FDM can be acquired while perform-
ing the task using a neural network [14]. Furthermore, it
was found through psychophysical experiment that the FDM
predicting the dynamics of an object and arm was acquired
before a control model (e.g. inverse model) is trained [18],
the assumption of using a trained FDM is not thought to be
a discrepancy.

3. Simulation

3.1 Arm Model

We used the two-link arm with six muscles as shown in
Fig. 2. At first, to express sensory delays in muscles that
occur when generating muscle force from reached mo-
tor commands, a low-pass filter is applied to the motor
commands [14], [17]. In neurophysiological studies, it is
known that muscle forces can be well predicted by low-
pass-filtering the neural impulses with a second-order fil-
ter [19]. Then, the filtered motor commands are transferred
to the muscle model to calculate muscle tensions. The mus-
cle model can be written in Eq. (14) expressing the muscle
as an elastic element and a viscous element arranged in par-
allel [20]. Each muscle is designed to be a nonlinear ac-
tuator, in which muscle tension, T , depends on the motor
commands, length and contraction velocity of the muscle.
T is defined as

Ti = (k(i)
0 + k(i)

1 ũi
sum)

⎛⎜⎜⎜⎜⎜⎜⎝l(i)0 + l(i)1 ũi
sum −

2∑
j=1

ai jθ j

⎞⎟⎟⎟⎟⎟⎟⎠

− (b(i)
0 + b(i)

1 ũi
sum)

⎛⎜⎜⎜⎜⎜⎜⎝
2∑

j=1

ai jθ̇ j

⎞⎟⎟⎟⎟⎟⎟⎠ [
i=1, 2, . . . , 6.

]
(14)

Fig. 2 Arm model: two-link arm with six muscles is used. The upper
arm is moved by one pair of biarticular muscles and one pair of monoar-
ticular muscles around the shoulder. The forearm are moved by one pair
of biarticular muscles and one pair of monoarticular muscles around the
elbow.

Here, ũsum
i is a filtered motor command of usum

i to i-th mus-
cle. k, b and l are the elasticity, viscosity and muscle length
coefficients, respectively. i is an index of muscles. j is an
index of joints. Since the controlled object is a two-link arm
with six muscles, the values of i and j are 6 and 2, respec-
tively. a is the moment arm. θ j is the joint angle. θ̇ j is the
joint angular velocity. All coefficients are determined and
adjusted properly for the simulation task, based on data from
[20] and [21]. Coefficient values are shown in Appendix A.
Joint torque, τ, is calculated as

τ j =

6∑
i=1

ai jTi
[
j = 1, 2.

]
(15)

Joint torque, τ, was calculated using Eq. (15). The j and i
are indexes of joints and muscles, respectively. Therefore,
once the motor commands are determined from the outputs
of the ISM and Actor, muscle tensions and torques can be
calculated from Eq. (14) and Eq. (15).

3.2 Object Model

The object is expressed by transforming the gravity force of
the object acted on the hand to joint torque. For example,
when holding an object in the hand at a certain position, the
joint torque for the object is required in addition to the joint
torque needed for the arm in order to maintain arm posture
(see Appendix A for details). The joint torque of the object
is (

τ
obj
s

τ
obj
e

)
= JT

(
Fobj

x

Fobj
y

)

J =

(−l1 sin (θs)−l2 sin (θs+θe) −l2 sin (θs+θe)
l1 cos (θs)+l2 cos (θs+θe) l2 cos (θs+θe)

)
(16)

where JT is the transposed form of the jaccobian matrix.
τ

obj
s and τobj

e are the joint torque acting on the shoulder and
elbow respectively by the object. Fobj

x and Fobj
y are the forces

applied to the hand in the horizontal axis and the sagittal
axis, respectively. Here, we assumed that the object force
is applied only to the sagittal axis which is in the gravity
direction. Thus, Fobj

x is set to 0.

3.3 Task: Postural Control during a Loading Task

At first, success in controlling the arm is needed in order to
perform the loading task. Hence, after learning in the state
where there is no object, the model is then trained for load-
ing using the weight file acquired in the previous learning.
In the simulation, one object is used, with the weight and
size of the object are set to 600 g and 0.6, respectively. At
the beginning of each trial, the desired state, θd, and initial
state, θ, take the same value chosen randomly from the de-
sired range (Sect. 3.5) and are fixed during the trial. During
the first half interval, postural control is performed for the
arm, and the control is performed for 1 [s] more after the
object, 600 g, is loaded on at tcontact = 0 [s] (Fig. 3). This is
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Fig. 3 Loading task: for a desired state (θs, θe), postural control is per-
formed for 2 seconds in the sagittal plane where gravity ĝ acts. During
the trial, a 600 g object is loaded on the hand at 0 [s]. θS = 0 is the state
when the upper arm is laid in the horizontal axis. θE = 0 is the state when
the lower arm is in the axis extended from the upper arm. The angles take
positive values in the direction of flexing.

one trial. It is assumed that the object loaded is reflected to
the FDM at 80 ms (mΔt in Fig. 1) before the object contacts
the hand. The FDM predicts 80 ms (nΔt in Fig. 1) later from
current state. Note that when the state has exceeded a realiz-
able range, θr (Sect. 3.5), the trial is terminated and training
moves to the next trial.

3.4 Reward

Reinforcement learning is a learning method that acquires
actions so as to get higher rewards. Therefore, it is impor-
tant to set up reward functions that have the maximum value
near the goal. In this task, our goal is to acquire motor com-
mands which maintain the hand at a desired position. Thus,
we determined a reward, r(t) in Fig. 1, for arm posture as
follows

r(t) = 2

(
exp

(
−d(t)2

s2
r

)
− 0.5

)
(17)

where d(t) [m] is the distance error between desired hand
position and predicted state. sr is the constant which adjusts
how severely the distance error is evaluated. Its value is
set to 0.1. In the simulation, r(t) gets more rewards as the
predicted state approaches the desired position.

3.5 Simulation Conditions during Learning

The inputs for the model (Fig. 1) are the desired state, θd =

(θdS , θ
d
E , θ̇

d
S , θ̇

d
E)T , for the ISM and error states between the

desired state and predicted state, θe = (θeS , θ
e
E , θ̇

e
S , θ̇

e
E)T , for

Actor. The low subscript S and E indicate the shoulder and
elbow, respectively. The output ranges of the ISM and Ac-
tor are set to 0 ∼ 1 and −0.5 ∼ 0.5, respectively. Note that

outputs of the ISM take positive values for both flexors and
extensors. In contrast, outputs of Actor, ufb, include nega-
tive values, in order to extract excessive force in muscle. In
addition, usum = uff + ufb is regulated from 0 to 1 for the
normalization of motor commands by setting it to 0 when
it takes a value below 0 and setting it to 1 when it takes a
value over 1. The state range realized in simulation, θr, is
−120 ≤ θS ≤ 0 [deg], 0 ≤ θE ≤ 130 [deg], −900 ≤ θ̇S , θ̇E ≤
900 [deg/s], −900 ≤ θ̇S , θ̇E ≤ 900 [deg/s]. Desired state, θd,
is randomly chosen in the range of −90 ≤ θdS ≤ −50 [deg],
30 ≤ θdE ≤ 90 [deg], θ̇dS = θ̇

d
E = 0 [deg/s] [22]. The time step

is set to Δt = 0.01 seconds (Fig. 1). And renewal of motor
command, future state prediction and arm’s dynamics are all
performed for every Δt. The networks’ updates of the ISM
and Actor-Critic are also performed for every Δt. Other pa-
rameters are set as follows: τ = 1.0, κ = 0.8, βC = βA = 0.3,
N = 6561 (9 × 9 × 9 × 9 for angles and angular velocities of
the shoulder and elbow) in Sect. 2.2.1. β0 = 0.08, slr = 0.1,
N = 225 (15×15 for angles only since the angular velocities
are 0 for the loading task) in Sect. 2.2.2.

4. Simulation Results

The learning process is shown in Fig. 4. As the model learns,
each parameter converges on a value, which gives a crite-
rion whether the learning is sufficiently performed. In this
figure, the reward value is high from the beginning because
we used pre-learned weight files of postural control without
the object. The model in the loading task, however, starts
to learn in the direction of getting more reward when the
task changes, showing that the model copes with instability
caused by fast dynamics changes. Furthermore, motor com-
mands in the later trials increase compared to early trials due
to the bearing of the disturbance. Here, in order to compare
simulation features with the psychophysical experiment [4],
a weight file (30000th) sufficiently trained is chosen using
a learning rate and reward as an index. With this weight
file, simulation of loading is performed at the same desired
state as the psychophysical experiment (θS , θE) = (−50, 65).
The results are shown in Fig. 5. As shown in the figures,
the hand position is stable before and after the environment
changes. This stable control is possible by the following
process. First, the FDM predicts how the object influences
the arm. Distance errors between the desired state and pre-
dicted state are calculated. Then the feedback controller,
Actor, generates motor commands to decrease the predicted
distance errors. The renewed motor commands transmitted
to the arm, with sensory delays, make the motor commands
increase slowly before fast dynamics change occurs. In the
simulation, hand position changed about 3 cm in the verti-
cal direction and the distance of the lowest fallen position
from the desired position was about 1.6 cm (Fig. 5 (b)). In
a psychophysical experiment of loading tasks for 4 different
weights (400 g, 600 g, 800 g, 1000 g) [4], 4 subjects were
asked to hold a weight with their left hand just above their
right hand and load the object on the right hand at the sound
of a beep signal. Each subject performed the loading task 20
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times for each weight. During the experiment, hand force
and hand position were measured using electromyography
and an Optotrack (Northern Digital Inc., Canada). Accord-
ing to the experiment, there were approximately 2 cm dis-
tance errors in average between the desired position and the
lowest fallen position for three out of four subjects. Fur-
thermore, in the psychophysical experiment, it was observed
that hand force arrived at its peak immediately after loading
the object. In the simulation, it arrived at the peak about
250 ms after the contact. This indicates that a tendency sim-
ilar to the psychophysical experiment is reproduced in the
simulation using the FDM. In Fig. 6, the distance of the
lowest fallen position from each desired position is shown.
This result indicates that the loading task is possible for all
desired positions within the desired range.

We tested the generalization capability of the model
in real environments that humans may be confronted with
when performing a loading task. Firstly, in a real environ-
ment, the weight prediction of an object by humans can be

Fig. 4 Learning Process: learning rate of the ISM, reward, ISM output
and actor output from the top in order. Data was averaged over 2 [s] of one
trial then smoothed using a low pass filter with 100 trial width.

Fig. 5 Simulation results of the loading task for a desired state (−50, 65) by using the 30000th weight
file. (a) Motor commands of the ISM and actor and filtered motor commands are shown. Actor changes
its output to modify predicted distance error before the object contacts the arm. (b) F [N]: Hand force in
the vertical direction, T [N]: Summed tensions for three flexors and three extensors, Y-Dist [cm]: Hand
position errors (real:θ(t + Δt), predicted:θ̂(t + nΔt) in Fig. 1) in the vertical direction from the desired
position. Before the object is loaded on at 0 [s], the FDM predicts that the hand will fall down.

wrong. For example, objects of equal weight and size are
perceived differently due to the material (e.g. balsa wood,
steel) [23]. In a size-weight illusion, a smaller object is per-
ceived heavier than a larger object when objects of equal
weight and different size are lifted by hand [24]. For the
simulation of this situation, we performed loading tasks un-
der the assumption that the weight prediction of an object in
the FDM was not correct. We show the results in Fig. 7. In
each loading task, the weight of the object loaded was fixed
at 600 g, but the object size used as context information was
changed from 0.4 to 0.8 at intervals of 0.1, resulting in the
FDM predicting the weight from 400 g to 800 g. As shown
in the figure, the hand fell lower when the weight prediction
was lighter than 600 g and fell less when the weight pre-
diction was heavier. A similar tendency is expected in real
loading tasks for humans. Secondly, we performed loading
tasks for unlearned object weights. In real environments, it

Fig. 6 Distance error between the lowest fallen position and each de-
sired position in the vertical direction after loading: 2501 (41× 61) desired
positions on the equally divided grid of the desired range are tested. The
average and standard deviation is 0.971 ± 0.433 [cm].
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Fig. 7 Simulation results of the loading task when the predicted weight
in the FDM is different from the weight loaded. The simulation was per-
formed using the 30000th weight file for a desired state (−50, 65). In each
loading task, one of the 5 weight predictions from 400 g to 800 g was used,
but the weight of the loaded object was fixed at 600 g.

Fig. 8 Simulation results of the loading task for unlearned weights. The
simulation was performed at a desired state (−50, 65) using the 30000th
weight file trained only for 600 g. In loading tasks for the 5 objects, it
was assumed that the predicted weight from the FDM was the same as the
weight of a loaded object.

is difficult to believe that one should always learn the weight
of an object in order to perform a loading task for that object.
For this reason, it is expected that an acquired control model
for an object’s weight is utilized to perform loading tasks for
objects of unlearned weights. For the simulation of this sit-
uation, we performed loading tasks, using the model trained
at 600 g, with other weights under the assumption that FDM
predictions were correct. The results are shown in Fig. 8. As
shown in the figure, loading tasks are possible for unlearned
weights (e.g. 400 g and 800 g). These two results indicate
that the model can perform loading tasks in the situations of
wrong weight predictions and unlearned weights, which are
very likely to occur in real environments. These are likely
the generalization capabilities that humans possess and are
needed to interact with objects in our daily lives.

5. Discussion

5.1 Effects of the FDM

To test the effectiveness of the FDM, a simulation based on
the delayed feedback signal without using predicted state
(Fig. 9) was performed for the three delay times (Delay:
80 ms, 30 ms, 0 ms) in the same conditions described in
Sect. 3.5. Its results are presented in Fig. 10. Here, the FDM
is not used. Thus the reward is evaluated from the feed-
back signal since the predicted state is not available. Also
note that as mentioned in Sect. 3.3, the trial is terminated
when the hand has exceeded the realizable range, θr. From
Fig. 10, the graph of trial time describes that in the case of

Fig. 9 Effects of the FDM: k = 0, 3, 8 are tested for 3 cases of delay
times to see if stable control is possible without using the FDM.

Fig. 10 Delayed feedback effects: The data shows the effects on the load-
ing task when using delayed sensory feedback. In the upper graph, the
reward graph in Fig. 4 (Learning with FDM) is presented again to aid the
comparison of results between delayed sensory feedback and the predicted
state. In the lower graph, trial time shows the duration that the hand stays
in the realizable range, θr (see Sect. 3.5). All data have been filtered with
100 trial width for smoothing.

Fig. 11 Simulation results of the loading task for a desired state
(−50, 65) by using the 15000th weight file when the FDM is unused and
delay time is 0 ms. Motor commands of the ISM and Actor, hand force and
hand distance error are shown.

a long delay time, the hand position goes out of the range
just after the hand contacted the object at 0 [s]. However,
the time interval for staying within the range gets longer
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as the given delays shorten. This, however, does not mean
that maintaining posture was successfully performed with-
out a using prediction, even though the ability of control in-
creased. Moreover, the reward values for all cases (Fig. 10)
were smaller than in using the FDM (Fig. 4), which means
the degree of achievement of the task goal was lower.

To see the control feature, simulation results of the
loading task when delay time is 0 ms, are presented in
Fig. 11. From this figure, we can see that distance errors
between current hand position and desired state (−50, 60)
are less than 4 cm until the object is loaded on. However, af-
ter the contact at t = 0 [s], postural control can be said to fail
according to the distance errors. In this case, pre-increased
motor commands (Fig. 11) were not observed because the
controller did not have information to use in advance. The
FDM functions as a trigger and prepares dynamics changes
that occur. This result suggests that utilizing the FDM con-
tributed to stabilization of the control in the biological sys-
tem where sensory delays exist.

5.2 Other Computational Models for Loading

Many optimization models that successfully generate
stereotypical profiles for reaching movements have been
proposed [1]–[3]. Since the models are suggested to ex-
plain arm movements, we can think of using the same op-
timization framework for another arm task. We chose a
minimum-variance model to apply it to a loading task [3].
In the minimum-variance model, a trajectory is selected to
minimize the variance of the arm position with an assump-
tion that the neural control signals are corrupted by noise
whose variance increases with the size of the control signal.
During the loading task, the dynamics of the arm changes
after loading, making the hand move from a desired posi-
tion and causing a large positional variance. Therefore, the
minimum-variance model is expected to perform the loading

Fig. 12 Simulation results of postural control in the sagittal plane at the desired state (−50, 65) using a
minimum-variance model. ‘*’ in (a) and (c) indicates spline knots (see in Appendix B for the optimization
method): (a) Optimal trajectories for the shoulder, θs and the elbow, θe in the joint coordinate system that
minimize positional variance integrated over the postural control. (b) Motor commands in two second-
order linear muscles, acting on the shoulder and elbow joint of a two-link arm, with time constants of
92.6 and 60.5 ms. (c) Optimal trajectory in the cartesian coordinate system corresponding to (a).

task using the same criterion. Since the ability of maintain-
ing a position is required before performing the loading task,
a postural control at (θS , θE) = (−50, 65) was performed at
first. Overall, we used the same criterion as in [3] except
for variance in the post-movement time. Instead, we used
variance integrated over the postural control. In reaching
movements, the aim of movements is to reach the end point
and stay the hand at that point. But, in the loading task,
the aim is to maintain the position throughout the postural
control. Therefore, the integrated variance is an appropri-
ate cost function. The details of the optimization method
are described in Appendix B. Simulation results are shown
in Fig. 12. These results indicate that with the criterion of
the minimum-variance model, it isn’t able to maintain the
posture in the sagittal plane. According to the criterion of
the minimum-variance model, the best way of minimizing
the positional variance is to make motor commands 0 in the
movement time. However, it is not possible, with 0 motor
commands under the influence of gravity, to make the hand
stay at the desired position. As a result, the method of min-
imizing the positional variance is to occasionally generate
motor commands near 0 (Fig. 12 (b)) in order to resist grav-
ity and reach the desired position at the end of the movement
time.

There is another computational model applicable to the
loading task called the MOSAIC model [25]. The model
is a modular architecture that has multiple pairs of forward
and inverse models for motor learning and control. Due to
the modular architecture, the model is able to perform mo-
tor tasks under many different and uncertain environmen-
tal conditions by utilizing forward models and responsibil-
ity predictors to determine paired modules appropriate to a
situation and their contributions in control. In their study,
they simulated an arm tracking task in which the dyanmics
of the environment periodically switched and presented that
adaptive motor behaviors can be achieved according to sim-
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ulation results of stable tracking control. However, the effect
of sensory delays was not considered in their model. Hence,
in order to perform a loading task in the MOSAIC model
for biological systems that has sensory delays, the degree of
contributions of pairied modules in motor control should be
changed before loading using contextual signals. However,
if the timing of the contributions changes are inaccurate, the
motor signals from weighted outputs of the inverse mod-
els result in distance errors. The distance errors should be
modified by the feedback controller for stable control. But,
it would be difficult with delayed feedback to successfully
compensate the distance error. As a result, the usage of for-
ward models in the sensory feedback path could be consid-
ered valid for motor control of the loading task.

Another computational model, using optimal feedback
theory, adopts a forward model in the feedback path [26]. It
generates motor signals for given tasks based on estimated
state variables from the forward model, which has efferent
copies of motor signals and delayed sensory feedback as in-
put signals. The theory has been used to explain various
motor behaviours (e.g. planar arm movements, ping-pong
task) [26]. However, there are several problems that would
occur if the optimal feedback theory were applied to the
loading task. First, the output of the forward model would
need to be changed before loading using contextual signals.
Otherwise, it would not be possible to cope with sudden dy-
namics changes successfully because of sensory delays in
biological systems, and pre-increased motor signals before
loading would not be observed [4]. Secondly, the optimal
control law would need to be recalculated every time the
postural position changes since the calculation of optimal
control law requires dynamics knowledge and linearization
in complex non-linear systems. In this case, high control
accuracy is expected, but the required cost is also very high.
On the other hand, the control accuracy of the proposed
model would likely not be as high because the feedback con-
troller of the proposed model is not optimized to a position
as in the optimal feedback theory. In the proposed model,
the inverse model allows the hand to maintain near goal po-
sitions and lets the feedback controller correct the remain-
ing errors. However, this appears reasonable since the con-
trol ability of humans seems to allow and ignore small cen-
timeter order postural distance errors [4]. In addition, our
model can acquire control laws without prior knowledge of
arm dynamics. However, a merit to using the optimal feed-
back theory as a motor control model is that the delayed
sensory feedback is directly used in generating feedback
law. The necessity of online feedback control is stressed
and supported by arm moving tasks through targets both in
simulations and human subject experiments [26]. Therefore,
the proposed model should take into account the delayed
feedback not only in acquiring the forward model [14] but
also in changing the motor signals [26]. The Smith pre-
dictor model is one way to use the sensory feedback di-
rectly [6]. The other required improvement in our model
is to use an impedance control mechanism. The impedance
control method is a simple and useful way to bear sudden

dynamics changes. To implement impedance control in the
proposed model, we need to know how humans control the
impedance of their muscles. Humans can control impedance
voluntarily. We also sometimes show high impedance and
co-contractions when surprised or nervous, which we be-
lieve can be caused by differences between real results and
expected results when doing motor tasks. From these facts,
we theorize that there is an independent module that can ad-
just the impedance level. The module would have at least
two inputs. One is humans intention, which can change the
impedance level voluntarily. The other is the difference be-
tween the sensory feedback information and the predicted
information from the forward model.

6. Conclusions

We introduced a learning and control model of the arm for a
loading task in the sagittal plane. An Actor-Critic method is
adapted in a feedback-error-learning scheme as a feedback
controller. FDM is used in a feedback path to predict state
and overcome sensory delays. Simply, the loading task can
be performed if the stiffness of the muscles is kept high dur-
ing the task. However, it is not a control policy that humans
take. Humans gradually increase the motor commands be-
fore the environment changes to stabilize the hand trajectory
because of sensory delays [4]. With this model, it was pos-
sible to perform the loading task in a human-like way, and
tendencies of hand trajectories and hand force similar to the
psychophysical experiment were observed. In addition, we
showed that stable control in the loading task was possible
due to the usage of the FDM.

The proposed framework used the feedback-error-
learning scheme proposed as a computational model of cere-
bellar motor learning [11], [27] and the Actor-Critic method
proposed as a model of learning in the basal ganglia [28],
[29]. However, we are not sure that the cerebellum and
basal ganglia are directly related to performing the load-
ing task, although those regions are possibly used to train
the inverse model and the feedback controller, which are
considered necessary for the loading task. Psychophysical
experiments that measure brain activity (e.g. FMRI) during
the loading task would help to identify the brain circuitry
and understand the control mechanism.

In our previous study, we showed that the proposed
framework can be applied to reaching movements in the
sagittal plane and can successfully predict its profiles [14].
Through the simulation of the loading task, it is shown that a
unified framework is applicable not only to reaching move-
ments but also to postural control. We believe our findings
will help to generalize motor control theories of the arm.
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Appendix A: Calculation of Dynamics and Parameters
in the Musculoskeletal System

In the simulation, the dynamics equations of the two-link
arm in Fig. A· 1 are derived using Lagrange’s equation of
motion [21] and solved with the Runge-Kutta method. The
equations are as follows

τS =
[
I1 + I2 + m2(l1

2 + 2l1lg2 cos(θE))
]
θ̈S

+
[
I2 + m2l1lg2 cos(θE)

]
θ̈E

− m2l1lg2 sin(θE)(2θ̇S θ̇E + θ̇
2
E)

+ (m1ĝlg1 + m2ĝl1) cos(θS ) + m2ĝlg2 cos(θS + θE)

τE =
[
I2 + m2l1lg2 cos(θE)

]
θ̈S + I2θ̈E

+ m2l1lg2 sin(θE)θ̇2S
+ m2ĝlg2 cos(θS + θE)

(A· 1)

Fig. A· 1 2-link arm.
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Here, τ j, θ j, θ̇ j and θ̈ j indicate joint torque, angle, velocity
and acceleration of the arm, respectively. Subscripts ( j =
S , E) indicate the shoulder and elbow. mi, li, lgi and Ii are the
weight of the arm, the length of each link, the length from
the joint to the mass center of each link, and the moment of
inertia around each joint. These parameters are defined as
shown in Table A· 1.

Besides, muscle parameters in the musculoskeletal sys-
tem are defined as shown in Table A· 2 and Table A· 3. k1

and b1 are the elastic and viscosity coefficients, respectively.
k0 and b0 are the intrinsic elasticity and viscosity. l0 is the
intrinsic rest length. l1 is the muscle length coefficient.

When an object is loaded on the hand, the joint torques
for the object (τobj

s and τobj
e in Eq. (16)) are added to the right

side of Eq. (A· 1). Thus torque, the left side of Eq. (A· 1), is
required more when holding the object than when the ob-
ject is not loaded to maintain the same posture. The FDM
is simulated using the dynamics equations. The process is
as follows. Firstly, the FDM judges from the context time,
tcontact −mΔt whether the object should be considered in the
control machanism (i.e. when the time t passed over the con-
text time, the object torque of Eq. (16) is considered. Other-
wise, the object torque is set to 0). Secondly, torque in the
arm at time t are calculated from the motor commands, ũsum

i
using Eq. (14) and Eq. (15). Then, the state of the arm is
updated with the Runge-Kutta method and the time changes
from t to t + Δt. This calculation is repeated until the time
becomes t+nΔt. During the repeated calculations, the motor
command ũsum

i is fixed on the value at time t.

Table A· 1 Parameters of the 2-link arm.

Link 1 Link 2
mi [kg] 1.59 1.44
li [m] 0.3 0.35
lgi [m] 0.18 0.21

Ii [kg m2] 6.78 × 10−2 7.99 × 10−2

Table A· 2 Moment arms.

a [m]
Around Shoulder Around Elbow

sh flx 0.04 0
sh ext −0.04 0
el flx 0 0.025
el ext 0 −0.025
dj flx 0.028 0.028
dj ext −0.035 −0.035

Table A· 3 Muscle parameters.

k0 k1 b0 b1 l0 l1
[N/m] [N/m] [Ns/m] [Ns/m] [m] [m]

sh flx 1000 6000 50 100 0.150 0.150
sh ext 1000 4000 50 100 0.055 0.150
el flx 600 2800 50 100 0.100 0.150
el ext 600 2400 50 100 0.040 0.150
dj flx 300 1200 50 100 0.250 0.150
dj ext 300 1200 50 100 0.130 0.150

Appendix B: Minimum-Variance Model for Postural
Control in the Sagittal Plane

In the simulation of the minimum-variance model, the op-
timal trajectories were found numerically. For the muscu-
loskeletal model, we used the two-link arm in Eq. (A· 1)
and two linear second-order muscles acting on the shoul-
der and elbow joint with time constants of T1 = 92.6 ms and
T2 = 60.5 ms in Eq. (A· 2). The time constants are derived
from Eq. (9). The motor command, u j, of each joint is

u j = T1T2τ̈ j + (T1 + T2) τ̇ j + τ j
[
j = S , E.

]
(A· 2)

We changed the values of the parameters in the arm and
muscles of [3] to make them close to the parameters used in
our framework. For the optimization calculation, we used
unscented filter and 5th-order splines due to their advan-
tages [30]. First, compared to the Monte carlo method, the
unscented filter is simple in its procedure, highly accurate
in the estimations of mean and variance, and extremely low
cost in computation. Second, the 5th-order splines are used
to solve the errors between trajectory generated from the
splines and trajectory from motor commands. When 3rd-
order splines are used, the accuracy of the motor commands
calculated from the inverse dynamics functions of Eq. (A· 1)
and Eq. (A· 2) are decreased because of the low order.

For postural control in the sagittal plane of (x,y), 7
cartesian knots which are evenly spaced in time are used
and their first and last knots are fixed at corresponding po-
sitions of the desired state (θS , θE) = (−50, 65) with veloc-
ity and acceleration of zero. The optimization was simu-
lated to minimize the variance of Cv, integrated over the
postural control, with signal-dependent noise. The dura-
tion of the movement and control rate were set to 660 ms
and 1 ms, respectively. After the cartesian knots are initial-
ized at the desired positions, the knots are adjusted using the
simplex algorithm. The procedure of optimization is as fol-
lows: (1) Using the inverse kinematics of the arm, the carte-
sian knots are converted to the knots in the joint coordinate
system. (2) The joint knots are parameterized as 5th-order
splines. (3) From the splines, motor commands are calcu-
lated using the inverse dynamics functions of Eq. (A· 1) and
Eq. (A· 2). (4) Based on the motor commands with signal-
dependent noise, the mean and variance of trajectories dur-
ing the movement are calculated using the unscented filter.
(5) The cartesian knots are updated in the direction of mini-
mizing the variance of Cv.
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