
732
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009

LETTER

An Effective Self-Adaptive Admission Control Algorithm for Large
Web Caches

Chul-Woong YANG†, Member, Ki Yong LEE†a), Nonmember, Yon Dohn CHUNG††, Member,
Myoung Ho KIM†, and Yoon-Joon LEE†, Nonmembers

SUMMARY In this paper, we propose an effective Web cache admis-
sion control algorithm. By selectively admitting objects into the cache,
the proposed algorithm can significantly reduce the amount of disk I/O on
a Web cache while maintaining a high hit ratio. The proposed algorithm
adaptively adjusts its own admission control parameter, requiring no user-
supplied parameters. Through extensive experiments, we show the effec-
tiveness of the proposed algorithm.
key words: Web cache, cache admission control, WWW

1. Introduction

Over the past few years, most studies for Web cache man-
agement have focused on Web cache replacement algo-
rithms, such as LRU, LFU, LRU-K, and GD-SIZE that de-
termine which objects in the Web cache should be replaced
when a new object is brought in [1]. However, most of them
have not considered the issue of admission control, which
determines whether a new object should be cached or not.
It may not always be profitable to insert an object into the
cache, because objects with low access frequency degrade
the cache performance.

With the recent advent of user-created contents (UCC),
Web object size is rapidly increasing [2]. If a Web cache
admits every object merely because it is accessed once, the
cache may spend a lot of time in writing large objects that
would be rarely referenced in the future. This can impose
heavy disk I/O overhead on the cache server while reducing
cache hit ratio.

We propose an effective admission control algorithm
for large Web caches, called Adaptive Frequency-based Ad-
mission Control (AFAC). When the Web object not in the
cache is requested, admission control determines whether
the object should get into the cache or not. In our algo-
rithm, we use two criteria for admission control, i.e., the
re-reference likelihood and the size of the object. We show
through various experiments that, by selectively admitting
objects based on these two criteria, the amount of disk I/O
can be significantly reduced while a high hit ratio is main-
tained.

2Q [3] is the most representative caching algorithm that

Manuscript received September 30, 2008.
Manuscript revised November 20, 2008.
†The authors are with the Department of Computer Science,

KAIST, Daejeon, Korea.
††The author is with the Department of Computer Science and

Engineering, Korea University, Seoul, Korea.
a) E-mail: kylee@dbserver.kaist.ac.kr (Corresponding author)

DOI: 10.1587/transinf.E92.D.732

utilizes the concept of admission control. When an object is
first referenced, 2Q inserts the identifier of the object into
an auxiliary FIFO queue called A1, instead of inserting the
object into the cache. If the object is re-referenced while its
identifier is in A1, it is considered as a hot, i.e., frequently
requested, object and inserted into the cache. If an object
is not re-referenced while its identifier is in A1, it is not in-
serted into the cache. Although this admission control is
simple, it has been shown to provide a higher hit ratio than
performing no admission control at all.

However, the admission control in 2Q has two limita-
tions. First, the size of A1 is difficult to tune. If the size of A1
is too large, many cold, i.e., infrequently requested, objects
may have high chances to be admitted into the cache. If the
size of A1 is too small, even hot objects may not be admit-
ted into the cache, which results in a low utilization of the
cache. Second, 2Q does not consider the non-uniformity of
object sizes. Admitting one very large object into the cache
may cause dozens of objects to be evicted from the cache. It
also incurs a large amount of disk I/O. Thus, large objects
should be admitted more carefully.

Note that cache admission control and cache replace-
ment are orthogonal concepts. In other words, our proposed
cache admission control algorithm will be used in combina-
tion with cache replacement algorithms such as LRU, LFU,
LRU-K, and GD-SIZE, rather than substituting for those re-
placement algorithms.

2. The Proposed Method

Figure 1 shows the proposed admission control architecture.
In the figure the FIFO queue F that resides in main mem-
ory plays a central role in our proposed admission control
method. Let N be the size of F, and F(n) denote a set of
last n elements in F (1 ≤ n ≤ N). F(n) is called the selec-
tion window of F. Let di and si be the identifier and the size

Fig. 1 The proposed cache admission control architecture.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



LETTER
733

of object i, respectively. When an object i is first referenced,
we insert the pair (di, si) into F only, rather than immediately
inserting the object to the cache. If an object is re-referenced
while in the queue, we will give it a high chance to be ad-
mitted into the cache. Otherwise, it will go out of the queue
without having a chance to get into the cache. Note that the
amount of memory for F is very small in practice because F
stores only the identifier and size of objects, rather than the
objects themselves.

The FIFO queue F has something in common with A1
queue in [3], but has two fundamental differences. First,
only F(n), i.e. the last n elements in F, rather than all the
elements in F, are used for admission control. The value of
n will be dynamically adjusted. Second, when an object in
F(n) is re-referenced, we will go through another admission
test, instead of simply allowing the object to get into the
cache as in [3]. This test is based on the relative sizes of
objects in F(n), so that a smaller object will have a higher
admission probability than a larger object.

2.1 Adaptive Adjustment of the Selection Window

Consider the value of n in F(n). If n is too large, many cold
objects could be inserted into the cache, which will degrade
the cache performance. If n is too small, the cache may
not properly accommodate even hot objects. Since no fixed
value of n can be good for all cases, the value of n needs to
be dynamically determined, depending on the situation. The
value of n can be decided based on how frequent the objects
in F(n) have been admitted into the cache. Though there can
be various ways to implement this idea, we will use a simple
strategy as follows:

For n number of object requests (regardless of those
objects being in F(n) or not), we count the number of objects
that are admitted into the cache. If more than one object
were admitted into the cache, we decrease n by rate β to
make the admission control more restrictive. Here, β, called
the window adjusting factor, is a predetermined real number
between 0 and 1. If no object was admitted, we increase n
by rate β to make the admission control less restrictive. This
process is repeated. Experimental results in the next section
show that this simple strategy can successfully maintain the
effectiveness of the admission control.

2.2 Size-Based Additional Admission Test

Now we describe how the size of objects is considered in the
proposed algorithm. If an object i in F(n) is re-referenced,
we insert i into the cache with a probability pi, which de-
pends on the relative sizes of objects in F(n). We will use
the following formula for pi, though other formulations are
also possible.

pi = 1 − si − smin

2 · (smax − smin)
.

Here, smin and smax are the size of the smallest and largest
objects in F(n), respectively. pi has the maximum value 1

Fig. 2 Algorithm AFAC.

at si = smin and the minimum value 1/2 at si = smax. It
decreases with the increase of si. More specifically, if an
object i in F(n) is re-referenced, we draw a random value ri

from the uniform distribution on [0, 1]. If ri ≤ pi, we admit
i into the cache. Otherwise, object i has to wait until the
next reference. Thus, the smaller the size of object is, the
higher the chance of admission is. Since admitting a large
object into the cache causes many objects to be evicted from
the cache and a large amount of disk I/O, we admit large
objects more conservatively than smaller ones. For example,
if the smallest object i in F(n) is re-referenced, it will be
absolutely admitted into the cache since pi = 1. On the other
hand, if the largest object i in O(n) is re-referenced, it is
admitted into the cache with pi = 1/2. Note that, since pi ≥
1/2, the largest object takes at most two tests on average for
admission.

2.3 Algorithm AFAC

The algorithm in Fig. 2 shows the overall procedure of our
admission control method. Initially, the value of n is set to
half of the maximum number of objects the Web cache can
store, and will be adaptively adjusted during the execution of
our algorithm. The maximum size of FIFO queue F, i.e., N,
is the maximum allowed memory size. m and numAdmitted
is initially set to 0, respectively. Note that eviction of objects
in line 7 will require a certain cache replacement policy. As
indicated before, we focus only on a new admission control
algorithm, not cache replacement policies. Most existing
cache replacement algorithms can be used for eviction of
objects in line 7 of Algorithm AFAC.

3. Performance Evaluation

To evaluate the performance of the proposed algorithm, we
compared the following five algorithms: LRU, LFU, GD-
SIZE, 2Q, and LRU+AFAC. LRU+AFAC uses LRU and



734
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009

Fig. 3 Performance results on synthetic dataset.

Table 1 The specifications of traces used in the experiments.

Trace UCC (Japan) UCC (USA) UCC (Europe)
Period 3/10/2008 3/10/2008 3/10/2008

Total requests 14,062,314 10,352,340 2,520,239
Distinct objects 185,720 193,352 130,102

Total transfer bytes 128 TB 101 TB 23 TB
Total unique bytes 1.5 TB 1.4 TB 0.9 TB

AFAC as the replacement algorithm and admission control
algorithm, respectively. For LRU, LFU, and GD-SIZE, no
admission control is applied. LRU, LFU, and GD-SIZE
are representatives of frequency-based, recency-based, and
size-based cache replacement algorithms, respectively. Note
that 2Q uses LRU as the replacement algorithm. For 2Q,
we set the size of A1 to half the expected average number
of objects in the cache as suggested in [3]. We conducted
trace-driven simulations using the following datasets.

• Synthetic dataset: We used 100,000 distinct objects
whose sizes range from 100 KB to 10 MB and follows
a Zipf-like distribution with α = 1.0, centered around
5 MB. As for queries, we used 10,000,000 requests that
follow a Zipf-like distribution with parameter α = 0.8
and 1.0 [5].
• Real dataset: We used three Web cache traces from

a YouTube-like world-wide UCC video service site†.
The contents of the site are delivered by Content De-
livery Networks (CDN) to several Web caches located
in various countries. Each of three traces, namely UCC
(Japan), UCC (USA), and UCC (Europe), contains user
access logs for flash video objects on the site during 24
hours from Japan, USA, and Europe, respectively. Ta-
ble 1 shows the specification of each trace.

We measured the following three performance metrics:
(1) Disk writes: The total bytes written on the Web cache.
This metric indicates disk I/O overhead. (2) Hit ratio (HR):
the total number of hits in the cache divided by the total
number of requests. (3) Byte hit ratio (BHR): the total bytes

served by the cache divided by the total requested bytes.
Figure 3 shows the performance of each algorithm for

the synthetic datasets with increasing cache size. For disk
writes in Fig. 3 (a), the algorithms with admission control,
i.e., LRU+AFAC and 2Q, show a substantial improvement
over the other algorithms. In Fig. 3 (a), LRU+AFAC outper-
forms 2Q significantly in larger cache sizes. i.e., cache sizes
of more than 0.5% of the total working set size. In 2Q, the
size of A1 increases as the cache size increases. Thus, as the
cache size increases, A1 will contain more number of object
identifiers, resulting in more cold objects being cached. In
AFAC, however, by adaptively adjusting the selection win-
dow, we can avoid caching objects that are not re-referenced
within a short period of time. Note that admitting more ob-
jects incurs more disk writes, but does not necessarily affect
HR. Figures 3 (b) and (c) shows that LRU+AFAC performs
better than the other algorithms for both HR and BHR.

Figure 4 shows the performance of each algorithm for
the real datasets with increasing cache size. As in the cases
of synthetic dataset, we can see that LRU+AFAC and 2Q
outperform the others in all cases and LRU+AFAC outper-
forms 2Q for disk writes. Note that GD-SIZE considers the
object sizes as in AFAC. However, it considers the object
sizes in evicting objects, not in admitting objects. Therefore,
many cold objects can still be inserted into the cache, result-
ing in more disk I/O and a lower hit ratio than LRU+AFAC.

Figure 5 shows the performance of LFU+AFAC, which
uses LFU and AFAC as the replacement algorithm and ad-
mission control algorithm, respectively. Here, Modified 2Q
represents the 2Q algorithm that is modified to use LFU
as its replacement algorithm. Similarly to the LRU case,
LFU+AFAC provides better performance than LFU and
Modified 2Q in all metrics.

From the experimental results, we can confirm that
AFAC can be used in combination with cache replacement
algorithms to improve the Web cache performance still fur-

†We received the traces from CDNetworks Co., Ltd. [6].



LETTER
735

Fig. 4 Performance results on real dataset.

Fig. 5 Performance results when combined with LFU.

ther, by selectively admitting objects into the cache based
on their re-reference likelihood and size.

4. Conclusion

We have proposed an effective admission control algorithm
for large Web caches, called AFAC. By selectively admit-
ting objects into the cache, AFAC can significantly reduce
disk I/O while maintaining a high hit ratio. We have shown
through extensive experiments that our proposed algorithm
can substantially improve the Web cache performance in
practice.

Acknowledgments

This research was supported by the Ministry of Knowledge
Economy, Korea, under the Information Technology Re-
search Center support program supervised by the Institute
of Information Technology Advancement. (grant number

IITA-2008-C1090-0801-0031).
Ki Yong Lee’s work was supported by Brain Korea 21

Project, the School of Information Technology, KAIST in
2009.

References

[1] S. Podlipnig and L. Boszormenyi, “A survey of Web cache replace-
ment strategies,” ACM Comput. Surv., vol.35, no.4, pp.374–398,
2003.

[2] YouTube, LLC, http://www.youtube.com, 2008.
[3] T. Johnson and D. Shasha, “2Q: A low overhead high performance

buffer management replacement algorithm,” Proc. 20th VLDB Con-
ference, 1994.

[4] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,”
Proc. First USENIX Symposium on Internet Technologies and Sys-
tems, pp.193–206, 1997.

[5] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” IEEE INFO-
COM ’99, pp.126–134, 1999.

[6] CDNetworks Co., Ltd., http://www.cdnetworks.com, 2008.


