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HSWIS: Hierarchical Shrink-Wrapped Iso-Surface Algorithm

Young-Kyu CHOI†a), Member and Eun-Jin PARK†, Nonmember

SUMMARY A new hierarchical isosurface reconstruction scheme from
a set of tomographic cross sectional images is presented. From the in-
put data, we construct a hierarchy of volume, called the volume pyramid,
based on a 3D dilation filter. After extracting the base mesh from the vol-
ume at the coarsest level by the cell-boundary method, we iteratively fit
the mesh to the isopoints representing the actual isosurface of the volume.
The SWIS (Shrink-wrapped isosurface) algorithm is adopted in this pro-
cess, and a mesh subdivision scheme is utilized to reconstruct fine detail of
the isosurface. According to experiments, our method is proved to produce
a hierarchical isosurface which can be utilized by various multiresolution
algorithms such as interactive visualization and progressive transmission.
key words: surface reconstruction, multiresolution isosurface, cell-
boundary representation, and shrink-wrapping scheme

1. Introduction

Isosurface reconstruction is a very common and useful tool
for the visualization of volume data. Lorensen and Cline [1]
have proposed a novel method, called the marching cubes
(MC) algorithm, which can obtain high resolution isosur-
face from 3D medical data. Since its original conception,
it has been the subject of much further research to improve
its quality (including the ambiguity [2] in surface definition)
and its performance on large data set. This letter tries to
focus on the latter issue of MC.

In the marching cube algorithm, the output mesh ap-
proximating the isosurface of a volume can easily consist
of millions of triangles. Lots of post processing techniques
have been proposed to reduce and to improve the mesh,
including decimation, simplification and remeshing [3], [4],
but they can be very expensive in time and memory con-
sumption. On the other hand, extracting multiple resolution
isosurfaces directly from the volume data can be a good so-
lution for this problem. The need for multiresolution iso-
surface becomes apparent when such large data sets have to
be visualized interactively as required by many applications
such as image guided surgery or progressive transmission.
In the field of interactive visualization, the isosurface ex-
traction phase may be too slow and the mesh size can easily
exceed the number of triangles that can be rendered at inter-
active frame rate without multiple resolutions.

Several algorithms addressed the use of adaptive hier-
archies of the volume data set to improve the performance of
MC [5], [6]. Labsik et al. proposed a method utilizing a hier-
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archy on the input volume data [7]. They create a hierarchy
of volumes by down-scaling the input volume data. Then
they extract the isosurface on the coarsest resolution by MC,
and fit the mesh onto the isosurface at the finer levels of the
volume hierarchy. In the projection step, they estimated the
normal vector for each mesh point, and used the shortest
signed distance of the point to the isosurface to move the
mesh point at level l+1 to the isosurface at level l. Although
their method exploits multiresolution capability, they had to
estimate isosurfaces at the finer levels for the projection pro-
cess, and the distance function cannot be properly defined
everywhere. Furthermore it is not free from the ambiguity
problem in surface definition process (possible “holes” in
the resulting surface) because they adopted MC for the base
mesh.

Recently, we proposed a new isosurfacing method
based on a relaxation scheme [8]. Differently from the MC,
it does not extract the isosurface directly from the voxel
data but calculates the iso-density point (isopoint) first. Af-
ter building a coarse initial mesh approximating the ideal
isosurface by the CBM (cell-boundary method) [9], it meta-
morphoses the mesh into the final isosurface by the shrink-
wrapping process. Compared with the MC algorithm, their
method is robust and does not make any cracks on surface.
Furthermore, since it is possible to utilize lots of additional
isopoints during the surface reconstruction process by ex-
tending the adjacency definition, theoretically the resulting
surface can be better in quality than the MC algorithm.

In this letter, we try to extend our previous work [8]
to exploit the multiple resolution isosurface by adopting the
scheme proposed by Labsik et al. Instead of using MC, our
method extracts the initial mesh by the CBM at the coarsest
level. We also simplify the projection process by using the
isopoints rather than the isosurface.

This letter organized as follows. The concept of the
volume pyramid is introduced and the initial mesh gener-
ation technique from the coarsest volume is provided in
Sect. 2. Section 3 describes our multiresolution surface fit-
ting scheme. Experimental results are given in Sect. 4, and
Sect. 5 concludes this letter.

2. Volume Pyramid and the Initial Mesh

The multiresolution approach considered in this letter is
based on the volume pyramid. Let us consider a volume
data Vl defined on a regular grid Gl of dimensions nx, ny

and nz, where l represents the level of the volume data (0 for
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the original volume). The grid at level 0 can be denoted as
G0 = {(xi, y j, zk)|0 ≤ i ≤ nx, 0 ≤ j ≤ ny, 0 ≤ k ≤ nz}, with
xi = x0 + ih, y j = y0 + jh and zk = z0 + kh for the same grid
size h.

Assume that an input volume data V0 is given on a
grid G0. The volume pyramid defined by a set of vol-
ume data {V0,V1, · · · ,VL−1} can be computed by iteratively
down-sampling V0 by a factor of two. Lots of 3D filters,
such as 2 × 2 × 2 mean, median and dilation filters, can
be applied to convolve the voxels at level l − 1 to esti-
mate the down-sampled voxel value at level l. Since the
densities of the object we want to reconstruct are usually
larger than those of the background voxels, the dilation fil-
ter selecting the largest density from the 8 voxels could be
the best choice [7]. For thin parts of the object as shown
in Fig. 1 (a), the mean filter may omit some isosurface as
shown in Fig. 1 (b), and consequently may result in topo-
logical holes on the surface mesh as shown in Fig. 2 (a). In
the case of the dilation filter, the down-sampled volume is
proven to envelop the isosurface extracted from the finer
level because it has a growing effect as shown in Fig. 1 (c).
Figure 2 (b) illustrates isosurface reconstruction result by
the cell-boundary method [9] from the down-sampled vol-
ume using the dilation filter.

The dilation filter for constructing the volume pyramid
may modify the surface topology, such as removing small
holes in the upper volume data. But, in general, it is appro-
priate for the data sets we consider because they are topolog-
ically simple. For a given volume data V0, we can extract the
volume pyramid by convolving the dilation filter iteratively
to the voxels at the lower levels. After building the volume
pyramid, the initial mesh ML−1 should be constructed from
the volume at the top-most level of the pyramid. We adopted
the cell-boundary method (CBM) for this purpose [9]. The
CBM does not provide a highly detailed surface like MC,
but is quite robust for approximating surface from voxel data
in that it provides a unique representation without having
any ambiguity in surface definition. The surface complex-

Fig. 1 Filtering the input volume: (a) original voxels (level l − 1), (b)
voxels after mean filtering (level l) and (c) after dilation filtering (level l).

Fig. 2 Isosurfaces by CBM after down-sampling by: (a) the mean filter-
ing, and (b) the dilation filtering.

ity (number of triangles) is also simplified by 40% ∼ 50%
compared with the MC. Thus it can be a good choice for ac-
quiring the initial base mesh of the isosurface on the coarsest
resolution.

3. Surface Fitting and Subdivision

Since the initial mesh by CBM does not provide a highly de-
tailed surface and the growing effect of the dilation filter, we
have to fit the mesh onto the isosurface. We adopted our pre-
vious work, called the shrink-wrapped iso-surface (SWIS)
method, for this purpose [8].

Assume that an initial mesh Ml approximating the iso-
surface of a volume data Vl at level l is given. We first
extracts the isopoints Pl from Vl. To simplify the fitting
process, SWIS uses the isopoints as the reference points for
the fitting process: actual 3D points assumed to be sam-
pled from the ideal isosurface of Vl. Furthermore, it can
overcome the O(1)-adjacency restriction of MC by adopting
higher order of adjacency such as O(2) and O(3)-adjacency
in the isopoints extraction step. (Udupa et al. used the term
O(1)-adjacent when a pair of voxels share a face [8]. In
O(2)-adjacency, two voxels sharing an edge are also defined
to be adjacent and O(3)-adjacent when they share a vertex.)

The initial mesh Ml is then iteratively metamorphosed
into the isopoint Pl by the shrinking and smoothing opera-
tions. The shrinking step is applying the attracting force to
each vertex of the mesh. For a vertex qi of Ml, the attracting
force vector f = qi − pi, where pi is the nearest isopoint of
qi, pushes the mesh vertex qi toward pi as follows.

qi ← qi + α f

The weight α (0.0 to 1.0) controls the amount of the
attracting force.

The smoothing step tries to relax the shrink-wrapped
surface to achieve a uniform vertex sampling. We have
adopted the same method used in SWIS, which is employ-
ing the approximation of Laplacian L. After the shrink-
wrapping step, we finally acquire the resulting mesh at level
l, denoted as Ml

fit, which represents the isosurface of the vol-
ume at the level.

To produce the initial mesh at the next finer level, the
isosurface at the upper level should be transformed into a
mesh on the next finer resolution. We first scale up the mesh
Ml

fit by moving all of the vertices by factor of two. Further-
more, the mesh should be subdivided to capture local detail
of the isosurface at the finer level. We adopted the technique
proposed by Loop [10], which iteratively divides a triangu-
lar patch into four. After these steps, the mesh Ml

fit on Gl is

transformed into the initial mesh Ml−1 at the finer level.
By applying the surface fitting procedure iteratively to

the initial mesh at the next finer level, we can construct the
isosurface at level l−1, denoted as Ml−1

fit , and then Ml−2
fit , and

so on, until we finally arrive at level 0. Consequently, the
multi-resolution isosurface model, a group of isosurfaces at
each level {M0

fit,M
1
fit, · · · ,ML−1

fit }, can be reconstructed.
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4. Experiments

The proposed method has been implemented in C++,
and runs on a Pentium-PC under Windows-XP. For
the experiment, we used the volume data from the
Volvis (http://www.volvis.org) and the University of Iowa
(http://radiology.uiowa.edu).

Figure 3 shows experimental result for the head data
from Volvis (128 slices of 256 × 320 × 8 bit images). Af-
ter building the volume pyramid (L = 4), the initial mesh
Ml at the coarsest level (l = 3) is extracted by the CBM
algorithm as shown in (a). We extract the isopoints P3 in
O(3)-adjacency from the volume data at level 3, and apply
the surface fitting process to shrink the initial mesh M3 onto
the isopoints P3 representing the isosurface of V3. Dur-
ing this step the crude initial mesh is metamorphosed into
the smooth surface representing the isosurfaces of V3 at the
coarsest level (M3

fit) as shown (b). For the initial mesh M2 at
the next finer level (l = 2), the mesh scale-up and subdivi-
sion steps are applied to M3

fit as shown in (c). M2 is further

transformed into the isosurface M2
fit as shown in (d). The iso-

surfaces at the next finer levels (M1
fit, M0

fit) can be extracted
by applying the same procedure.

Fig. 3 Surface construction result from the head data.

Fig. 4 Multiresolution isosurface construction scheme for the brain data.

Figure 4 illustrates multiresolution isosurface construc-
tion result for the brain data (MR SEGBRAIN) from the
collection of 8-bit medical datasets of University of Iowa
(128 slices of 256 × 256 × 8 bit images). After approxi-
mating the initial mesh Ml at the coarsest level (l = 2), the
isosurface for each resolution was extracted by the proposed
method. Figure 5 shows comparison of our method with MC
for the brain data. With lots of jagged surfaces as shown in
the figure, the resulting mesh constructed by MC contains
cracks on surface. On the other hand, although it does not
contain any cracks, our method seems to be not satisfactory
in the regions of high curvature compared with the MC al-
gorithm. Since our method produces less than 50% of trian-
gles compared with MC, it can miss some regions of highly
detailed surface.

Table 1 lists the surface reconstruction summary and
Table 2 summarizes the actual computation times for the
brain data. Although the overall computation time of our
method in O(3)-adjacency is about 8 times slower than the
MC algorithm, the processing times at the coarse levels are
much faster than the MC, and the number of surface patches
at the coarse levels are much smaller than MC. Conse-
quently we expect that our method can be successfully ap-
plied to the interactive visualization applications such as im-
age guided surgery and progressive transmission.

5. Conclusion

The need for multiresolution isosurface becomes apparent
when large data sets have to be visualized interactively. In
this letter, we proposed a new hierarchical isosurface recon-
struction scheme from cross sectional images. From the in-
put volume data, we construct a volume pyramid based on
a 3D dilation filter, and extract a base mesh from the coars-

Fig. 5 The brain data: (a) reconstruction result by our method, (b) re-
constructed surface by MC.

Table 1 Summary of the experimental results.

final intermediate
method total adja- isosurface isosurface

levels cency (l = 0) l = 1 l = 2
pts tri tri tri

MSWIS 3 O(3) 78406 156832 39208 9802
MC 1 O(1) 174326 344120 none none

Table 2 Compariton of exection time for the brain data [sec].

method MSWIS MC
level 2 level 1 level 0 overall

execution time ≤ 0.3 ≤ 0.9 14.7 15.9 2.1
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est volume with the cell-boundary method. We iteratively fit
this mesh to the isopoints representing the ideal isosurface
using the shrink-wrapping scheme, and finally subdivide the
mesh to represent fine detail of the isosurface. According to
experiments, our method works well for constructing mul-
tiple resolution isosurface for the topologically simple data
set.

Although it does not contain any cracks, our method
seems to be not satisfactory in the regions of high curvature
compared with the MC algorithm. Furthermore, the hier-
archical isosurface scheme usually may change topology of
the isosurface as small holes can disappear. The subdivi-
sion process also can be improved by adopting error-driven
adaptive subdivision schemes. They remain problems to be
addressed in future work.
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