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A Traffic Decomposition and Prediction Method for Detecting and
Tracing Network-Wide Anomalies

Ping DU†a), Shunji ABE†, Yusheng JI†, Members, Seisho SATO††, Nonmember, and Makio ISHIGURO††, Member

SUMMARY Traffic volume anomalies refer to apparently abrupt
changes in the time series of traffic volume, which can propagate through
the network. Detecting and tracing these anomalies is a critical and difficult
task for network operators. In this paper, we first propose a traffic decom-
position method, which decomposes the traffic into three components: the
trend component, the autoregressive (AR) component, and the noise com-
ponent. A traffic volume anomaly is detected when the AR component is
outside the prediction band for multiple links simultaneously. Then, the
anomaly is traced using the projection of the detection result matrices for
the observed links which are selected by a shortest-path-first algorithm. Fi-
nally, we validate our detection and tracing method by using the real traffic
data from the third-generation Science Information Network (SINET3) and
show the detected and traced results.
key words: anomaly detection, anomaly tracing, autoregressive (AR)
model, Kalman filter

1. Introduction

As shown in Fig. 1, traffic volume anomalies refer to appar-
ent spikes (marked by the red circles in Fig. 1) in the time
series of the traffic data, which might be caused by flash
crowds or attacks. Since anomalies can create congestion
in a network, it is important for the network operators to
detect when a volume anomaly is occurring and to trace its
propagation path. Rapidly and accurately detecting and trac-
ing anomalies are critical for the efficient operation of large
computer networks.

How to detect the time points at which a network is ex-
periencing anomalies is a complex task. There are two chal-
lenges in the detection task. One is that the average traffic
volume varies over time in a day. In the example in Fig. 1,
the average traffic volume in the work time (e.g., 2:00–5:00
pm) is more than thrice that of sleep time (e.g., 2:00–5:00
am). The varying traffic volume makes it difficult to de-
tect anomalies using a simple threshold. Another is that it
is difficult to discriminate anomalies from stochastic traffic
fluctuations, especially on the links with a large volume of
noisy traffic.

Several approaches have been proposed for anomaly
detection. In [2], [3], wavelet analysis methods were pro-
posed, in which the traffic was decomposed into low-band,
mid-band, and high-band components, and anomalies were
detected by using the threshold of the mid-band component
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Fig. 1 Examples of traffic volume anomalies. (Traffic data were ob-
served on the link from Tokyo1 to Nagoya over a 24-hr period starting
from 12:00, July 27, 2007 in SINET3 [1]. The anomaly points are marked
with red circles.)

of the traffic. The demerit is that a wavelet-based method is
not suitable for real-time detection, but suitable for off-line
analyses. In [4], [5], anomalies were detected by applying
thresholds in time series model of the network traffic. The
shortcoming of these methods is that it is difficult to find
an exact model to forecast the real traffic. In [6], detection
was done via a signature matching mechanism, in which an
anomaly was detected when the feature vector of the current
traffic matches a template anomaly feature vector generated
based on the traffic history. This method is unable to detect
an anomaly out of existing anomaly templates.

Besides anomaly detection, to effectively control the
anomalies, another task is to trace the sources of detected
possible anomalies. Despite a number of the techniques
that have been proposed for detecting traffic anomalies in
a single-link [2]–[7], network-wide traffic anomalies remain
poorly studied. To our knowledge, only A. Lakhina et al.,
[9] proposed a subspace separation method based on the
Principle Component Analysis, by which the space of a
whole set of network traffic were separated into different
subspaces, representing the normal and anomalous traffic
behaviors. Although it can diagnose anomalous behavior
in any flow, it requires a high computational cost due to the
high-dimensional matrix analysis and it is also suitable for
real-time operation.

In this paper, we propose a traffic decomposition
and AR prediction method to detect and trace anomalies.
The method decomposes the traffic into three components:
(1) the trend component, which captures the gradual changes
in the traffic volume in a time series, (2) the autoregressive
(AR) component, which consists of predictable anomalous
traffic and stochastic traffic fluctuations, and (3) the noise
component, which is assumed to be a white noise process
with zero mean. A potential anomaly can be quickly de-
tected when the AR component is outside the prediction
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band. Furthermore, when taking into account that a traf-
fic anomaly propagates through the network, simultaneous
anomalies should be observed on more than one link when
the traffic propagation delay is negligible. A volume spike
on only one link will also be judged as a normal fluctua-
tion of the traffic. When an anomaly originates in an ingress
node of the backbone, it will propagate on the links along the
route path obtained by a shortest-path-first algorithm. We
project the detection result matrices on the time axis to di-
agnose which links and how many links are simultaneously
experiencing anomalies. By marking the diagnosed results
on the shortest route tree, the traffic anomalies propagation
path can be traced.

The contributions of this paper are: (1) a general traffic
decomposition and prediction method to detect anomalies,
(2) a projection method to trace the possible anomalies in
the backbone network, and (3) the validation of the detection
and tracing methods using the real data from the SINET3
backbone network.

The paper is organized as follows. In Sect. 2, we in-
troduce our traffic decomposition and prediction method
for detecting anomalies. Section 3 introduces our tracing
method. Section 4 evaluates the AR prediction method us-
ing a comparison with two other popular methods, the Expo-
nential Weighted Moving Average (EWMA) and the Non-
Seasonal Holt-Winters (NSHW) [4], [5] methods for traffic
anomaly detection. Section 5 validates our proposed meth-
ods by using the real traffic data from the SINET3 network.
Finally, Sect. 6 concludes this paper and outlines our future
work.

2. Detecting Anomalies

The third-generation Science Information Network
(SINET3) (shown in Fig. 2), which is our studied network in
this paper, consists of 12 core nodes and more than 60 edge
nodes to provide high-speed communication environment
for more than 700 universities and research institutes. It
also provides connectivity to other domestic networks such

Fig. 2 Network topology of SINET3.

as JPIX and JPNAP, and to foreign networks such as those
in New York and Los Angeles through international lines.
The backbone capacity is a maximum of 40 Gbps. The traf-
fic propagation delay in SINET3 is less than 1 ms, which is
negligible compared to the sampling interval of the traffic
volume, which is one minute in our research.

2.1 Traffic Decomposition

On July 26, 2007, we observed a set of anomalous points
on the time series of the traffic from New York to core node
Tokyo1 in SINET3. Since the sum of the input traffic equals
the sum of the output traffic for each node, we might say that
the anomalous traffic will also occur on some of the links out
of node Tokyo1. The time series of the traffic on these links
are shown in Fig. 3, in which “IR” and “IN” are the two edge
nodes connected to node Tokyo1. As shown in Fig. 3, the
mean traffic level varies considerably. Although the mean
traffic level is very useful for predicting the gradual change
tendency of the traffic volume, it is useless for analyzing the
short-term changes, such as anomalies. We use a polyno-
mial trend model of k order in this research to estimate the
mean traffic volume. After removing the mean traffic, the
residua in the time series can be modeled using the autore-
gressive (AR) process of order m (depicted as AR(m)) [11],
[12].

Let yn denote the observed traffic volume at time in-
terval n. We can decompose it into three components: the
trend component trn, the AR component pn, and the noise
component ωn. They can be described as:

yn = trn + pn + ωn, (1)

Δktrn = υn1, (2)

pn =

m∑
i=1

ai pn−i + υn2, (3)

where ωn ∼ N(0, ς2), υn1 ∼ N(0, τ2
1), and υn2 ∼ N(0, τ2

2),
which are all white noise with a zero mean; and {ai} is the
AR coefficient parameter. By replacing the difference oper-
ator Δ using backward shift operator B with Δ = I − B [11],
Eq. (2) can be written as:

trn =

k∑
i=1

(−1)i+1

(
k
i

)
trn−k + υn1

Fig. 3 Time series of traffic volumes on the links connected Tokyo1 on
July 26, 2007.
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=

k∑
i=1

cktrn−k + υn1, (4)

where ck = (−1)i+1
(

k
i

)
.

We define a (k + m − 1)-dimensional vector xn =

(trn, · · · , trn−k+1, pn, pn−1, · · · , pn−m+1)t to denote the state at
time interval n. The state-system described in Eqs. (1), (3),
and (4) can be depicted as state-space Eq. (5), which con-
sists of two models: the first describing the evolution of the
state as a hidden Markovian process and the second is of the
form state plus noise.

xn = Fxn−1 +Gυn,

yn = Hxn + ωn, (5)

where

F =
[

F1 0
0 F2

]
, G =

[
G1 0
0 G2

]
,

H =
[

H1 H2

]
, υn =

[
υn1 υn2

]
, (6)

in which F1, G1, and H1 correspond to the trend component,
and F2, G2, and H2 correspond to AR component. They are
depicted as

F1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 c2 · · · ck

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H1 =
[

1 0 · · · 0
]
, (7)

and

F2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 · · · am

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, G2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H2 =
[

1 0 · · · 0
]
. (8)

The state-space representation Eq. (5) can be fast cal-
culated using Kalman filtering [12]. The Kalman filter has
two distinct steps: prediction and estimation. The prediction
step uses the linear least-squares estimator from the previous
state xn−1 to estimate the current state xn. In the estimation
step, currently observed traffic yn is used to refine this pre-
diction for the current state xn. Let Vn be the covariance of
xn. In the following equations, the notation x̂n|n−1 represents
the prediction of xn at time n−1 and x̂n|n denotes the estima-
tion of xn at time n. Similarly, the notation V̂n|n−1 represents
the prediction of Vn at time n − 1 and V̂n|n denotes the esti-
mation of Vn at time n.

[Prediction Step]

x̂n|n−1 = Fx̂n−1|n−1. (9)

V̂n|n−1 = FV̂n−1|n−1Ft +GRGt, (10)

where R =

[
τ2

1 0
0 τ2

2

]
.

[Estimation Step]

Kn = V̂n−1|n−1Ht(HV̂n−1|n−1Ht + ς2)−1. (11)

x̂n|n = x̂n|n−1 + Kn(yn −Hx̂n|n−1). (12)

V̂n|n = (I − KnH)V̂n|n−1. (13)

Here, Kn is the Kalman gain matrix and Eq. (11) can be ob-
tained by minimizing the conditional mean-squared estima-
tion error E[‖ x̂n|n − x̂n|n−1 ‖2].

The trend component order k and the AR component
order m are selected based on the Akaike Information Cri-
terion (AIC) [11] through experimentation, which is not ad-
dressed in this paper. In our research, the trend component
order k and the AR component order m are set to 2 as a
default. Figure 4 is an example of the traffic component
decomposition. The observation results show that the AR
component is a suitable metric to describe the short-term
changes in the traffic volume when we study the anomalies.

2.2 Anomaly Detection on One Single Link

Let the time series Yn = {y1, . . . , yn} denote the observed
traffic history. We define H̃ =

[
O1×k H2

]
, where O1×k is

a 1× k zero matrix. Then, pn = H̃xn. Let p̂n|n−1 be the mean
prediction of pn, p̂n|n be the estimation of pn at time n, and
d̂n|n−1 be the predicted covariance of pn at time n − 1. They
can be calculated as:

p̂n|n−1 = E(pn|Yn−1)

= E(H̃xn|Yn−1)

= H̃x̂n|n−1, (14)

d̂n|n−1 = Cov(pn|Yn−1)

= Cov(H̃xn|Yn−1)

= H̃Cov(xn|Yn−1)H̃t

= H̃V̂n|n−1H̃t, (15)

and

p̂n|n = H̃x̂n|n. (16)

Fig. 4 Example of traffic decomposition. The observed traffic is on the
link from New York to Tokyo1 on July 26, 2007.
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We define [p̂n|n−1−β·
√

d̂n|n−1, p̂n|n−1+β·
√

d̂n|n−1] as the
prediction band of AR component pn, where β is the scaling

factor. When the prediction error |p̂n|n − p̂n|n−1| ≥ β ·
√

d̂n|n−1

(in other words, p̂n|n is outside this band), there is a possible
anomaly.

An example of the prediction method is shown in
Fig. 5, in which the cases of β = 1.96 and β = 3 are shown
as solid and dash lines, respectively. It can be seen that
the β = 3 line can catch our concerned major anomalies,
while the β = 1.96 line can catch more abrupt change points.
How to choose β is not only a tradeoff between the number
of detected anomalies and false alarms, which will be dis-
cussed in more detail in Sect. 4, but also should be decided
by the task of the network analysis. In the analysis of trac-
ing anomaly that follows, we set β = 3 to catch and analyze
major anomalies that are more likely to cause congestion.

Another interesting result can be seen in Fig. 5 is that
the variance in the AR component is not changed over time
after a short period of change from the start, so we can as-
sume the AR process to be a stationary process and denote√

d̂n|n−1 as σ. Furthermore, according to the Appendix, the
AR component can be assumed to follow a Gaussian dis-
tribution. So, the anomaly detection rule can be described
as

|p̂n|n − p̂n|n−1| ≥ δα, (17)

where δα denotes the threshold for the prediction error at
the 1 − α confidence level. The thresholds δ0.05 = 1.96σ
(β = 1.96) and δ0.003 = 3σ (β = 3) can assure a 1 − α =
0.95 confidence level and a 1 − α = 0.997 confidence level,
respectively.

2.3 Anomaly Detection on Multiple Links

Let l denote the number of observed links and t denote the

Fig. 5 Example of prediction error for AR component for traffic shown
in Fig. 4.

number of successive time intervals of interest. Let matrices
Y and A of size l×t denote the time series of observed traffic
volumes and AR components respectively. In each of these
two matrices, each column i denotes the time series of the
ith link and each row j represents an instance of all observed
links at time j.

We define Âi j| j−1 as the estimator of Ai j. Accord-
ingly, the prediction band is calculated as [Âi j| j−1 − βσi,
Âi j| j−1 + βσi], where σi is the standard deviation of the AR
component of link i. When Ai j is outside this prediction
band, there is a possible anomaly. We define two l× t matri-
ces, P and Q, to record the detected results:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P11 · · · P1t
...
. . .

...
Pl1 . . . Plt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q11 · · · Q1t
...
. . .

...
Ql1 . . . Qlt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (18)

in which

Pi j =

{
1, if |Ai j − Âi j| j−1| ≥ βσi

0, otherwise
,

Qi j =

{
2i−1, if |Ai j − Âi j| j−1| ≥ βσi

0, otherwise
. (19)

In addition, considering that a traffic volume anomaly
propagates through the network, one anomaly should be ob-
served on more than one link at the same time. A volume
spike occurring only on one link will also be judged as an
occasional fluctuation of traffic. Projection of matrices P
and Q on the time axis is an effective technique for detect-
ing whether one anomaly is observed on multiple links at
the same time. We define two vectors, p and q, to represent
the projected matrices P and Q on the time axis. They can
be calculated using the following equation.

p =

⎡⎢⎢⎢⎢⎢⎣
∑

i

Pi1 · · ·
∑

i

Pit

⎤⎥⎥⎥⎥⎥⎦ ,

q =

⎡⎢⎢⎢⎢⎢⎣
∑

i

Qi1 · · ·
∑

i

Qit

⎤⎥⎥⎥⎥⎥⎦ . (20)

When pt equals n, it indicates that there is an anomaly oc-
curring at n links at time t simultaneously. Next, we denote
qt into the binary system to judge which links are experienc-
ing an anomaly. If the ith bit of qt equals 1, this indicates
that there is an anomaly on the ith link at time t; otherwise
there is no anomaly. For example, if qt = (3)10 = (0011)2,
this indicates that the first and second links have an anomaly
at time t.

We apply the detection method to the traffic links
shown in Fig. 3, and the projections of the detected matrices
P and Q are shown in Fig. 6. Here we set β = 3 for our pur-
poses. In the figure, at the points marked by the red circles,
p = 2 indicates there are two links experiencing anoma-
lies at those points. Furthermore, q = (3)10 = (00011)2
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Fig. 6 Projection of detected matrices P and Q for observed traffic on
July 26, 2007. (shown in Fig. 3)

indicates that #link 1 (New York to Tokyo1) and #link 2
(Tokyo1 to IR) are experiencing anomalies. At the point
marked by the green circle, p = 3 indicates that there are
three links experiencing anomalies at that point. In addition,
q = (19)10 = (10011)2 indicates that #link 1 (New York to
Tokyo1), #link 2 (Tokyo1 to IR) and #link 5 (Tokyo1 to IN)
are experiencing anomalies. The other points are judged as
stochastic fluctuations.

3. Tracing Anomalies

Besides anomaly detection, another important issue is how
to trace the sources of these detected anomalies. Our task
in this paper is to trace the anomaly propagation path in
the SINET3 backbone network shown in Fig. 7, in which
12 core nodes are connected by 28 unidirectional links. The
key question is how many links and which ones we should
inspect that can provide the necessary information for trac-
ing anomalies. Suppose there is a traffic volume anomaly
entering the SINET3 backbone at node 6 (e.g., through the
link from Los Angeles to Tokyo2 in Fig. 2), it may propagate
to other 11 core nodes. Taking into account that the traffic
between each two core nodes will follow a route path ob-
tained by a shortest path algorithm, the links on these short-
est route paths are those links we should inspect for tracing
an anomaly.

We develop an algorithm for our research that is based
on Dijkstra’s [17] algorithm to generate the shortest path tree
starting at an ingress node s, which is shown in Table 1. It
is obvious that the shortest route path tree will consist of 11
unidirectional links and we only need to inspect 11 unidirec-
tional links to trace an anomaly. Otherwise, we need to in-
spect 28 links to trace an anomaly without the shortest route
path tree. By marking the diagnosed result on the shortest
route path tree, the propagation path of traffic anomalies can
be traced.

Fig. 7 Topology of core nodes in SINET3 backbone network.

Table 1 Algorithm for generating shortest route path tree.

G whole core node set; G = {i}12
i=1 for Fig. 7;

S marked core node set;
Q unmarked core node set;
w(u, v) OSPF cost between neighbor node pair u and v;
d[v] total cost of the path from the ingress node s to node v;
p[v] the previous node of v along its shortest path.

1: d[s] = 0; S = ∅; Q = G;
2: for ∀v ∈ G do
3: d[v] = ∞;
4: end for
5: while (Q � ∅) do
6: u = {u : d[u] = min{d[i]; i ∈ Q}; u ∈ Q};
7: S = S

⋃{u}; Q = Q − {u};
8: for ∀v = {v : w(u, v) � ∞; v ∈ Q} do
9: if (d[v] > d[u] + w(u, v))
10: d[v] = d[u] + w(u, v); p[v] = u;
11: end if
12: end for
13: end while

4. Evaluation of AR Prediction Method

In this section, we evaluate the performance of our pro-
posed AR prediction method for detecting possible anoma-
lies on a single traffic link. For comparisons, we will
start by introducing two other methods, the Exponential
Weighted Moving Average (EWMA) [4], [5] (also called ex-
ponential smoothing) and the Non-seasonal Holt-Winters
(NSHW) [4], [5] methods, which are currently being widely
used in network analyses, such as in RRDTOOLS [4].

A. EWMA

Assume yn is the analyzed traffic, then the prediction can be
given by

ŷn = λyn−1 + (1 − λ)ŷn−1, (21)

where 0 ≤ λ ≤ 1 is the weight parameter of past values.
According to [5], [9], the values of 0.2 ≤ λ ≤ 0.3 are suit-
able for traffic prediction. So, in this paper, we will also set
0.25 as the default value of λ. Anomalies are detected by
thresholding |yn − ŷn|.
B. NSHW

The Non-Seasonal Holt-Winters method is an advanced ver-
sion of the EWMA method, in which the prediction ŷn is
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divided into two components: a trend component tn and a
smoothing component sn. The prediction ŷn is defined as
ŷn = sn + tn, in which

sn = λyn−1 + (1 − λ)ŷn−1,

tn = μ(sn − sn−1) + (1 − μ)tn−1, (22)

where λ ∈ [0, 1] and μ ∈ [0, 1]. Here, we will set 0.25 as the
default value of λ and 0.0035 as the default value of μ [3].
Anomalies can also be detected by thresholding |yn − ŷn|,
which is the same as for the EWMA method.

To evaluate the performance of AR prediction, EWMA
and NSHW methods, anomalies from either real traffic data
or synthetic anomaly generator can be used [5], [9], [10].
Because the exact statistical properties of anomalies are too
difficult to be simulated, and A. Soule et al. [10] has shown
that the synthetic anomalies may result in a reversed result
to the real anomalies for evaluating anomaly detection meth-
ods, we will use the real traffic collected on different links
of SINET3 to evaluate the AR prediction method comparing
with EWMA and NSHW methods.

As has been previously introduced, all the EWMA,
NSHW, and AR prediction methods rely on the selection of
a threshold of the prediction error that is to decide whether
there is an anomaly. The test result is a tradeoff between the
detection rate and false alarm rate, where the detection rate
is defined as the fraction of the true anomalies detected and
the false alarm rate is defined as the fraction of the normal
data points over the threshold. Whether the prediction errors
at the anomalous points sharply stand out from the normal
data decides the performance of a detection method.

In our evaluations, we take into account all the possi-
ble thresholds for each method and plot the results in the
Receiver Operation Characteristic (ROC) [18] curves. In a
ROC curve, the false alarm rate is plotted on the x-axis and
the detection rate is plotted on the y-axis.

In Figs. 8 and 9, we compare the AR prediction method
with the EWMA and NSHW methods using the real traf-
fic collected on the links from Tokyo2 to Tokyo1 and from
Tokyo1 to Nagoya in July 2007. From the left plot in each
figure, we can clearly see that the AR prediction method per-
forms the best, because its ROC curves climb more rapidly
towards the upper left of the graph than the EWMA and
NSHW methods do. This means that the AR prediction
method can detect a higher fraction of the true anomalies
with fewer false alarms. The NSHW method performance is
a little better than that of EWMA method. For a false alarm
rate of less than 0.15%, the AR prediction method misses no
anomalies, while the EWMA and NSHW methods catch all
the anomalies at a false alarm rate of about 6%–7%, which is
more than 40 times the value of the AR prediction method.

The results of the plot of on the right of each figure
show the tradeoff by the scaling factor β of the AR predic-
tion method described in Sect. 2. When β = 1.6, the system
catches all the anomalies with a false alarm rate of less than
0.15%. When β = 1.96, the system catches about 50% of
the anomalies. When β = 3.0, the system can catch about
25% of the anomalies. How to choose β is decided by the

Fig. 8 ROC curves using real traffic collected on link from Tokyo2 to
Tokyo1 in July 2007.

Fig. 9 ROC curves using real traffic collected on link from Tokyo1 to
Nagoya in July 2007.

task of the network operation. If the network operators are
only interested in the major anomalies that are more likely
to cause congestions in the network, maybe a large β (e.g.
β = 3) is preferred.

5. Validation of Tracing

In this section, we validate our proposed anomaly detec-
tion and tracing methods by an example of multi-sources
and multi-hops anomalies in the SINET3 network. We ob-
serve that there were some possible traffic volume anoma-
lies on the traffic from Los Angeles to Tokyo2 on the link
from 2007-7-27 12:00 to 2007-7-28 12:00 and try to trace
the sources for these possible anomalies. First, we execute
the algorithm in Table 1 to generate the shortest route path
tree starting at node 6 (node Tokyo2); the tree is shown in
Fig. 10. For each link between a two core nodes pair in the
tree, we assign a link number, which is marked in Fig. 10.
The link from Los Angeles to Tokyo2 is marked as #link 12.

Next, we apply the detection method to these 11 traf-
fic links shown in Fig. 10. Here we set β = 3. The de-
tection results are shown in Fig. 11. In the figure, at the
point marked by the red circle, p = 7 indicates that there are
7 links experiencing anomalies at that point. Furthermore,
q = (2545)10 = (100111110001)2 at that point indicates that
#links 1, 5, 6, 7, 8, 9, and 12 are experiencing anomalies.
We mark these detected links with red lines on the shortest
route tree, and get the anomaly propagation path shown in
Fig. 12 (a).

At the point marked by the green circle, p = 8 in-
dicates that there are 8 links experiencing anomaly. Fur-
thermore, q = (3569)10 = (110111110001)2 indicates that
#links 1,5,6,7,8,9,11, and 12 are showing anomalies. We
also mark these detected links with red lines on the short-
est route tree, and get the anomaly propagation path shown
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Fig. 10 Shortest route path tree starting at node 6.

Fig. 11 Detection results for traffic on the links from 2007-7-27 12:00 to
2007-7-28 12:00.

Fig. 12 Propagation paths for traffic anomalies in Fig. 11 which are
marked with (a) red circle and (b) green circle. Red lines are traced propa-
gation paths and blue line is deduced propagation path.

in Fig. 12 (b). Although the anomaly is detected on #links
12, 5 and 11, it is not detected on #link 10 (marked with the
blue line). This is because that the corresponding spike in
the #link 10 traffic is so small that it is difficult to detect even
from a visual inspection. However, from the anomaly prop-
agation path, we may think that #link 10 is also experiencing
an anomaly at that point.

6. Conclusions and Future Work

In this paper we have proposed a traffic decomposition and
prediction method to detect and trace traffic volume anoma-

lies in the SINET3 network. The traffic is decomposed into
three components: the trend component, the AR component,
and the noise component, in which AR component consists
of stochastic fluctuations and anomalous traffic. The traffic
volume anomalies were detected when the AR component
is outside the prediction band on some observed links si-
multaneously. Then we projected the detection result matri-
ces on the time axis to diagnose which links and how many
were experiencing the same anomalies. By marking the di-
agnosed result on the shortest route tree, which was gen-
erated through the algorithm listed in this paper, the traffic
anomalies propagation path was traced.

Finally, our detection and tracing methods have been
validated on the third-generation Science Information Net-
work (SINET3). Our future work is to propose a more sen-
sitive method to detect an anomaly even when its spike is
hidden in the stochastic fluctuations during propagation.
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Appendix: Distribution Tests of AR Component

To test whether the AR components follow a Gaussian
distribution, we first use a normal quantile-quantile (Q-Q)
plot [13] to graphically compare the distribution of the AR
component samples of the traffic shown in Fig. 3 to a nor-
mal distribution. When the theoretical Gaussian distribu-
tion matches the distribution of the measured AR com-
ponent samples, the quantile-quantile plot will produce a
straight line. The Q-Q plots results in Fig. A· 1 show that
curves of AR component samples of T1 T2, T1 T3 and
T1 IN fit the theoretical Gaussian distribution fairly well,
where, “T1 T2” represents the traffic from Tokyo1 to To-
kyo2, “T1 T3” represents the traffic from Tokyo1 to To-
kyo3, and “T1 IN” represents the traffic from Tokyo1 to IN.

For the AR component samples of NY T1 (traffic from
New York to Tokyo1) and T1 IR (the traffic from Tokyo1
to IR), the curves in the pink area also fit the theoretical
Gaussian distribution very well. As has been analyzed, the
AR component consists of stochastic traffic fluctuations and
anomalous traffic. In the figures for NY T1 and T1 IR, the
pink rectangular areas correspond to the stochastic traffic
fluctuations and the other areas correspond to anomalous
traffic. We would like to say that the stochastic traffic fluctu-
ation follows the Gaussian distribution. In the next test, we
will focus on testing the distribution of the AR components
in the pink rectangular areas.

Furthermore, we use a one-sample Kolmogorov-
Smirnov test (KS-test) [14], [15] to determine whether the
distribution of the AR component samples and the Gaussian
distribution (with the same mean and variance) significantly
differed. The test results D = 0.05, 0.12, 0.06, 0.07, and
0.09 for NY T1, T1 IR, T1 T2, T1 T3 and T1 IN respec-
tively, which are the maximum vertical deviations between
the cumulative fraction plots of the distribution of the AR
component samples and that of the Gaussian distribution,
also indicate that there is very little discrepancy between the
AR component and Gaussian distributions.

Fig. A· 1 Q-Q normal test for AR components of observed traffic.
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