IEICE TRANS. INE. & SYST., VOL.E92-D, NO.5 MAY 2009

967

| LETTER Special Section on Information and Communication System Security

CCA-Secure Public Key Encryption without Group-Dependent

Hash Functions

Yang CUI""®_ Goichiro HANAOKA', Nonmembers, and Hideki IMAI'-"*, Fellow

SUMMARY So far, in almost all of the practical public key encryption
schemes, hash functions which are dependent on underlying cyclic groups
are necessary, e.g., H : {0, 1}* — Zp, where p is the order of the underlying
cyclic group, and it could be required to construct a dedicated hash function
for each public key. The motivation of this note is derived from the follow-
ing two facts: 1). there is an important technical gap between hashing to
a specific prime-order group and hashing to a certain length bit sequence,
and this could cause a security hole; 2). surprisingly, to our best knowledge,
there is no explicit induction that one could use the simple construction, in-
stead of tailor-made hash functions. In this note, we investigate this issue
and provide the first rigorous discussion that in many existing schemes, it
is possible to replace such hash functions with a target collision resistant
hash function H : {0, 1}* — {0, 1}¥, where k is the security parameter. We
think that it is very useful and could drastically save the cost for the hash
function implementation in many practical cryptographic schemes.

key words: CCA-secure public-key encryption, group-dependent hash

1. Introduction
1.1 Background

Chosen-ciphertext security (CCA-security, for short)[7],
[13] is nowadays considered as a standard notion of secu-
rity for public-key encryption in practice. Furthermore, this
security also implies universally composable security [4].

It is well-known that for almost all of practical CCA-
secure scheme, hash functions which depend on the under-
lying cyclic group are necessary, and this means that a ded-
icated hash function could be required for each public key.
For example, in the Cramer-Shoup cryptosystem [5], a tar-
get collision resistant hash function H : {0, 1}* — Z,, where
p is the order of the underlying cyclic group. For the ease of
explanation, we call such kind of hash function that output
depends on group as, group-dependent hash function.

Cost of Group-dependent Hash Function. Although it is
yet safe to follow the instructions of standardization, it is
costly and more complicated to choose a carefully designed
group-dependent hash function. More precisely, it is worth-
while noting that it is not trivial at all, to smoothly map the
cryptographic hash function output to certain group. An in-
appropriate implementation probably results in a serious se-

Manuscript received August 4, 2008.

"The authors are with the Research Center for Information Se-
curity (RCIS), National Institute of Advanced Industrial Science &
Technology (AIST), Tokyo, 101-0021 Japan.

"'The authors are with the Chuo University, Tokyo, 112-8551
Japan.
a) E-mail: y-cui@aist.go.jp
DOI: 10.1587/transinf.E92.D.967

curity hole. For example,

e if one lets H(x) = H'(x) mod p where H’ : {0, 1}* —
{0,...,2”1 — 1}, then Pr,[H(x) = X] for any X €
{0,...,2”' — p — 1} becomes twice as Pr,[H(x) = X’]
for any X’ € {2/ — p,...,p — 1}, assuming that the
distribution of H’(x) is uniform over {0, ..., 2" — 1}.

e if the hash function H’(x) which distribution is uniform
over {0,...,2P' =1} is simply truncated to {0, ..., p—1}
to get a new hash H(x), then the distribution of the trun-
cated hash H(x) will change and need to be carefully
dealt with, which sometime is likely to use a dedicated
hash function.

Furthermore, even though the distribution of the hash
output could be considered as acceptable in some applica-
tions (e.g. set the value of the hash function modulo p care-
fully), implementing such a dedicated hash function appar-
ently takes more cost. See the following example, which is
used in IETF working drafts [11]. It shows that how expen-
sive it is to build a group-dependent hash function, rather
than a regular hash function (In [11], f;(-) is required to out-
put to 128-bit sequence, while we do not need this condi-
tion).

fi(x) := SHA - 1(x)

fo(x,) = fil<Mx>)] ... fi(<[]lxe>)
kdf (x) := fi(<len(x)|x>)

hash(x) := (fa(<len(x)|x>,9)/(N - 1)) + 1

In the above description, “|” denotes the concatenation,
and the function /en(x) denotes the bit length of x in a high
order.

The kdf (-) and hash(-) function are both based on SHA-
1, where the hash(-) is the group-dependent hash function,
i.e. with output in Z,,. It is clear to see that an iterative op-
eration has been used to make the distribution of output of
hash(-) more uniformly over Z,, say 9 times. In addition,
a modular calculation is also needed. On the other hand,
kdf(-) could be simply achieved by SHA-1 with padding,
because it does not need the group-dependence. Therefore,
it is easy to see from the underlying example of implemen-
tation that a group-dependent hash function is much more
costly to build rather than a hash function with output of
fixed length, say {0, 1}*.

Hash-free Construction. Besides, though it is noted to pos-
sibly design a hash-free CCA-secure encryption in [5], [6],

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

968

it is generally not practical because, 1). an injective mapping
in replacement of TCR hash function is not always available,

“We cannot in general expect to find an easy-
to-compute, injective map from G to Z,,”

(cited from [6], Sect.6.4); 2). the proposed hash-free vari-
ants of CS[5],[6] is not as efficient as the CS encryption
implemented with hash function.

Therefore, it is very helpful in practice eliminating ne-
cessity of such group-dependent hash functions.

1.2 Main Result

In this short note, we show that it is possible to replace
group-dependent hash functions in popular public-key en-
cryption schemes with standard ones such as H : {0,1}" —
{0, 1}%, where k is the security parameter (2% — 1 is not nec-
essarily to be a prime).

More specifically, we demonstrate that it is safe to use
target collision resistant (TCR) hash functions H : {0, 1}* —
{0, 1}* instead of TCR hash functions H : {0,1}* — Z,
in Cramer-Shoup (CS) [5], Kurosawa-Desmedt (KD)[10],
Boyen-Mei-Waters (BMW) [3], and Kiltz [9], where |p| =
2k. It will be of importance for secure hash function imple-
mentations.

2. Preliminaries
2.1 Target Collision Resistant Hash Functions

TCR[6] is aimed to thwart the second pre-image colli-
sion attack, and is a special kind of Universal One-Way
Hash Function (UOWHF)[12]. More precisely, UOWHF
assumes that adversary commits a “target” input which is in-
dependent of hash function’s key at the beginning, whereas
the input of TCR is a random tuple of group element. Hence,
itis obvious to see that UOWHEF suffices to achieve the TCR.
In particular, any secure implementable UOWHF hash (such
as SHA-1, SHA-2 family) could be used to implement TCR
hash function.

2.2 Decisional Diffie-Hellman Assumption

Informally, Decisional Diffie-Hellman (DDH) assumption
means the inability to distinguish two quadruples R,7 in
G,st. R={g, g% g ¢tand T = {g, g% &, g"}, where g is
a random generator of G, and random x,y, z € Z,,.

2.3 Cramer-Shoup PKE [5]

The Cramer-Shoup (CS) encryption [5], [6] is the first ef-
ficient CCA secure public-key encryption in the standard
model, i.e. without random oracle model [1]. We recall the
CS' scheme (Gen, Enc, Dec) in the following.

Gen: On input of secret parameter k, produce random ele-
ments g1, 8> € G, and xy, x2,¥1, 2,2 € Z,. Then com-
pute the following,

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

c=g/'sy.d =88 h=4g
A group-dependent hash function H is randomly cho-

sen from TCR hash family, where the hash functions
map long bit strings to elements of Z,,.

pk = (g1,82,¢,d,h, H), sk = (x1, x2,y1,y2,2)
Enc: For m € G, choose r € Z, at random, compute

up =gy, =gy, e=h'm,
a =H(uy,up, e), v =(cd")

Output ciphertext (uy, uz, e, v).
Dec: Given a ciphertext (uj,up,e,v), compute @ =
H(u;, u,,), and check the consistency of v if

X1+y1a . X+
u

1 2 =V

If the above holds, output m = e/ ui, otherwise output
1.

3. Group-Independence of Hash Function

Now we will investigate the output of TCR hash and show
that it is possibly group-independent. To show the suffi-
ciency of a secure TCR hash in {0, 1}¥ rather than in Zp, we
have to prove that 1). TCR hash in {0, 1}* keeps the whole
security as the same as 2. 2). there is no obstacle to remove
the group-dependent hash functions.

At first, it is apparent that in the encryption process, the
hash output @ only appears in the exponent x; + y;a, x; +
Y2 and ra, as a multiple of y;, y,, r which are all uniformly
distributed over Z,. Besides, since « is easy to know by
computing public hash function H, it will be no influence to
constrain « € {0, 1}%.

Simulation Strategy of CS. We next focus on the se-
curity proof. The CS encryption relies on DDH assump-
tion and security of TCR hash function. Construct a sim-
ulator who mimics the joint distribution of both adver-
sary’s view and encryption oracle output. According to
the input (g1, g2, 41, u2), the simulator randomly chooses
(X1, X2,Y1,¥2,21,22) € Zf, and computes

c = g)lilglzfz’d — g};lg?»h — gzllg?

Referring to the proof of CS scheme [5], [6], it is sim-
ply good for decryption oracle to reject all invalid cipher-
texts, except with negligible probability. The situation is
divided in two cases, corresponding to the input of simula-

tor (g1, &2, U1, uz), which is from either distribution of R, or
distribution of 7.

Case 1. If (g1, g2, u1, up) is from distribution of 7, an adver-
sary will solve the DDH problem with non-negligible
probability, because the simulation is almost perfect.

"The binary output of hash function should be converted into
integer when computing the exponentiation [14]. For the simplicity
of explanation, we take it implicitly included in the algorithm.

LETTER

Case 2. If (g1, g2, U1, up) is from distribution of R, an adver-
sary’s successful probability will be exactly the same
as the random guessing, because the random coin b is
completely independent of his view.

Claim 1. In Case 1., the security holds the same for @ € Z,
and « € {0, 1}F.

Proof. In the first case, outputs of encryption oracle have
right forms. Let u; = g}, u» = g}, where random r is from
Zp, there is

X1, X2

YV
II/t

—_ r 2 r 21,22 __ r
)=y —d,ulu2 =h

u
and v = ¢'d"™. Since r € Z,, a multiple of r is also in Z,,.
Hence, consider an exponent r X a of d, it does not make
great difference for a € {0, 1}, or @ € Z,,.

Again, we have a look at rejection of decryption oracle.
The proof given by CS scheme [5], [6] has an analysis of the
distribution of point P = (x1, x2,y1,y2) € 22 conditioned
on the adversary’s view. Denote log(-) as loggl (),and w =
log g». From the public key, it is easy to see

loge =x; +wxp (1)
and
logd =y + wy, 2)

which further implies hyperplane H defined by (3), because
v has a right distribution.

logv = rx; + wrx; + a(ry; + rwys) 3)

Assume that adversary could submit an invalid cipher-
text (u},u5,v',e’), where logu| = r|, logu, = wr} and
ri # r;. The decryption oracle will reject the invalid ci-
phertext, unless the hyperplane H’ defined by (4) contains
P.

logV" = rix; + wrixy + ' (riy1 + rywyz) “)

This will happen in the line which H and H’ intersect,
where adversary can only hope to find the point P with prob-
ability 1/p (in his first query). Since all above parameters
are in Z,, and « and a’ can also be computed by adversary,
itis obvious to see that changing @, o’ € Z, to a, @’ € {0, 1}
will not degrade the security than we expect. O

Claim 2. In Case 2., the security holds the same for @ € Z,
and a € {0, 1}¥, when |p| = 2k.

Proof. In the second case, outputs of encryption oracle
have incorrect forms with overwhelming probability, thus,
letu; = g\',up = g}, where ry # r,.

Next we focus on the part that TCR hash H involved.
Similar to the analysis in Case 1., the distribution of P =
(x1,X2,¥1,¥2) € 7% is on the line defined by hyperplanes
(3) and

logv = rix; + wraxy + a(riy; + rawys) (®)]

Now suppose that adversary submits an invalid cipher-
text (uj,u5,v',e’) # (ur,uz,v,e), then there is, logu; =
ri,logul, = wrj.

969

e When (], u}, e’) = (u1,uz,e), but v # v'. This leads to
an immediate rejection.

o When (uj,u},e’) # (u,uz,e) and @ = «a. This
leads to find a collision of TCR hash function, where
H@), u}, ") = H(uy, u, e)

o When (u},u),e’) # (uj,uz,e) and @ # a. Equa-
tions (1), (2), (4), (5) are linearly independent, and con-
struct matrix M over Z,.

I w 0 0
0O O 1 w
/ w4 ’ J
rl wr2 a rl Cl’W}"2
ry wr an awrp
2 ’ ’ ’
=wi(r—r)r,—r)a-a)+0

In the underlying proof, for @, @’ in a different range,
the only change that may deny the use of M over Z,, is that
a,a €0, 1}, s.t.

{a—af’io

a-a =0 (mod p) ©)

However, since |p| > k, Eq. (6) has no solution. As a conse-
quence, for TCR hash H, a output range of {0, 1} (Ip| = 2k),
appears good for the CS proof. It is not necessarily to re-
strict H to Z,,. m]

4. Extensions

Inspired by CS scheme, several CCA-secure encryptions,
such as, KD [10], BMW [3], Kiltz[9], were proposed in
the standard model. We examine in the following that all
these schemes are possibly implemented without group-
dependent hash function.

KD. In KD scheme [10], there is no explicit description of
TCR hash function output, but has implicitly assumed that
TCR is mapped to the Z, ([10], Sect. 4.3). KD scheme has
a similar construction and makes use of independent linear
equations over Z, as in CS proof. According to previous
analysis in proof of Claim 2., we can conclude that Eq. (6)
has no solution when |p| = 2k. Hence, to change the out-
put of TCR hash is not going to degrade the security of KD
scheme.

BMW. In their paper (Sect. 4.1, [3]), a (target) collision re-
sistant hash function H,(g°) = w mapping to Z, is employed
in the key encapsulation scheme. Analogously to the anal-
ysis in Sect. 3, we first investigate that it takes at least 2¢
complexity to break the hash function just according to the
security definition of TCR, because unlike the collision re-
sistant hash function, the birthday attack [15] does not make
difference for TCR. Then we would like to explain that why
the security proof does not need group-dependent hash, in
the following.

Let us recall BMW’s security proof. It appears a re-
semble of the Boneh-Boyen selective identity-based encryp-
tion [2]. The key point of the proof is that a target value w* is
selected by the adversary priorly, and the simulator can use

970

some algebraic tricks to cope with all decryption queries to
w except the target value w*. In selective-identity-based en-
cryption scheme, the target value w* is set to be unavailable,
while in BMW scheme, this property relies on the target col-
lision resistance of hash function.

The answer corresponding to query w is,

e (Cl, (hb)ﬁvlvgv)
 e(Ca () h)

) —h —9
e(g, h)(Ha(w w)=b =

e(g, h)6+a(w—w*)-b wfw* —aby=%

e(g’ h)abt

Note that all of the exponents in Eq.(7) will be kept
in Z,, since we have set |p| = 2k. More importantly, the
situation w — w* # 0, but w — w* = 0 (mod p) will not
happen, because |p| > k.

Kiltz. Kiltz [9] presented a simple CCA-secure encryption
scheme based on a security assumption different from what
CS[5] and KD [10] used. With a similar analysis, we focus
on the security proof of his scheme, where the simulation
must answer queries from the adversary with high success-
ful probability.

More precisely, the corresponding answer (Sect. 4.2,

[9]) is
K = H((n/ch)7) (8)

This Eq. (8) helps the simulator answer the queries, if
t —t* # 0. According to our analysis above, it is easy to
see that t — ¢ # 0, but — t* = 0 (mod p) does not hap-
pen. Hence, we prove that our change to the range of hash
function will destroy the provable security of those schemes.

Acknowledgement

Yang Cui is supported by the Japan Society for the Promo-

(1]

(2]

(3]
[4]

[3]

(6]

(7]
(8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

tion of Science (JSPS) Postdoctoral Fellowship.

References

M. Bellare and P. Rogaway, “Random oracles are practical: A
paradigm for designing efficient protocols,” Proc. CCS’93, pp.62—
73,1993.

D. Boneh and X. Boyen, “Efficient selective-ID secure identity-
based encryption without random oracles,” Proc. EUROCRYPT
2004, pp.223-238, 2004.

X. Boyen, Q. Mei, and B. Waters, “Direct chosen ciphertext security
from identity-based techniques,” Proc. CCS’05, pp.320-329, 2005.
R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” Proc. FOCS’01, pp.136-145, 2001.

R. Cramer and V. Shoup, “A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack,” Proc.
Crypto’98, pp.13-25, 1998.

R. Cramer and V. Shoup, “Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext
attack,” SIAM J. Comput., vol.33, pp.167-226, 2003.

D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptography,”
Proc. STOC’91, pp.542-552, 1991.

S. Goldwasser and S. Micali, “Probabilistic encryption,” J. Comput.
Syst. Sci., vol.28, no.2, pp.270-299, 1984.

E. Kiltz, “Chosen-ciphertext secure key-encapsulation based on gap
hashed Diffie-Hellman,” Proc. PKC’07, pp.282-297, 2007.

K. Kurosawa and Y. Desmedt, “A new paradigm of hybrid encryp-
tion scheme,” Proc. Crypto’04, pp.426-442, 2004.

P. MacKenzie, “PAK: Password-authenticated key exchange for
iSCSL,” http://ietfreport.isoc.org/all-ids/
draft-mackenzie-ips-iscsi-pak-00.txt

M. Naor and M. Yung, “Universal one-way hash functions and their
cryptographic applications,” Proc. STOC’ 89, pp.33—43, 1989.

C. Rackoff and D.R. Simon, “Non-interactive zero-knowledge proof
of knowledge and chosen ciphertext attack,” Proc. Crypto’91,
pp.433-444, 1991.

V. Shoup, “A proposal for an ISO standard for public key encryp-
tion (version 2.0),” A preliminary version of ISO 18033-2: A Stan-
dard for Public-Key Encryption, Available at http://www.shoup.net/,
2001.

D. Wagner, “A generalized birthday problem,” Proc. Crypto 2002,
pp.288-303, 2002.

