
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009
995

PAPER Special Section on Formal Approach

Pre- and Post-Conditions Expressed in Variants of the Modal
µ-Calculus∗

Yoshinori TANABE†,††a), Member, Toshifusa SEKIZAWA††,†††, Yoshifumi YUASA††††,††,
and Koichi TAKAHASHI††, Nonmembers

SUMMARY Properties of Kripke structures can be expressed by for-
mulas of the modal μ-calculus. Despite its strong expressive power, the
validity problem of the modal μ-calculus is decidable, and so are some of
its variants enriched by inverse programs, graded modalities, and nomi-
nals. In this study, we show that the pre- and post-conditions of transfor-
mations of Kripke structures, such as addition/deletion of states and edges,
can be expressed using variants of the modal μ-calculus. Combined with
decision procedures we have developed for those variants, the properties
of sequences of transformations on Kripke structures can be deduced. We
show that these techniques can be used to verify the properties of pointer-
manipulating programs.
key words: modal μ-calculus, Kripke structure, precondition, postcondi-
tion, pointer

1. Introduction

In previous studies, we applied temporal logics to verifi-
cation problems in areas such as concurrent garbage col-
lection [1] and one-dimensional cellular automata [2]. The
targets of the studies are considered as graph transforma-
tion systems. The basic idea of the analysis is to regard the
graphs as Kripke structures and express their properties us-
ing formulas of temporal logics such as computational tree
logic (CTL). They have sufficient expressive power to de-
scribe the properties of the systems and their validity prob-
lems are decidable. Although CTL has been successfully
applied to the above-mentioned target systems, we need
more expressive power to undertake similar approaches for
more complicated systems.

Manuscript received July 24, 2008.
Manuscript revised November 19, 2008.
†The author is with the Graduate School of Information Sci-

ence and Technology, The University of Tokyo, Tokyo, 101–0021
Japan.
††The authors are with the Research Center for Verification and

Semantics, National Institute of Advanced Industrial Science and
Technology, Toyonaka-shi, 560–0083 Japan.
†††The author is with the Graduate School of Information Sci-

ence and Technology, Osaka University, Suita-shi, 565–0871
Japan.
††††The author is with the Graduate School of Information Sci-

ence and Engineering, Tokyo Institute of Technology, Tokyo, 152–
8552 Japan.

∗This research was supported by the research project “Solv-
ing the description explosion problem in verification by means of
structure transformation” in Core Research for Evolution Science
and Technology (CREST) program of Japan Science and Technol-
ogy Agency.

a) E-mail: y-tanabe@ci.i.u-tokyo.ac.jp
DOI: 10.1587/transinf.E92.D.995

First, we use general fixed-point operators, which play
a key role in expressing graph properties such as reachabil-
ity. While CTL has fixed-point operators, which is the main
reason we employed this logic as the analysis tool, its us-
age is restricted to fixed patterns, such as EU or AG. Using
general fixed-point operators μ and ν, one can express more
complicated properties.

Second, we use nominals [3], which are a type of
atomic formulas that are satisfied by one and only one state
in a Kripke structure. Nominals can be used, for exam-
ple, to express pointer-type variables of a programming lan-
guage — when a state of a Kripke structure satisfies a nom-
inal, that state is regarded as the value of the corresponding
variable. A propositional symbol cannot be substituted for
a nominal since it may be satisfied by two or more states
while the value of a variable should be unique.

The third point is with regard to functional modalities.
While an ordinary modality m is interpreted in a Kripke
structure as a relation R(m), a functional modality f is in-
terpreted as a (partial) function R(f); that is, for each state
s, there is at most one s′ such that (s, s′) ∈ R(f). They can be
used to express, for example, pointer-type fields of a struc-
ture in a programming language such as C, just as nominals
express pointer-type variables.

The fourth point is backward modalities. A backward
modality m−1, where m is an ordinary (forward) modality,
follows the transition relation of a Kripke structure in the re-
verse direction. We have already used them in [2]. They are
vital for computation of the weakest precondition, as shown
in Sect. 3.

Thus, our logic L has nominals and functional and
backward modalities. It can be considered as a variant of
enriched μ-calculi [4]. Formulas of the logic express prop-
erties of Kripke structures.

Pre- and post-conditions play an important role when
we reason about the properties of Kripke structures with re-
gard to programs that transform them. We list basic trans-
formations of Kripke structures, such as the addition of
states or modification of transition relations, and show that
the weakest preconditions can also be expressed in L, ex-
tending our previous work [5]. Although L is not validity-
decidable [6], there is a sound (although incomplete) de-
cision procedure [7] for validity if we restrict ourselves to
the alternation-free fragment. The expressive power of the
fragment is sufficient for our application which we describe
later. By combining these two techniques, we can conduct

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

996
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

backward reasoning on properties expressed in L.
In order to enable forward reasoning, we show that the

strongest postconditions can also be expressed in L. More-
over, we show that the strongest postcondition of a prop-
erty expressed in L′ is also expressed in L′, where L′ is the
sublogic of L obtained by removing the backward modal-
ities. Logic L′ is validity-decidable [4], and our decision
procedure [7] for L′ is complete.

As an application of the results, we illustrate how the
properties of pointer-manipulating programs are verified.
We regard a heap as a Kripke structure. Then each pro-
gram statement that manipulates pointers can be regarded as
a transformation of Kripke structures. The properties of the
heap necessary for verification, such as loop invariants, are
expressed as formulas in our logic. Then, forward or back-
ward reasoning described above is applied to obtain verifi-
cation results.

Various studies have analyzed programs that manipu-
late pointers. In one approach, a three-valued logic is used
in addition to the first-order logic, enhanced with an opera-
tor to take the transitive closure [8]. Another approach uses
Separation Logic [9], which is an extension of Hoare logic,
and has operators to handle the status of the heap. Our ap-
proach differs in that we use logics with decision procedures
for validity testing.

The rest of the paper is organized as follows. In Sect. 2,
we define the syntax and semantics of the logic, and intro-
duce transformations of Kripke structures. Preconditions,
which are used in backward reasoning, are introduced in
Sect. 3, while postconditions for forward reasoning are dis-
cussed in Sect. 4. We show examples of verification in
Sect. 5. Finally, Sect. 6 concludes the study.

2. Preliminaries

2.1 Syntax

Let PS, Nom, PV, GMS, and FMS be countable sets. Ele-
ments of these sets are called propositional symbols, nomi-
nals, propositional variables, general modality symbols, and
functional modality symbols, respectively. The set Mod of
modalities and the set Form of formulas are defined as fol-
lows.

Mod � m ::= o | g | f | g−1 | f −1

Form � ϕ ::= p | x | X | ¬ϕ | ϕ ∨ ϕ | 〈m〉ϕ | μXϕ

where p ∈ PS, x ∈ Nom, X ∈ PV, g ∈ GMS, and f ∈ FMS.
In μXϕ, all free occurrences of X in ϕ (i.e., occurrences of
X that are not bound by μX that occurs in ϕ) must be pos-
itive (i.e., the number of subformulas of μXϕ that contains
the occurrence and that is in the form of ¬ψ must be even).
We define Atom = PS ∪ Nom and MS = GMS ∪ FMS, and
call their elements atomic formulas and modality symbols,
respectively. Modality o is called the global modality. A
modality in the form of m−1, where m ∈ MS, is called a
backward modality. We assume that Nom contains an ele-
ment called nil.

This language is denoted by L. The language with-
out backward modalities is denoted by L′. That is, L′ is
obtained from L by replacing the definition of Mod by the
following:

Mod � m ::= o | g | f .

The following standard abbreviations are used: true =
p ∨ ¬p for some fixed p ∈ PS, false = ¬true, ϕ1 ∧ ϕ2 =

¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2, [m]ϕ = ¬〈m〉¬ϕ, and
νXϕ = ¬μX¬ϕ[¬X/X]. Here, ϕ[ψ/χ] is the formula ob-
tained from ϕ by substituting ψ in place of χ. (The standard
restriction for substitution is applied.)

2.2 Semantics

A Kripke structure for L or L′ is a tuple K = (S ,R, L, nil)
that satisfies the following conditions. We denote the pow-
erset of S by P(S).

• nil is an element of set S .
• R : MS → P(S × S). For f ∈ FMS and s ∈ S , there is

at most one s′ ∈ S such that (s, s′) ∈ R(f).
• L : Atom→ P(S). L(x) is a singleton if x ∈ Nom.
• L(nil) = {nil}; and (nil, s) � R(m) and (s, nil) � R(m)

for s ∈ S and m ∈ MS.

For x ∈ Nom, we denote by L′(x) the unique element of
L(x), that is, L(x) = {L′(x)}. For f ∈ FMS and s ∈ S , we
define R(f , s) ∈ S by R(f , s) = s′ if there exists s′ ∈ S such
that (s, s′) ∈ R(f); otherwise, R(f , s) = nil.

The domain of R is extended to Mod:

• R(o) = S × S .
• R(m−1) = (R(m))−1 for m ∈ MS.

A function ρ : PV→ P(S) is called a valuation for K .
The interpretation [[ϕ]]K ,ρ ⊆ S of formula ϕ is defined as
follows. Symbols K and/or ρ is omitted if no confusion
occurs. For function F, we denote by F[a �→ b] a function
G defined by dom(G) = dom(F)∪{a}, G(a) = b, and G(x) =
F(x) for x ∈ dom(F) \ {a}.
• [[a]] = L(a) for a ∈ Atom.
• [[X]] = ρ(X) for X ∈ PV.
• [[¬ϕ]] = S \ [[ϕ]].
• [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]].
• [[〈m〉ϕ]] = {s ∈ S | ∃s′ ∈ S . (s, s′) ∈ R(m) and s′ ∈ [[ϕ]]}.
• [[μXϕ]] =

⋂{T ⊆ S | [[ϕ]]ρ[X �→T] ⊆ T }.
We write K , ρ, s |= ϕ if s ∈ [[ϕ]]K ,ρ. Again, K and/or ρ

are often omitted. We write K |= ϕ if K , ρ, s |= ϕ holds for
any valuation ρ and s ∈ S . Formulas ϕ and ϕ′ are equivalent
(ϕ ≡ ϕ′) if [[ϕ]]K ,ρ = [[ϕ′]]K ,ρ for any K and ρ. A formula is
valid if it is equivalent to true.

For nominal x and formulas ϕ, ϕ1, and ϕ2, we define
@xϕ = 〈o〉(x ∧ ϕ) and ϕ1 → ϕ2 ;ϕ3 = (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧
ϕ3). Intuitive meaning of @xϕ is “ϕ holds at the state that
satisfies x”, and that of ϕ1 → ϕ2 ;ϕ3 is “if ϕ1 then ϕ2 else
ϕ3”. Obviously, @xϕ ≡ [o](x → ϕ) and ϕ1 → ϕ2 ;ϕ3 ≡
(ϕ1 → ϕ2) ∧ (¬ϕ1 → ϕ3) hold.

TANABE et al.: PRE- AND POST-CONDITIONS EXPRESSED IN VARIANTS OF THE MODAL μ-CALCULUS
997

2.3 Nesting of Fixed-Point Operators and Global Modali-
ties

In this section, we prove a few technical lemmas needed in
later sections.

The letters λ and λ′ are used to denote fixed-point op-
erator μ or ν. Thus, λXϕ is either μXϕ or νXϕ. The symbol
{} denotes 〈〉 or []. Thus, {o} is either 〈o〉 or [o].

A formula is in positive normal form (PNF) if the nega-
tion symbol (¬) only appears immediately before an atomic
formula or a propositional variable. For every formula ϕ,
there is a formula ψ in PNF such that ϕ ≡ ψ.

A formula in PNF alternates if it has a subformula in
the form of λXψ, ψ has a subformula in the form of λ′Yχ
and χ has free occurrences of X, where λ � λ′ and X � Y .
A formula in PNF is alternation-free if it does not alternate.

Lemma 1: Assume that λXϕ is in PNF and contains ψ0 =

{o}ψ as its subformula. Further assume that there is no sub-
formula of ϕ in the form of λ′Yη such that η contains ψ0

as a subformula. Let ϕT = ϕ[true/ψ0], ϕF = ϕ[false/ψ0],
ψT = ψ[λXϕT/X], and ψF = ψ[λXϕF/X]. Then, the follow-
ing holds:

λXϕ ≡
⎧⎪⎪⎨⎪⎪⎩
{o}ψF → μXϕT ; μXϕF if λ = μ

{o}ψT → νXϕT ; νXϕF if λ = ν

Proof : We show only the first half, as the second half
can be shown in a similar manner.

Let K = (S ,R, L, nil) be a Kripke structure, v be a val-
uation for K and s ∈ S . We show:

(a) When K , v |= {o}ψF, [[μXϕT]]K ,v = [[μXϕ]]K ,v
(b) When K , v �|= {o}ψF, [[μXϕ]]K ,v = [[μXϕF]]K ,v

Note that whether or not {o}ψF is satisfied is independent of
s ∈ S . In both cases, the right hand side is clearly a subset
of the left hand side since ϕ is in PNF, so we show the other
inclusion.

For formula ξ and ordinal number α, we define
S (ξ, α) ⊆ S as follows.

• S (ξ, 0) = ∅
• S (ξ, α + 1) = [[ϕ]]K ,v[X �→S (ξ,α)]

• S (ξ, α) =
⋃
β<α S (ξ, β) (if α is limit)

It is well known that S (ξ, α) ⊆ S (ξ, β) if α < β,
S (ξ, α) ⊆ [[μXξ]] for any α, and there is α such that S (ξ, α) =
[[μXξ]].

Let κ be the least ordinal such that S (ϕ, κ) = [[μXϕ]].
Ordinals κT and κF are defined similarly for ϕT and ϕF, re-
spectively.
(a) Assume K , v |= {o}ψF. We will show by induction
on α that

S (ϕT, α) ⊆ S (ϕ, κF + α). (1)

Once it is established, by taking α = κT, we have [[μXϕT]] =
S (ϕT, κT) ⊆ S (ϕ, κF + κT) ⊆ [[μXϕ]], which is to be proved

in (a).
When α = 0 or α is limit, (1) is clearly satisfied.

For α + 1, we have S (ϕT, α + 1) = [[ϕT]]v[X �→S (ϕT,α)] ⊆
[[ϕT]]v[X �→S (ϕ,κF+α)] by induction hypothesis. On the other
hand, S (ϕ, κF + α + 1) = [[ϕ]]v[X �→S (ϕ,κF+α)] by definition.
Therefore it is sufficient to show

K , v[X �→ S (ϕ, κF + α)], s |= ϕ↔ ϕT. (2)

From the assumption K , v |= {o}ψ[μXϕF/X] holds. There-
fore K , v[X �→ S (ϕF, κF)] |= {o}ψ. Since S (ϕF, κF) ⊆
S (ϕ, κF) ⊆ S (ϕ, κF + α), we have K , v[X �→ S (ϕ, κF + α)] |=
{o}ψ, which means K , v[X �→ S (ϕ, κF + α)] |= {o}ψ↔ true.
Now (2) follows from the definition of ϕT.
(b) Assume K , v �|= {o}ψF. Then, this implies K , v[X �→
S (ϕF, κF)], s |= ϕ ↔ ϕF with a similar argument as in
part (a),

We show S (ϕ, α) ⊆ S (ϕF, α) by induction on α.
We only show the case of successor ordinals since the
other cases are trivial. S (ϕ, α + 1) = [[ϕ]]v[X �→S (ϕ,α)] ⊆
[[ϕ]]v[X �→S (ϕF,α)] = [[ϕF]]v[X �→S (ϕF,α)] = S (ϕF, α + 1).

Then, [[μXϕ]] = S (ϕ, κ) ⊆ S (ϕF, κ) ⊆ [[μXϕF]] and we
are done. �

A formula is FG-free if, for all its subformulas lead
by f ixed-point operators, that is, subformulas in the form of
λXψ, the global modality does not occur in ψ. A formula is
GV-free if, for all its subformulas lead by the global modal-
ity, that is, subformulas in the form of {o}ψ, no free variable
occurs in ψ. Clearly, any closed FG-free formula is GV-free.

Lemma 2: If formula ϕ is FG-free, then there is an FG-free
formula that is equivalent to λXϕ.

Proof : Induction on the number of occurrences of the
global modality in ϕ. If the number is zero, the conclusion
trivially holds. Assume the number is positive and take a
subformula ψ0 = {o}ψ of ϕ. Take ϕT and ϕF as in Lemma 1,
which can be applied since ϕ is FG-free. By the induction
hypothesis, there are FG-free formulas ξT and ξF that are
equivalent to λXϕT and λXϕF, respectively. Then, λXϕ ≡
{o}ψ[ξF/X] → ξT ; ξF if λ = μ, and λXϕ ≡ {o}ψ[ξT/X] →
ξT ; ξF if λ = ν. In both cases, the right hand side is FG-free.

�

Lemma 3: For any formula ϕ, there is an FG-free formula
that is equivalent to ϕ.

Proof : Induction on the construction of the formula. In
the case of μ and ν, we can use Lemma 2. The other cases
are trivial. �

2.4 Transformations of Kripke Structures

In this section, we introduce several transformations of
Kripke structures. Formally, a transformation is defined as a
relation on the class of all Kripke structures.

We consider the following transformations of Kripke

998
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Table 1 Transformations of Kripke structures and their preconditions.

τ Condition for (K1,K2) ∈ τ desc for T = pre′(τ, ψ)

CN1(x1, x2) L2 = L1[x1 �→ L1(x2)] x1 � x2

CN2(x1, x2, f) L2 = L1[x1 �→ {R1(f , L′1(x2))}] x1 � (@x2 〈 f 〉true→ 〈 f −1〉x2 ; nil)
AP(x, p) L2 = L1[p �→ L1(p) ∪ L1(x)] p� p ∨ x
DP(x, p) L2 = L1[p �→ L1(p) \ L1(x)] p� p ∧ ¬x

AT(m, x1, x2)
R2 = R1[m �→ R1(m) ∪ {(L′1(x1), L′1(x2))}],
L′1(x1) � nil1, L′1(x2) � nil1

〈m〉ϕ� 〈m〉T (ϕ) ∨ (x1 ∧@x2 T (ϕ)) ;
〈m−1〉ϕ� 〈m−1〉T (ϕ) ∨ (x2 ∧@x1 T (ϕ))

DT1(m, x1, x2) R2 = R1[m �→ R1(m) \ {(L′1(x1), L′1(x2))}] 〈m〉ϕ� (¬x1 ∧ 〈m〉T (ϕ)) ∨ (〈m〉(¬x2 ∧ T (ϕ))) ;
〈m−1〉ϕ� (¬x2 ∧ 〈m−1〉T (ϕ)) ∨ (〈m−1〉(¬x1 ∧ T (ϕ)))

DT2(f , x) R2 = R1[f �→ R1(f) \ {(L′1(x),R1(f , L′1(x)))}] 〈 f 〉ϕ� ¬x ∧ 〈 f 〉T (ϕ) ; 〈 f −1〉ϕ� 〈 f −1〉(¬x ∧ T (ϕ))

AS(x) ∃s ∈ S 2. S 2 = S 1 � {s}, L2 = L1[x �→ {s}] x� false ; 〈o〉ϕ� ns(x, ϕ) ∨ 〈o〉T (ϕ)

DS(x)

S 2 = S 1 \ L1(x),
R2 = R1 \ ((L1(x) × S 1) ∪ (S 1 × L1(x))),
L2 = L1[y �→ {nil1} | y ∈ Nom, L1(y) = L1(x)],
L′1(x) � nil1

x′ � (@x x′ → nil ; x′) (x′ ∈ Nom) ;
〈m〉ϕ� 〈m〉(¬x ∧ T (ϕ)) (m ∈ Mod)

structures. They are fundamental transformations – adding
and removing states and transitions, changing values of the
labeling function at a state that can be uniquely identified by
a nominal and a functional modality. More complex trans-
formation can be defined by combining them. In the fol-
lowing description, we assume x, x1, x2, y ∈ Nom, m ∈ MS,
f ∈ FMS, p ∈ PS, and K = (K,R, L, nil) is a Kripke struc-
ture.

• CN1(x1, x2): Changes the state that satisfies nominal x1

to L′(x2).
• CN2(x1, x2, f): Changes the state that satisfies nominal

x1 to R(f , L′(x2)).
• AP(p, x): Adds L′(x) to the interpretation of

propositional symbol p.
• DP(p, x): Deletes L′(x) from the interpretation of

propositional symbol p.
• AT(m, x1, x2): Adds a transition for m from L′(x1) to

L′(x2). Side condition: L′(x1) and L′(x2) must not be
nil.
• DT1(m, x1, x2): Deletes a transition for m from L′(x1)

to L′(x2), if it exists.
• DT2(f , x1): Deletes a transition for f from L′(x1), if it

exists.
• AS(x): Adds a state and makes it L′(x).
• DS(x): Deletes the state L′(x). Any transition to and

from the state is also deleted. If y is a nominal and
L′(y) is the deleted state, then L′(y) becomes nil. Side
condition: L′(x) must not be nil.

We denote the set of transformations listed above by Tr.
Precise definitions of the transformations are given in the
left column of Table 1. We assume thatKi = (S i,Ri, Li, nili)
(i = 1, 2) are Kripke structures. For each τ ∈ Tr, the con-
dition for (K1,K2) ∈ τ is described in the table. Members
of the tuple not explicitly referred to in the table should be
identical. For example, let τ = CN2(x1, x2, f). Since only L2

is mentioned in the table, S 2 = S 1, R2 = R1, and nil2 = nil1,
i.e., the underlying set, the transition relation, and the nil
element is not changed. L2 is also identical to L1, except
for L2(x1) is {R1(f , L′1(x2))}, i.e., in K2, x1 is satisfied by the
f -successor state of x2.

Our main application is analysis of pointer-manipulat-
ing programs. As shown in Sect. 5, a program is regarded
as a transformation of Kripke structure. We use a small C-
like programming language PML [10] to describe such pro-
grams. The set Tr covers all the basic statements in PML.

3. Preconditions

In this section, for each closed formula ψ in L and τ ∈ Tr,
we introduce a formula pre(τ, ψ) that expresses the weakest
precondition of ψ with respect to τ.

In order to make definitions concise, we introduce a
notation IDef{desc}, which defines a formula T (ϕ) from
a given formula ϕ according to desc, where desc is a
semicolon-separated list of entries in the form of α � β.
If ϕ appears as α of an entry α � β of desc, T (ϕ) = β.
Otherwise, the following rule is applied: T (a) = a (a ∈
Atom ∪ PV), T (¬ϕ) = ¬T (ϕ), T (ϕ1 ∨ ϕ2) = T (ϕ1) ∨ T (ϕ2),
T (〈m〉ϕ) = 〈m〉T (ϕ), and T (μXϕ) = μX T (ϕ). In both cases,
if T appears in the right hand side, this procedure is ap-
plied recursively. The formula T (ϕ) thus defined is denoted
by IDef{desc}(ϕ). For example, let x ∈ Nom. If S (ϕ) =
IDef{x� ¬x ; 〈 f 〉ϕ� 〈 f 〉(x∧T (ϕ)) (f ∈ FMS)}(ϕ), then
S (x) = ¬x, but for x′ ∈ Nom \ {x}, S (x′) = x′. S (〈 f 〉ϕ) =
〈 f 〉(x ∧ S (ϕ)) for f ∈ FMS, but S (〈m〉ϕ) = 〈m〉S (ϕ) for
m ∈ MS \ FMS.

Using this notation, we define two auxiliary formulas
simultaneously. First, pre′(τ, ψ) = IDef{desc}(ψ), where
desc is defined in the right column of Table 1. Second,
ns(x, ψ) = IDef{x � true ; a � false (a ∈ Atom \
{x}) ; 〈o〉ϕ � T (ϕ) ∨ 〈o〉pre′(AS(x), ϕ) ; 〈m〉ϕ �
false (m ∈ Mod \ {o})}(ψ), where x ∈ Nom.

Intuitively, pre′(τ, ψ) claims that the current state satis-
fies ψ in the Kripke structure K′ obtained by applying τ to
the current Kripke structure K ; ns(x, ψ) claims that, when
τ = AS(x), the newly added state satisfies ψ in K′. For-
mally, their meaning is expressed in the following lemma.
Assume ϕ is a formula in L, Ki = (S i,Ri, Li, nili) (i =
1, 2) are Kripke structures, ρ1 and ρ2 are valuations for K1

and K2, respectively, such that ρ1(X) ∩ S 2 = ρ2(X) ∩ S 1,
τ ∈ Tr, and (K1,K2) ∈ τ.

TANABE et al.: PRE- AND POST-CONDITIONS EXPRESSED IN VARIANTS OF THE MODAL μ-CALCULUS
999

Lemma 4:

(1) Let τ ∈ Tr be a transformation other than AS(x). For
any s ∈ S 1 ∩ S 2, the following holds.

K1, ρ1, s |= pre′(τ, ϕ) ⇐⇒ K2, ρ2, s |= ϕ
(2) Assume x ∈ Nom, τ = AS(x), and ϕ is GV-free. Let

ŝ = L2(x), that is, S 2 = S 1 � {ŝ}. We define a valuation
ρ′1 for K1 by ρ′1(X) = S 1 if ŝ ∈ ρ2(X) and ρ′1(X) = ∅ if
ŝ � ρ2(X). Then, the following hold.

• Formulas pre′(τ, ϕ) and ns(x, ϕ) are GV-free.
• For s ∈ S 1,

K1, ρ1, s |= pre′(τ, ϕ) ⇐⇒ K2, ρ2, s |= ϕ.
• K2, ρ2, ŝ |= ϕ ⇐⇒ [[ns(x, ϕ)]]K1,ρ

′
1 = S 1.

• K2, ρ2, ŝ �|= ϕ ⇐⇒ [[ns(x, ϕ)]]K1,ρ
′
1 = ∅.

Proof :
(1) The proof uses induction on the construction of ϕ.
Since all cases can be shown in a straightforward manner,
we show only one case, τ = AT(m, x1, x2).

Let ϕ = 〈m〉ψ. In this case, pre′(τ, ϕ) = 〈m〉pre′(τ, ψ) ∨
(x1 ∧ @x2 pre′(τ, ψ)). Assume that K1, ρ1, s |= pre′(τ, ϕ)
holds. If K1, ρ1, s |= 〈m〉pre′(τ, ψ) holds, there is
s′ ∈ S 1 such that (s, s′) ∈ R1(m) and K1, ρ1, s′ |=
pre′(τ, ψ). By induction hypothesis, K2, ρ2, s′ |= ψ, and
since R1(m) ⊆ R2(m), we have K2, ρ2, s |= ϕ. If
K1, ρ1, s |= x1 ∧ @x2 pre′(τ, ψ), then s = L1(x1) = L2(x1)
and K1, ρ1, L1(x2) |= pre′(τ, ψ). By induction hypothesis
K2, ρ2, L2(x2) |= ψ. Since (L2(x1), L2(x2)) ∈ R2(m), we have
K2, ρ2, s |= ϕ. The other direction can be shown similarly.

(2) The first item can be easily checked.
Let s ∈ S 1. We check the second item: K1, ρ1, s |=

pre′(τ, ϕ) ⇐⇒ K2, ρ2, s |= ϕ. The only non-trivial case
is 〈o〉ψ. Assume ϕ = 〈o〉ψ and K1, ρ1, s |= pre′(τ, ϕ) =
ns(x, ψ) ∨ 〈o〉pre′(τ, ψ). If K1, ρ1, s |= 〈o〉pre′(τ, ψ), then
there is s′ ∈ S 1 such that K1, ρ1, s′ |= pre′(τ, ψ). By in-
duction hypothesis, K2, ρ2, s′ |= ψ, therefore K2, ρ2, s |= ϕ.
When K1, ρ1, s |= ns(x, ψ) holds, note that there is no free
variable in ψ since ϕ is GV-free. Therefore K1, ρ

′
1, s |=

ns(x, ψ) also holds. That means [[ns(x, ψ)]]K ,ρ′1 � ∅. By
induction hypothesis, we have K2, ρ2, ŝ |= ψ, which implies
K2, ρ2, s |= ϕ. The other direction can be proved similarly.

The remaining two items on ns can be shown in a sim-
ilar manner, by using the fact that ϕ is GV-free, as in the
previous paragraph. �

For τ ∈ Tr and closed formula ϕ, we define formula
pre(τ, ϕ) as follows.

pre(τ, ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pre′(τ, ϕ̂) ∧ ns(x, ϕ̂) if τ = AS(x)

[o](¬x→ pre′(τ, ϕ)) if τ = DS(x)

pre′(τ, ϕ) otherwise

where ϕ̂ is an FG-free formula that is equivalent to ϕ. Its
existence is guaranteed by Lemma 3.

Theorem 1:

K1 |= pre(τ, ϕ) ⇐⇒ K2 |= ϕ
Proof : We show only the case where τ = AS(x), the
others can also be shown without difficulty.

Since ϕ̂ is a closed FG-free formula, it is GV-free.
Therefore Lemma 4 can be applied. Assume K1 |= pre(τ, ϕ)
and s ∈ S 2. If s ∈ S 1, since K1, s |= pre′(τ, ϕ), we have
K2, s |= ϕ. If s � S 1, that is, if s = ŝ, K2, s |= ϕ also holds
since S 1 = [[ns(x, ϕ̂)]]K1 holds. (Note that ϕ is closed and the
right hand side does not depend on a valuation.) Thus, we
have K2 |= ϕ. The other direction is similar. �

Theorem 1 claims that formula pre(τ, ϕ) is the weakest
precondition in the following sense: let us call ψ a precon-
dition of ϕ with respect to τ if (K1,K2) ∈ τ and K1 |= ψ
implies K2 |= ϕ. Then, Theorem 1 implies (1) pre(τ, ϕ) is a
precondition, and (2) if ψ is a precondition andK |= ψ, then
K |= ϕ.

Thus, we can calculate the weakest precondition within
the logic L. Although L is not validity-decidable [6], sound
(but incomplete) decision procedures can be built. Com-
bined with such procedures, we can reason about the prop-
erties of Kripke structures with respect to transformations.

We have defined a sublogic L′ of L. It is desirable to
find a formula inL′ with the property of Theorem 1 because
L′ is validity-decidable [4]. Formula pre(τ, ϕ) does not al-
ways belong toL′ since it may contain backward modalities
when τ = CN2. The question arises whether an equivalent
formula exists within L′, when ϕ is in L′. Unfortunately,
the answer is negative. To see this, let us recall some defini-
tions.

Relation H ⊆ S 1 × S 2 is a simulation for L′ from K1

to K2 if (1) for any s1, s′1 ∈ S 1, s2 ∈ S 2, m ∈ Mod such
that (s1, s′1) ∈ R1(m) and (s1, s2) ∈ H, there exists s′2 ∈ S 2

such that (s2, s′2) ∈ R2(m) and (s′1, s
′
2) ∈ H, and (2) for any

s1 ∈ S 1, s2 ∈ S 2 and a ∈ Atom such that (s1, s2) ∈ H, s1 ∈
L1(a) ⇐⇒ s2 ∈ L2(a) holds. Relation H is a bisimulation
for L′ between K1 and K2, if H and H−1 are simulations.
The following lemma is well known.

Lemma 5: Assume K1 and K2 are Kripke structures, s1 ∈
S 1, s2 ∈ S 2, ϕ is a closed formula in L′, and H is a bisim-
ulation for L′ between K1 and K2. If (s1, s2) ∈ H, we have
K1, s1 |= ϕ ⇐⇒ K2, s2 |= ϕ.

Let x, y, z ∈ Nom, f ∈ FMS, ϕ1 = @x 〈 f 〉z, τ =
CN2(z, y, f), and ϕ2 = pre′(τ, ϕ1) = @x 〈 f 〉〈 f −1〉y.

Proposition 1: There is no formula in L′ that is equivalent
to ϕ2.

Proof : Let ψ2 be a formula equivalent to ϕ2. Note
that ψ2 must be closed. We define two Kripke struc-
tures Ki = (S i,Ri, Li, nili) (i = 1, 2) as follows: S 1 =

{sx, sy, s1, nil1}, R1(f) = {(sx, s1), (sy, s1)}, L1(x) = {sx},
L1(y) = {sy}, S 2 = {tx, ty, t1, t2, nil2}, R2(f) = {(tx, t1),
(ty, t2)}, L2(x) = {tx}, and L2(y) = {ty}. Clearly, K1 |=

1000
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Table 2 Postconditions.

τ post1(τ, ψ) post2(τ, ψ)

CN1(x1, x2) @x2 x1 pre′(CN1(x1, y), ψ)
CN2(x1, x2, f) @x2 〈 f 〉x1 pre′(CN1(x1, y), ψ)

AP(x, p) @x p ψ ∨ pre′(DP(x, p), ψ)
DP(x, p) @x¬p ψ ∨ pre′(AP(x, p), ψ)

AT(m, x1, x2) @x1 〈m〉x2 ψ ∨ pre′(DT1(m, x1, x2), ψ)
DT1(m, x1, x2) @x1 [m]¬x2 ψ ∨ pre′(AT(m, x1, x2), ψ)

DT2(f , x) @x [f]false ψ ∨ pre′(AT(f , x, y), ψ)
AS(x) @x

(
(
∧

a∈Aψ\{x} ¬a) ∧∧m∈MS[m]false
)
∧∧m∈MS[o][m]¬x pre′(DS(x), pre′(CN1(x, y), ψ))

DS(x) @x nil
∨

Y⊆A,Z⊆B T1(T2(T Y
3 (T Z

4 (ψ))))

ϕ2 and K2 �|= ϕ2. However, H = {(sx, tx), (sy, ty), (s1, t1),
(s1, t2), (nil1, nil2)} is a bisimulation between K1 and K2.
By Lemma 5, ψ2 cannot be in L′. �

4. Postconditions

In this section, we discuss postconditions of transforma-
tions. We cannot take the same approach as preconditions
since it is not possible to define post′(τ, ϕ) so that the coun-
terpart to Lemma 4 holds. However, by modifying the def-
inition slightly, we can obtain formulas useful for forward
deduction.

For τ ∈ Tr and closed formulas ϕ and ψ, we call ϕ
a postcondition of ψ with respect to τ if (K1,K2) ∈ τ and
K1 |= ψ implies the existence of K′2 such that K2 ∼τ,ψ K′2
and K′2 |= ϕ, where K ∼τ,ψ K′ means that K and K′ are
identical except for values L(a) for atom a that does not ap-
pear in τ or ψ.

We begin by defining two auxiliary formulas post1(τ, ψ)
and post2(τ, ψ) for τ ∈ Tr and closed formula ψ. Roughly
speaking, the former describes properties that obviously
hold in the resulting Kripke structures, and the latter is the
weakest precondition of ψ with respect to the “reverse trans-
formation” of τ. Their definitions are given in Table 2. In
the table, Aψ is the set of atoms that appear in ψ, y is a fresh
nominal, that is, a nominal that does not occur in ψ and that
is not identical to x, x1, or x2, A is the set of modality sym-
bols occurring in ψ, and B is the set of nominals and propo-
sitional symbols occurring in ψ. Functions Ti (i = 1, 2, 3, 4)
are defined as follows.

• T1(ψ) = pre′(AS(x), ψ).
• T2(ψ) = IDef{〈m〉ϕ� 〈m〉T (ϕ)∨(x∧〈o〉(ym∧T (ϕ)))∨

(zm ∧@x T (ϕ)) (m ∈ MS)}(ψ),
where ym and zm for m ∈ MS are fresh propositional
symbols.
• T Y

3 (ψ) = IDef{〈m〉ϕ�
〈m〉T (ϕ) ∨ (x ∧@x T (ϕ)) (m ∈ Y)}(ψ).

• T Z
4 (ψ) = IDef{x′ � x (x′ ∈ Z ∩ Nom) ;

p� p ∨ x (p ∈ Z ∩ PS)}(ψ).

The meaning of these formulas is explained in the proof of
Theorem 2.

We define post(τ, ψ) = post1(τ, ψ) ∧ post2(τ, ψ).

Theorem 2:

(1) Formula post(τ, ψ) is a postcondition of ψ with respect
to τ.

(2) If K2 |= post(τ, ψ), there exists K1 such that K1 |= ψ
and (K1,K2) ∈ τ.

Proof (Sketch) : We show only the cases where τ =
CN1(x1, x2) and τ = DS(x).

Case τ = CN1(x1, x2). For (1), assume (K1,K2) ∈ τ
and K1 |= ψ. Let τ′ = CN1(x1, y), s1 = L1

′(x1), and K′i be
the Kripke structure obtained from Ki by replacing Li with
Li[y �→ s1] (i = 1, 2). Then, Ki ∼τ,ψ K′i for i = 1, 2 and
(K′2,K′1) ∈ τ′ hold. Also, we have K′1 |= ψ since y does
not appear in ψ. Therefore, K′2 |= pre′(τ′, ψ) = post2(τ, ψ).
For (2), assume K2 |= post(τ, ψ) and let K1 = τ

′(K2). It is
easy to check K1 |= ψ and (K1,K2) ∈ τ.

Case τ = DS(x). We define a transformation τ′ us-
ing fresh nominals and propositions. It can be regarded as
the “reverse” transformation of τ if we are allowed to ig-
nore the interpretation of the fresh symbols. It also satisfies
post2(τ, ψ) = pre′(τ′, ψ). Then, the conclusion follows by
the same type of argument as in the case of CN1(x1, x2).

Note that τ not only removes a state s1 from S , but
also changes R and L as well. We need to define τ′ so that
all effects of τ are reverted. We define τ′ as a composition
of four transformations: τ′ = τZ

4 ◦ τY
3 ◦ τ2 ◦ τ1. (Y and Z

are explained below.) First, τ1 = AS(x), which restores the
deleted state s1 and have the state satisfy x. Second, τ2 and
τY

3 reverts the changes on R. More precisely, τ2 restores the
removed transitions between s1 and other states, while τY

3
restores self loops on s1. To define them, we need to express
what the removed transitions are. For this purpose, we use
fresh propositional symbols ym and zm. Intuitively ym is true
on s if and only if transition from s1 to s existed in R(m) and
was deleted by τ. Similarly, zm is for transition from s to s1.
With these in mind, we define τ2 as the transformation that
adds (s1, s′) and (s′′, s1) to R(m) for all s′ ∈ L(ym) and s′′ ∈
L(zm). Similarly, we introduce a set Y ⊆ A, intending the set
of modalities m for which a self loop on s1 existed. Then, τY

3
adds (s1, s1) to R(m) for all m ∈ Y . Finally, τZ

4 , where Z ⊆ B,
restores L by changing L′(x) for all x ∈ Z ∩ Nom to s1 and
add s1 to L(p) for all p ∈ Z ∩ PS.

With these definitions, it suffices to prove that T1(ψ),
T2(ψ), T Y

3 (ψ), and T Z
4 (ψ) are equal to pre′(τ1, ψ), pre′(τ2, ψ),

pre′(τY
3 , ψ), and pre′(τZ

4 , ψ), respectively. It is clear for

TANABE et al.: PRE- AND POST-CONDITIONS EXPRESSED IN VARIANTS OF THE MODAL μ-CALCULUS
1001

T1(ψ) = 1, and the rest of them can be shown in a simi-
lar manner to the proof of Theorem 1. �

Using Theorem 2, it is shown that for any postcondition
χ, if K |= post(τ, ψ), then there exists K′ such that K ∼τ,ψ
K′ and K′ |= χ. We can regard post(τ, ψ) as the strongest
postcondition in this sense.

5. Application to the Analysis of Pointer-Manipulating
Programs

In this section, we illustrate how the results of the previous
sections can be applied, by proving a property of a pointer-
manipulating program.

We have a decision procedure [7] for validity of formu-
las in the alternation-free fragment of logic L. The proce-
dure is sound although not complete for L, meaning that
it may fail to judge correctly when the formula in ques-
tion is valid, but it always returns the correct answer when
the formula is not valid. It is sound and complete for the
alternation-free fragment ofL′. Due to the following propo-
sition, which is easily shown by induction on the construc-
tion of ϕ, we can combine the decision procedure and the
results of this study.

Proposition 2: For τ ∈ Tr and closed alternation-free for-
mula ϕ in L, formulas pre(τ, ϕ) and post(τ, ϕ) are closed
alternation-free formulas in L. If ϕ is in L′, post(τ, ϕ) is
in L′.

Figure 1 shows a program written in a programming
language called PML [10]. All variables (x, y, and t) are
of pointer-type and f is a pointer-type field. The variables
correspond to nominals and the field corresponds to a func-
tional modality symbol.

Let K1 be any given Kripke structure, and K2 be the
Kripke structure obtained fromK1 by applying the program.
An example of the pair of K1 and K2 is shown in Fig. 1.

Fig. 1 A pointer-manipulating program.

We verify that every state that is reachable from L′1(x) in
K1 is reachable from L′2(y) in K2. The assertions are writ-
ten in curly braces. The following abbreviations are used:
EU(ϕ1, ϕ2) = μX(ϕ2 ∨ (ϕ1 ∧ 〈 f 〉X)), EF(ϕ) = EU(true, ϕ),
and ψ = @x EU(¬y, a) ∨@y EU(¬x, a).

We introduce a fresh nominal a and put formula
@x EF(a), which means “L(a) is reachable from L(x),” as
the first assertion. The last assertion is @y EF(a). Since a is
fresh, this is what we need to deduce.

The weakest preconditions or the strongest postcondi-
tions are used to check that each step is correct. For exam-
ple, the statement x:=y.f corresponds to the transforma-
tion τ = CN2(x, y, f). To check the triple {ϕ1} x:=y.f {ϕ2},
we use post(τ, ϕ1). The formula @y〈 f 〉x in ϕ2 comes from
post1(τ, ϕ1), @t EU(¬y, a) and @y EU(¬t, a) in ϕ2 come
from post2(τ, ϕ1). The formula @y¬nil can be used to as-
sure that the program does not abort at this point, but for
simplicity, we do not further discuss the dangling pointer
problem here. The next assertion ϕ3 is justified by the fact
that ϕ2 → ϕ3 is a valid formula, which can be verified using
appropriate decision procedures.

While all formulas in the example described above are
written in CTL with only forward modalities, general fixed-
point operators and backward modalities are also useful for
more complex analysis. For example, to verify the cor-
rectness of Deutsch-Schorr-Waite marking algorithm, we
need formulas with backward modalities that are not in
CTL* [11].

We have experimental implementations of a verifica-
tion tool for pointer-manipulating programs based on the
technique described in this section [11], [12].

6. Conclusion and Future Work

We established a method of computing pre- and post-
conditions in variants of the modal μ-calculus with regard
to transformations of Kripke structures.

An obvious direction for future work is to implement
the computation of pre- and post-conditions and combine
them with decision procedures of the logic to build a verifi-
cation system. As already mentioned, this has been partially
done; and we plan to extend it to fully cover the contents of
this article.

In this study, we choose transformations of Kripke
structures based on our intention to apply the results to an-
alyze programs that manipulate single-valued pointers. An-
alyzing programs with multi-valued pointers should be at-
tempted as future work.

Acknowledgments

This research was partially supported by the Ministry of Ed-
ucation, Science, Sports and Culture, Grant-in-Aid for Sci-
entific Research (C), 21500006, 2009. The authors would
like to thank Yoshiki Kinoshita of the National Institute of
Advanced Industrial Science and Technology, and Masami
Hagiya of the University of Tokyo for their valuable com-

1002
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

ments and discussions. They are grateful to the anonymous
referees for their careful reading and helpful suggestions.

References

[1] K. Takahashi and M. Hagiya, “Abstraction of graph transforma-
tion using temporal formulas,” Supplemental Volume of the 2003
International Conference on Dependable Systems and Networks,
pp.W-65–W-66, 2003.

[2] M. Hagiya, K. Takahashi, M. Yamamoto, and T. Sato, “Analysis
of synchronous and asynchronous cellular automata using abstrac-
tion by temporal logic,” Seventh Functional and Logic Programming
Symposium, LNCS 2998, pp.7–21, 2004.

[3] P. Blackburn, “Nominal tense logic,” Notre Dame Journal of Formal
Logic, vol.34, pp.56–83, 1993.

[4] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi, “The complexity
of enriched μ-calculi,” ICALP (2), LNCS 4052, pp.540–551, 2006.

[5] Y. Tanabe, T. Takai, T. Sekizawa, and K. Takahashi, “Preconditions
of properties described in CTL for statements manipulating point-
ers,” Supplemental Volume of the 2005 International Conference on
Dependable Systems and Networks, pp.228–234, 2005.

[6] P.A. Bonatti and A. Peron, “On the undecidability of logics with
converse, nominals, recursion and counting,” Artif. Intell., vol.158,
pp.75–96, 2004.

[7] Y. Tanabe, K. Takahashi, and M. Hagiya, “A decision procedure for
alternation-free modal μ-calculi,” Advances in Modal Logic, vol.7,
pp.341–362, 2008.

[8] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape analysis via
3-valued logic,” ACM Trans. Programming Languages and Systems,
vol.24, no.3, pp.217–298, 2002.

[9] D. Distefano, P.W. O’Hearn, and H. Yang, “A local shape analysis
based on separation logic,” TACAS 2006, LNCS 3920, pp.287–302,
Springer, 2006.

[10] Y. Kinoshita and K. Nishizawa, “An algebraic semantics of predicate
abstraction for PML,” Computer Software, JSSST, (to appear).

[11] Y. Yuasa, Y. Tanabe, T. Sekizawa, and K. Takahashi, “Verification
of the Deutsch-Schorr-Waite marking algorithm with modal logic,”
Second International Conference on Verified Software: Theories,
Tools, and Experiments, LNCS 5295, pp.115–129, 2008.

[12] T. Sekizawa, Y. Tanabe, Y. Yuasa, and K. Takahashi, “MLAT: A
tool for heap analysis based on predicate abstraction by modal
logic,” IASTED International Conference on Software Engineering,
pp.310–317, 2008.

Yoshinori Tanabe is an assistant profes-
sor at Graduate School of Information Science
and Technology, the University of Tokyo. He
received his M.S. degree in mathematics from
Tsukuba University in 1987 and Ph.D. in infor-
mation science and technology from the Univer-
sity of Tokyo in 2008. His research interests in-
clude formal methods, verification, and applica-
tion of modal logic.

Toshifusa Sekizawa received his M.S.
degree in physics from Gakushuin University
in 1998. He is currently working in the Na-
tional Institute of Advanced Industrial Science
and Technology. He is also a Ph.D. student in
the Graduate School of Information Science and
Technology, Osaka University. His research in-
terests are in the areas of model checking and its
applications.

Yoshifumi Yuasa received his D.Sc. de-
gree in mathematics from Waseda University
in 1996. He is currently a Research Associate
Professor at the Department of Computer Sci-
ence, Graduate School of Information Science
and Engineering, Tokyo Institute of Technology.
His research interests are in software verifica-
tion, theorem proving, and mathematical logic.

Koichi Takahashi received his M.S. de-
gree in mathematics from Nagoya University
in 1988. He received his Ph.D. in information
science from the University of Tokyo in 2002.
From 1988, he has been working in Electrotech-
nical Laboratory (currently Advanced Industrial
Science and Technology). His research interests
include theoretical verifications. He is a mem-
ber of IPSJ, IEEE, ACM, and JSSST.

