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A Rapid Model Adaptation Technique for Emotional Speech
Recognition with Style Estimation Based on Multiple-Regression
HMM

Yusuke IJIMA†∗, Nonmember, Takashi NOSE†a), Makoto TACHIBANA†∗∗,
and Takao KOBAYASHI†b), Members

SUMMARY In this paper, we propose a rapid model adaptation tech-
nique for emotional speech recognition which enables us to extract paralin-
guistic information as well as linguistic information contained in speech
signals. This technique is based on style estimation and style adaptation
using a multiple-regression HMM (MRHMM). In the MRHMM, the mean
parameters of the output probability density function are controlled by a
low-dimensional parameter vector, called a style vector, which corresponds
to a set of the explanatory variables of the multiple regression. The recog-
nition process consists of two stages. In the first stage, the style vector that
represents the emotional expression category and the intensity of its expres-
siveness for the input speech is estimated on a sentence-by-sentence basis.
Next, the acoustic models are adapted using the estimated style vector, and
then standard HMM-based speech recognition is performed in the second
stage. We assess the performance of the proposed technique in the recog-
nition of simulated emotional speech uttered by both professional narrators
and non-professional speakers.
key words: emotional speech, speaking style, style estimation, multiple-
regression HMM, style adaptation, speaker adaptation

1. Introduction

Speech signals convey not only linguistic information but
also paralinguistic and nonlinguistic information, such as
the speakers, emotions, and speaking styles. In this con-
text, a wide variety of approaches have been proposed for
emotional speech analysis and recognition (e.g., [1]–[3]).
The acoustic features of speech are affected by the speaker’s
emotional states and speaking styles as well as linguistic
factors. Such variations can cause mismatches between the
acoustic models used in a speech recognition system and
the input speech, and could also cause serious deterioration
in the recognition performance. A simple approach to this
problem is to prepare matched models depending on the re-
spective variations. This might be possible if the variations
in the emotion type or style and the degree or intensity of the
expressivity are limited and expected. However, in reality
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the intensity of emotional expressions would change widely.
As a result, it is not easy to collect in advance the training
data covering all the possible variations of emotional expres-
sions, and thus it would be unrealistic to train a large number
of matched models for each variation. In addition, the com-
putational cost of recognition becomes high as the number
of emotional intensity variations increases.

One of the more realistic approaches to the problem
is to utilize model adaptation. Since variations in emo-
tional expressions appear in every utterance or even in a
phrase, it is desirable to perform the model adaptation on-
line. This implies that the model adaptation should be car-
ried out using only a very small amount of data, more specif-
ically, one sentence or one phrase speech. For this pur-
pose, rapid model adaptation techniques based on a small
number of control parameters would be more promising
than those based on maximum likelihood linear regression
(MLLR) [4], because the MLLR generally requires a cer-
tain amount of adaptation data to attain considerable perfor-
mance. Such low-dimensional parameter space-based adap-
tation techniques include vocal tract length normalization
(VTLN) [5], eigenvoice [6], and multiple-regression hidden
Markov model (MRHMM) [7].

In this paper, we propose a new rapid model adapta-
tion technique based on a low-dimensional control parame-
ter space for emotional speech recognition. Although the
proposed technique utilizes the MRHMM framework, its
approach to the modeling of speech is fundamentally differ-
ent from that of [7]. In the original MRHMM, an additional
acoustic feature, that is, fundamental frequency, is used as
the explanatory variable of the regression [7]. In contrast,
the proposed technique uses the intensity of emotional ex-
pressivity that appears in acoustic features of speech as the
explanatory variable [8], which is called the style vector,
rather than the specific acoustic features. The key idea of
the technique is based on the style estimation of speech [9]
and style control of synthetic speech [10]. In the recogni-
tion stage, we first estimate the value of style vector for ev-
ery sentence of the input speech based on a style estimation
technique. Then we conduct the model adaptation by setting
the value of the explanatory variable to the estimated style
vector and calculating new mean vectors of the probability
density functions. After that, we perform standard HMM-
based speech recognition.
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An advantage of the proposed technique is that we can
obtain paralinguistic information, that is, the category of the
style and its intensity for the input speech as well as linguis-
tic information after the recognition process. In contrast, it
is not easy to directory obtain such paralinguistic informa-
tion when using the eigenvoice technique [6], which is simi-
lar to the proposed technique in the sense that the adaptation
is based on a low-dimensional parameter vector space. This
is because each axis of the eigenspace does not represent a
specific emotion or style.

In general, a considerable amount of speech data
of a target speaker is required in advance to train the
MRHMM [8]. This leads to difficulty in recognizing arbi-
trary speakers’ speech. Although a possible approach to
this problem is to use a speaker-independent MRHMM, this
would result in an unsatisfactory performance because the
expressiveness of emotions and speaking styles varies sen-
sitively with the individual characteristics. To overcome the
problem, we use a speaker-independent neutral style model
which can be obtained much more easily than speaker- and
style-dependent models for the MRHMM training. The
speaker-independent model is adapted to the target speaker’s
style-dependent models based on simultaneous adaptation
of speaker and style with a small amount of speech data ut-
tered by the target speaker [11]. Then, the MRHMM of the
target speaker is trained from the obtained style-dependent
models. In this paper, we examine the effectiveness of the
proposed technique under a condition where the types of
emotion are limited, and also the amount of training data of
the target speaker is very small.

2. Speech Recognition Based on Multiple-Regression
HMM

2.1 Acoustic Modeling of Speech with Multiple Styles Us-
ing MRHMM

In the MRHMM-based emotional speech recognition frame-
work [8], the acoustic model is represented by MRHMM,
i.e., HMM with Gaussian probability density functions
(pdfs) in which the mean vector of each pdf is expressed
by a function of a low-dimensional vector called the style
vector. Each component of the style vector corresponds to
an intensity or quantity that represents how much the acous-
tic features are affected by a certain emotional expression or
speaking style.

Here we consider a Gaussian mixture pdf as the output
pdf. Let μim be the mean vector of the m-th mixture compo-
nent at state i. In the MRHMM, the mean vector is assumed
to be represented by multiple regression of a style vector v
as

μim = h(im)
0 + Aimv = Himξ (1)

where

Aim =
[
h(im)

1 , · · · , h(im)
L

]
(2)

Him =
[
h(im)

0 , · · · , h(im)
L

]
(3)

v = [v1, v2, · · · , vL]� (4)

ξ =
[
1, v�
]�
. (5)

Aim and Him are D × L- and D × (L + 1)-dimensional re-
gression matrices, and D and L are the dimensionalities
of μim and v, respectively. When training data and cor-
responding style vectors are given, the regression matrix
Him of the MRHMM can be estimated using an EM algo-
rithm. Let {O(1), · · · ,O(K)} and {v(1), · · · , v(K)} be sets of
observation sequences and style vectors for model train-
ing, where K is the total number of observation sequences,
O(k) = (o(k)

1 , · · · , o(k)
Tk

) is the k-th observation sequence, Tk

is the number of frames of O(k), and v(k) is the style vector
that corresponds to O(k). The re-estimation formula of the
regression matrix of the MRHMM can be derived in a simi-
lar way as that for the single mixture model case [10] based
on a maximum likelihood (ML) criterion, and is given as
follows.

HML
im =

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

k=1

Tk∑
t=1

M∑
m=1

γt(i,m)o(k)
t ξ

(k)�
⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎝
K∑

k=1

Tk∑
t=1

M∑
m=1

γt(i,m)ξ(k)ξ(k)�
⎞⎟⎟⎟⎟⎟⎟⎠
−1

(6)

where M is the number of mixtures of the MRHMM, o(k)
t is

an observation vector at time t in O(k), and ξ(k) = [1, v(k)�]�.
In addition, γt(i,m) is the probability of being in the m-th
mixture component of state i at time t for given O(k).

2.2 Style Estimation for On-Line Model Adaptation

We consider a problem of estimating the style vector v for
an input observation sequence O = (o1, · · · , oT ) given the
trained MRHMM λ whose parameters Him and the covari-
ance matrix Σim are fixed. The optimal style vector v∗ for the
input observation O is determined based on an ML criterion
as

v∗ = argmax
v

P (O|λ, v) . (7)

The EM algorithm-based re-estimation formula of the style
vector for the output pdf is given by

v =

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

T∑
t=1

M∑
m=1

γt(i,m)A�imΣ
−1
im Aim

⎞⎟⎟⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

T∑
t=1

M∑
m=1

γt(i,m)A�imΣ
−1
im (ot−h(im)

0 )

⎞⎟⎟⎟⎟⎟⎠ (8)

where N is the number of states of the MRHMM. The above
formula is straightforwardly derived from the single mix-
ture model case [9] where the estimation formula is derived
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within a hidden semi-Markov model (HSMM) framework,
which is the model having explicit state-duration pdfs.

In this study, we assume that the input observation se-
quence O is a set of acoustic features for one sentence and
we estimate the style vector in each sentence.

2.3 Training of MRHMM with a Small Amount of Speech
Data Using Model Adaptation

The MRHMM training generally requires a considerable
amount of speech data to obtain reliable model parameters.
However, it is unrealistic to prepare a sufficient amount of
speech data of arbitrary speakers. In the style control and
style estimation based on the multiple-regression HSMM
(MRHSMM), we have shown that the use of average voice
model [12] and simultaneous adaptation of speaker and style
is promising for overcoming this problem [11], [13]. Thus
we incorporate a similar approach into the MRHMM-based
emotional speech recognition.

A block diagram of the model training is illustrated in
Fig. 1. First, we train a speaker-independent (SI) neutral
style model with a sufficient amount of neutral style speech
of many speakers. Next, we adapt the SI neutral style model
to a target speaker’s respective styles using a model adapta-
tion technique with a small amount of speech data uttered
in advance by the target speaker. Then we obtain the target
speaker’s MRHMM based on least squares estimation from
the speaker- and style-adapted HMMs.

Suppose that the adaptation data contains speech ut-
tered in S different styles. Let the mean vector of the m-th
mixture pdf at state i of the style-adapted HMM of style s
and the corresponding style vector be given by μ(s)

im and v(s),
respectively, for 1 ≤ s ≤ S . We choose Him that minimizes

E =
S∑

s=1

∥∥∥μ(s)
im − Himξ

(s)
∥∥∥2 (9)

as the regression matrix of the MRHMM [11], [13]. By dif-
ferentiating E with respect to Him and equating the result to
zero, the optimal regression matrix HLS

im is obtained as

HLS
im =

⎛⎜⎜⎜⎜⎜⎝
S∑

s=1

μ(s)
imξ

(s)�
⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

S∑
s=1

ξ(s)ξ(s)�
⎞⎟⎟⎟⎟⎟⎠
−1

. (10)

To improve the performance of the simultaneous adap-
tation of speaker and style using only a small amount of
speech data, we refine the MRHMM parameter Him as fol-
lows [11]:

Him =
τHLS

im + Γim HML
im

τ + Γim
(11)

where HLS
im is the regression matrix obtained by Eq. (10) and

HML
im is the regression matrix estimated from the adaptation

data in ML sense. In addition, τ is a positive parameter for
controlling the modification weight and

Fig. 1 MRHMM training using SI neutral style model and model adap-
tation.

Γim =

T∑
t=1

γt(i,m). (12)

It is noted that the regression matrix Him approaches to HML
im

when enough adaptation data is available for the m-th mix-
ture component of state i.

2.4 Emotional Speech Recognition Using MRHMM-
Based On-Line Model Adaptation

When the trained MRHMM and a specific style vector
are given, an HMM having the new mean vectors calcu-
lated by Eq. (1) can be obtained. By using this HMM, we
can straightforwardly perform ordinary speech recognition
based on HMM.

In the proposed technique, first, the style vector is es-
timated using the style estimation technique mentioned in
Sect. 2.2, and then, using the estimated style vector, the
adapted HMM for the recognition is obtained from the
MRHMM. The style vector is estimated for every input
utterance, and the adapted HMM is modified in each ut-
terance. When we perform the style estimation, we need
a phoneme label sequence of the input speech to calculate
γt(i,m) by the forward-backward algorithm. For this pur-
pose, we use a two-pass recognition process. The overall
recognition process is summarized as follows.

SI model training:

Step 0 Train SI neutral style HMM using neutral style
speech data of many speakers.

MRHMM training:

Step 1 Convert the SI neutral style model into the tar-
get speaker’s respective style models using a model
adaptation technique.
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Step 2 Construct the target speaker’s MRHMM using
Eq. (10).

Step 3 Refine the obtained MRHMM using Eq. (11).

MRHMM-based recognition:

Step 4 Obtain neutral style HMM by setting the style vector
equal to 0, which is assumed to be the value of the
style vector corresponding to the neutral style in the
training of the MRHMM.

Step 5 Perform phoneme recognition of input speech using
the neutral style HMM.

Step 6 Estimate the style vector v∗ for the input speech us-
ing the trained MRHMM and the phoneme sequence
obtained in Step 5.

Step 7 Obtain style-adapted HMM from the trained
MRHMM by calculating the new mean vectors with
the estimated style vector v∗ using Eq. (1).

Step 8 Perform speech recognition using the style-adapted
HMM and obtain the final recognition result.

3. Experiments

3.1 Emotional Speech Database

In the following experiments, we used professional narra-
tors’ and non-professional speakers’ speech. The profes-
sional narrators’ speech data contains three styles of speech
samples with simulated emotions — neutral, sad, and joyful
styles, in which 503 phonetically balanced sentences taken
from the ATR Japanese speech database were uttered by
two males (MMI and MJI) and one female (FTY) narra-
tors in the respective styles. The non-professional speak-
ers’ speech data consists of four styles of speech samples —
neutral, sad, joyful, and angry styles, uttered with simulated
emotions by nine graduate students (eight males and one
female). Each style contains 100 sentences chosen from the
above 503 sentences. The non-professional speakers had lit-
tle experience in uttering the given sentence with such simu-
lated styles. All the speech samples were recorded in a quiet
room, and the speakers were directed to keep the degree of
expressiveness of each style almost constant.

3.2 Experimental Conditions

The SI neutral style model was trained from neutral style
speech data of 209 speakers (106 males and 103 females)
included in the Japanese Newspaper Article Sentences
(JNAS) [14]. These speakers were different from the profes-
sional narrators and non-professional speakers mentioned
above. The speech data used for the training of the SI neutral
style model was about 50 sentences for each speaker, 10498
sentences in total. The parameters of the SI neutral style
model were tied using a decision-tree-based context cluster-
ing with MDL criterion [15]. The total number of states in

Table 1 Experimental conditions.

Sampling frequency 16 kHz
Frame length 25 ms
Frame shift 10 ms

Analysis window Hamming window
Feature vector 12 MFCCs (with CMN) +Δ

Log of power +Δ
Number of monophones 42

Model left-to-right, 16-mixture, 3-state
triphone HMM/MRHMM
with diagonal covariance

the SI neutral style model was 1875.
In the speaker and style adaptation, five sentences

(around 20 seconds) of the respective styles were used for
each target speaker. To alleviate the dependency of the
choice of the adaptation data, the adaptation sentences were
randomly chosen and the experiments were conducted twice
by changing the adaptation data. As for the model adapta-
tion technique in Step 1, we applied a combined approach
based on the MLLR and maximum a posteriori (MAP) adap-
tation (MLLR+MAP) [16]. Since the amount of adaptation
data of each target style was small, we used a global trans-
form in the MLLR. In this study, the covariance parameters
were not adapted because the amount of adaptation data was
very small. We set τ = 10 in Eq. (11) on the basis of prelim-
inary experimental results.

The speech recognition was performed based on the
Viterbi algorithm using the decoder of the Hidden Markov
Model Toolkit (HTK) [17]. We used phonetic networks
based on Japanese phonetic concatenation rules in the recog-
nition. The other experimental conditions are listed in Ta-
ble 1.

3.3 Performance Evaluation with Professional Narrators

3.3.1 Performance of Speaker and Style Adaptation of the
MRHMM

We first evaluated the performance of the speaker and style
adaptation by comparing the proposed MRHMM with four
types of ordinary HMMs. In this experiment, we used
three styles of the professional narrators’ speech data. A
one-dimensional style space (Fig. 2 (a)) was used for the
MRHMM. The style vectors for the adaptation data were
set to fixed values, (−1), (0), and (1) for the sad, neutral,
and joyful styles, respectively. We performed 10-fold cross-
validation tests using 50 test sentences that were not in-
cluded in the adaptation data.

Table 2 shows the average scores of the three speakers’
phoneme recognition error rates, and the entry for “Overall”
represents the average score of all the styles. The error rate
was calculated by

error(%) =
(
1 − H

H + D + S

)
× 100 (13)

where H, S , and D represent the numbers of correctly recog-
nized phonemes, substitutions, and deletions, respectively.
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Table 2 Comparison of phoneme error rates (%) between ordinary HMMs and MRHMM.

Model HMM 1-D MRHMM

Speaker Independent Adapted Adapted Adapted Adapted

Style Neutral Neutral Independent Adapted Adapted

Neutral 12.3 8.6 8.8 8.6 8.6

Sad 16.8 13.4 11.8 11.5 11.1

Joyful 19.4 16.7 14.9 13.7 13.5

Overall 16.2 12.9 11.8 11.2 11.0

Fig. 2 Style spaces for MRHMM.

In the table, the speaker-independent HMM is the SI neutral
style model obtained in Step 0. The speaker-adapted neu-
tral style HMM is the one adapted from the SI neutral style
model using MLLR+MAP with the target speaker’s five
sentences of neutral style speech. Similarly, the speaker-
adapted style-independent HMM is the one adapted from
the SI neutral style HMM using MLLR+MAP with the tar-
get speaker’s five sentences for each style, 15 sentences in
total. The style-adapted HMMs are the ones obtained in
Step 1 using the target speaker’s five sentences of the re-
spective styles. It is noted that we assumed that the style of
the input speech was known when using the style-adapted
HMMs, and unknown for the other models. From the re-
sult, we can see that the error rates of the MRHMM sig-
nificantly decreased compared with the speaker-independent
HMM. Moreover, we confirmed the improvement of recog-
nition performance to be statistically significant at the 1%
level between the MRHMM and the ordinary HMMs except
for the style-adapted HMMs. It should be again noted that
the results for the style-adapted HMMs were obtained un-
der the condition where the input speech’s style was known.
It has been found that the recognition performance of the
style-adapted HMMs becomes worse when the style of in-
put speech is unknown.

Table 3 Classification rates (%) for professional narrators’ emotional
speech.

Input Classified Style

Style Neutral Sad Joyful

Neutral 98.2 0.4 1.4

Sad 14.8 85.2 0.0

Joyful 15.6 0.0 84.4

3.3.2 Results of Style Estimation and Classification

We also evaluated the performance of the proposed tech-
nique in terms of the style estimation. The style classifi-
cation test was conducted for the test speech samples using
the following classification criterion: if the value of the style
vector is less than −0.5, then the input speech is classified
into sad style; if it is greater than 0.5, then joyful style; other-
wise, neutral style. Table 3 shows the average classification
rates of the respective styles for the test speech samples of
three speakers. In total, about 89% of the speech data were
classified as the correct style class of the input speech. This
would be promising results in the sense that we estimated
the degree of expressivity of the input speech without using
prosodic features.

Figure 3 shows the histograms of the estimated values
of the style vectors for the test speech samples. It can be
seen that different styles give different distributions and the
estimated values of the style vector are distributed around
the values that were set in the training. However, there is a
slight displacement between the mode of each distribution
and the value of the style vector assumed in the training.
This is because the acoustic features of the sad and joyful
styles included in the speech database are not completely
symmetric and those of the neutral style are not absolutely
located on the mid-point between the sad and joyful styles.
As a result, the three styles were influenced by each other in
the MRHMM training.

3.4 Performance Evaluation with Non-professional Speak-
ers

We next assessed the performance of the proposed tech-
nique using non-professional speakers’ speech which is a
little more realistic situation than focusing on the profes-
sional narrators’ speech. We used four styles of the nine
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Table 4 Phoneme error rates (%) for non-professional speakers’ emotional speech with different style
spaces.

Model HMM 2-D MRHMM 3-D MRHMM

Speaker Independent Adapted Adapted Adapted Adapted

Style Neutral Neutral Independent Adapted Adapted

Neutral 15.1 11.2 11.4 11.2 11.1 10.9

Sad 18.6 15.7 14.8 14.0 13.5 13.4

Joyful 19.4 16.4 15.3 15.3 14.7 14.7

Angry 23.4 20.6 19.0 18.8 17.7 17.7

Overall 19.1 16.0 15.1 14.8 14.3 14.2

Fig. 3 Histograms of the estimated values of the style vectors.

non-professional speakers’ speech with simulated emotion.
Two different style spaces, namely a two-dimensional space
(Fig. 2 (b)) and a three-dimensional one (Fig. 2 (c)) were
used for modeling MRHMMs. In the two-dimensional
space, the style vectors for adaptation data were set to (0, 0),
(1, 0), (0, 1), and (−1, 0) for the neutral, joyful, angry, and
sad styles, respectively. In the three-dimensional space, the
style vectors for adaptation data were set to (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (0, 0, 1) for the neutral, sad, joyful, and angry
styles, respectively. We performed two-fold cross-validation
tests using 50 test sentences that were not included in the
adaptation data.

3.4.1 Effect of the Choice of Style Spaces for Speaker and
Style Adaptation Performance

We first examined whether the choice of style spaces af-
fect the recognition performance. Table 4 shows the aver-
age scores of the nine speakers’ phoneme recognition error
rates of respective styles. In the table, the entries for “2-
D” and “3-D” represent the results for the MRHMM with
the two-dimensional and three-dimensional style spaces, re-
spectively. For comparison, we also evaluated the four types
of ordinary HMMs described in Sect. 3.3.1. The speaker-
adapted style-independent HMM was obtained using adap-
tation data of the target speaker’s five sentences for each
style, 20 sentences in total. We again assumed that the style
of the input speech was known when using the style-adapted
HMMs, and unknown for the other models. It can be seen
that both of the 2-D and 3-D MRHMMs gave lower error
rates than the ordinary HMMs. It was found that there are
significant differences at the 1% level between the ordinary
HMMs and the MRHMMs. As for the style spaces, the er-
ror rates are comparable in scores between the 2-D and 3-D
style spaces, and it seems that the recognition performance
is not sensitive to the choice of style spaces.

3.4.2 Results of Style Estimation and Classification Using
Different Style Spaces

Next, we compared the estimation performance of the de-
gree of emotional expressivity between the 2-D and 3-D
style spaces. Figure 4 shows the distributions of the esti-
mated values of the style vectors using the 2-D style space
for all the test samples of one female and two male speak-
ers who were arbitrarily chosen from the nine speakers, and
Fig. 5 shows those using the 3-D style space. We can see
that the distribution of the estimated style vectors belonging
to the same style differs from those of other styles.

Table 5 shows the average classification rates of the
styles for the test speech samples of nine speakers. The in-
put speech samples were classified based on the Euclidean
distance between the predetermined style vector used in the
training (see Figs. 2 (b) and (c)) and the estimated style vec-
tor. The overall correct classification rates of the MRHMM
were 86.8% and 91.3% for the 2-D and the 3-D style spaces,
respectively.
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Fig. 4 Examples of the distributions of the estimated style vector with 2-D style space.

Fig. 5 Examples of the distributions of the estimated style vector with 3-D style space.

Table 5 Classification rates (%) for non-professional speakers’ emo-
tional speech with different style spaces.

(a) 2-D style space

Input Classified Style

Style Neutral Sad Joyful Angry

Neutral 99.6 0.3 0.1 0.0

Sad 6.2 93.8 0.0 0.0

Joyful 37.3 0.0 61.2 1.5

Angry 4.9 0.0 2.5 92.6

(b) 3-D style space

Input Classified Style

Style Neutral Sad Joyful Angry

Neutral 99.4 0.5 0.1 0.0

Sad 1.1 99.9 0.0 0.0

Joyful 22.7 0.0 76.3 1.1

Angry 7.6 0.0 2.0 90.4

3.4.3 Performance Evaluation in Continuous Speech
Recognition

We examined the performance of the proposed technique
for non-professional speakers in terms of the word error

Table 6 Comparison of word error rates (%) between ordinary HMMs
and MRHMM.

Model HMM 2-D MRHMM

Speaker Independent Adapted Adapted

Style Neutral Independent Adapted

Neutral 29.0 23.4 23.2

Sad 36.4 30.4 29.0

Joyful 37.2 31.3 30.1

Angry 44.2 38.2 35.9

Overall 36.7 30.8 29.5

rate in continuous speech recognition. Adaptation data and
other experimental conditions are described in Sect. 3.1 and
Sect. 3.2. We performed two-fold cross-validation tests us-
ing 50 test sentences that were not included in the adaptation
data. The style space for the MRHMM was the 2-D one. For
comparison, we again evaluated the speaker-independent
HMM and the speaker-adapted style-independent HMM in
Sect. 3.4.1. We used Julius (ver. 4.1) [18] as a decoder. We
used one of the sets of lexicons and language models con-
tained in [19]. The vocabulary set of the lexicon con-
tains 60k words, and consists of the most frequent words
in Mainichi newspaper articles from the year 1991 to 1994
(45 months). The language models were bigram and back-
ward trigram for the first and second pass, respectively, and
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obtained from above newspaper corpus. Although there are
some out-of-vocabulary words in the lexicon for test speech
sentences, we did not add any words to the lexicon.

Table 6 shows the word error rates for the respective
models. We can see that the MRHMM gave the highest per-
formance in all styles. The difference between the speaker-
adapted style-independent HMM and the MRHMM is sta-
tistically significant at the 1% level. These results show that
the proposed technique would also be effective in LVCSR.

4. Conclusion

This paper proposed a technique for emotional speech
recognition using rapid model adaptation, in which par-
alinguistic as well as linguistic information can be ob-
tained. The technique utilizes a multiple-regression HMM
(MRHMM) framework, and is based on style estimation
and adaptation. Using a speaker-independent neutral style
model, the MRHMM is trained with a small amount of tar-
get speaker’s data. Furthermore, the acoustic models for
speech recognition are adapted to the style of input speech
from the trained MRHMM using the estimated style vector.
From the experimental results of phoneme and continuous
speech recognition, we found that the performance of the
proposed technique in both speech recognition and style es-
timation is promising for simulated emotional speech. In
our future work, we will explore the effectiveness of the
proposed technique using more realistic speech data, such
as spontaneous speech, and also develop a technique that
would be effective for unknown emotions.
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