
1070
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

PAPER Special Section on Information and Communication System Security

Inconsistency Resolution Method for RBAC Based Interoperation

Chao HUANG†, Student Member, Jianling SUN†a), Nonmember, Xinyu WANG†, Member,
and Di WU††, Nonmember

SUMMARY In this paper, we propose an inconsistency resolution
method based on a new concept, insecure backtracking role mapping. By
analyzing the role graph, we prove that the root cause of security inconsis-
tency in distributed interoperation is the existence of insecure backtracking
role mapping. We propose a novel and efficient algorithm to detect the in-
consistency via finding all of the insecure backtracking role mappings. Our
detection algorithm will not only report the existence of inconsistency, but
also generate the inconsistency information for the resolution. We reduce
the inconsistency resolution problem to the known Minimum-Cut problem,
and based on the results generated by our detection algorithm we propose
an inconsistency resolution algorithm which could guarantee the security
of distributed interoperation. We demonstrate the effectiveness of our ap-
proach through simulated tests and a case study.
key words: role based access control, security inconsistency, role mapping,
inconsistency detection, inconsistency resolution

1. Introduction

With the pervasive application of network technology, more
and more systems adopt the distributed architecture for
higher quality of services. However, due to the complexity
of distributed systems, the validation of the security policy is
extremely significant and complicated [9]. At present, many
applications achieve the interoperation among distributed
domains via coordinating and integrating the local security
policy of each individual domain to form the overall security
strategy. It’s efficient and convenient to ensure the security
of interoperation in this way.

However, the establishment of interoperable security
policy may cause the inconsistency between the local secu-
rity policy and the overall security strategy [10]. For the se-
cure distributed interoperation, the global policy which sup-
ports the inter domain data access must be consistent with
the access control policies of each individual domain. In
particular, secure interoperation requires enforcement of the
following two principles [12]:

• Principle of Autonomy. Any access permitted within an
individual domain must also be permitted under secure
interoperation.
• Principle of Security. Any access not permitted within

an individual domain must also be denied under secure

Manuscript received July 31, 2009.
Manuscript revised December 18, 2009.
†The authors are with Computer College of Zhejiang Univer-

sity, Hangzhou, Zhejiang, 310027, China.
††The author is with State Street Corporation, Zhejiang, China.
a) E-mail: Email: sunjl@zju.edu.cn

DOI: 10.1587/transinf.E93.D.1070

interoperation.

If the above two principles can not be met, the dis-
tributed interoperation will introduce security inconsisten-
cies to the system, and the whole access control system will
be exposed to risks [1].

Role based access control (RBAC) [3] is widely used
in current enterprize systems [2], since it supports role hi-
erarchy, separation of duty constraint, cardinality constraint
and so on [5]. Furthermore, RBAC is capable of modeling
a wide range of access control policies including Discre-
tional Access Control (DAC) and Mandatory Access Con-
trol (MAC) [4], [6]. RBAC supports the distributed interop-
eration via introducing Role Mapping (RM) [9]. Gong [12]
gives the time complexity analysis of the problem to resolve
the security inconsistency, and also presents a simple se-
curity inconsistency detection algorithm, whose time com-
plexity is O(N3), wherein N is the total number of roles in
the systems.

For enterprise systems, Gong’s method is not efficient
enough for practical usage. Pointing to this practical ef-
ficiency problem, Wang [15] presents a minimal inconsis-
tency detection algorithm, which only takes into considera-
tion the roles involving in the role mapping, thus the time
complexity of inconsistency detection is reduced to O(n3),
wherein n is the number of roles involving in the role map-
ping. Compared to Gong’s method, the efficiency of Wang’s
inconsistency detection algorithm is improved a lot since n
is usually much smaller than N.

Basit [9] proposes an Integer Program (IP) based in-
consistency detection method. Basit designs a set of rules,
which can guide the process of converting the RBAC policy
to a set of IP constraints, and the possible inconsistencies
will be inferred through complicated IP programming algo-
rithms. For the large enterprise systems, converting all the
policies to IP rules is pretty expensive and complicated, thus
the practical application of Basit’s method is restricted. Be-
sides above, the works in [7], [11], [14] also investigate the
security inconsistency problem and [16] discusses the con-
straint consistency.

For all of the above methods concerning the security
inconsistency problem, none of them presents an integrated
approach to resolve the inconsistency, since the inconsis-
tency detection is only the first step and the inconsistency
resolution is the ultimate goal. Based on the detection re-
sults, manual resolution is not impossible, however, for the

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

HUANG et al.: INCONSISTENCY RESOLUTION METHOD FOR RBAC BASED INTEROPERATION
1071

large enterprise application it’s too tedious to dig into the
complicated security policies to find a solution. Hence more
advanced way is needed.

Pointing to the above problems, in this paper, we pro-
pose an automated inconsistency resolution method based
on a new concept, insecure backtracking role mapping. Our
major contributions in this paper include:

(1) We classify the security inconsistencies, and prove that
the sufficient and necessary condition of security in-
consistency is the existence of insecure backtracking
role mapping.

(2) Based on role graph, we propose a more efficient in-
consistency detection algorithm. Via comparing the de-
tection methods in [12], [15], we demonstrate that our
approach is much more efficient.

(3) We reduce the inconsistency resolution problem to the
known Minimum-Cut problem. Then based on the ex-
isting Minimum-Cut algorithm, we propose an incon-
sistency resolution algorithm. We demonstrate the ef-
fectiveness via simulated experiments and a case study.

The rest of this paper is organized as follows: Sect. 2
details the concept of security inconsistency. Section 3
presents the inconsistency detecting method. Section 4
introduces the inconsistency resolving approach, which is
based on the existing Minimum-Cut algorithm. In Sect. 5,
we demonstrate the simulated test results of our inconsis-
tency detection algorithm via comparing to the methods in
[12] and [15], and also show the effectiveness of our in-
consistency resolution algorithm. Section 6 presents a case
study to demonstrate the practical usage of our approach in
real applications. Lastly, we give the conclusion and outline
the future work.

2. Security Inconsistency

Figure 1 shows the interoperation across multiple domains

Fig. 1 Security inconsistency example.

via role mappings. For role mapping A→X, role A is re-
garded as a senior role and role X is regarded as a junior role
in comparison to A, i.e. the user to whom role A is assigned
in Domain 1 will have all the permissions of role X when ac-
cessing to Domain 2. This is an efficient and convenient way
to achieve the distributed interoperation while leveraging the
existing security policies at the same time. Introducing the
role mapping means that the current role system could be
kept intact, thus the current enterprise investment could be
preserved.

However, role mapping is not coming into being with-
out any cost, since there may exist security inconsistencies
after introducing role mappings. In Sect. 1, two principles
to guarantee the security of interoperation have been pre-
sented, Autonomy and Security. Since the interoperation is
realized via adding role mapping, the original role system
of the individual domain has no change. Thus the compli-
ance with the principle of Autonomy can always be achieved.
However, since Role Mapping is a kind of transitive rela-
tion, as shown in Fig. 1, both of the following two situations
violate the principle of Security and cause the security in-
consistencies:

(1) Via role mapping AY, ZM, MD and role hierarchy YZ,
role A in Domain 1 obtains the permissions of role D,
which is not allowed before the interoperation (before
introducing the role mapping).

(2) Via role mapping DY, ZM, MD and role hierarchy YZ,
role Z obtains its senior role Y’s permission, i.e. the
Security principle is violated.

The first kind of inconsistency is called unfounded se-
curity inconsistency, and the second kind is called founded
security inconsistency.

Theorem 1: There are only two kinds of security inconsis-
tencies in distributed interoperation, one kind is unfounded
security inconsistency and the other kind is founded incon-
sistency.

Proof: see the Appendix A.

3. Detecting Security Inconsistency

Detecting security inconsistency is the precondition of in-
consistency resolution. Although there have been a lot of
work concerning the inconsistency detection, none of the
current methods could provide sufficient inconsistency in-
formation for the resolution. In this section, we propose a
new inconsistency detection algorithm which will not only
report the existence of inconsistencies, but also generate the
inconsistency information for future resolution. Our ap-
proach is based on the analysis of role graph.

Definition 1: Role Hierarchy edge
Role hierarchy is a binary relation set Hi on the node set

Vi of the role system Gi, for each element (ui, vi) ∈ Hi, ui ∈
Vi vi ∈ Vi, ui is the senior role to vi. Hi is an anti-reflexive
and anti-symmetric binary relation, i.e. ∀ui ∈ Vi, vi ∈ Vi, if

1072
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

(ui, vi) ∈ Hi, then (vi, ui) � Hi. We call the (ui, vi) as role
hierarchy edge (RHE). H+i is the transitive closure of Hi.

Definition 2: Single domain role system graph
The role set of domain i is represented as Ri, and the

role hierarchy set is represented as Hi. Thus the role system
of domain i can be represented as a directed graph Gi =<
Vi, Ei >, wherein the node set Vi = Ri and Ei = Hi, and E+i
represents the transitive closure on the directed edge set Ei.

Definition 3: Role mapping edge
Role mapping M is the binary relation set on ∪n

i=1 Vi,
for each element (u, v) ∈ M, then u ∈ Vi, v ∈ Vj and i � j.
M is anti-reflexive, i.e. a role can’t be mapped to itself. We
call the (u, v) ∈ M as role mapping edge (RME).

Definition 4: Global role system graph
Global role system across multi-domain is represented

as the graph G =< V, E >, wherein the node set is V =
∪n

i=1 Vi, and the directed edge set is E = ∪n
i=1 Ei ∪M, and M

is the role mapping set.

Definition 5: Trivial role mapping cycle
For the role u ∈ Vi, v ∈ Vj and i � j, if (u, v) ∈ M and

(v, u) ∈ M, then the cycle via (u, v) and (v, u) is called trivial
role mapping cycle. Role u is the equivalent role to v in the
global role system, and vise versa.

Definition 6: Role hierarchy path, role mapping path
Both role hierarchy and role mapping are transitive re-

lations, hence in the global role system G, if there is a con-
nected path from node u to different node v, then we call
(u, v) as role transitive path, we call u, v as start role and end
role separately. If there is no role mapping edge on the path
(u, v), we call it role hierarchy path, otherwise, it is called
role mapping path.

Definition 7: Backtracking role mapping path
For the role mapping path (u, v) which is not the trivial

role mapping cycle, if u and v belong to the same domain,
then we call (u, v) as a backtracking role mapping path. We
call < u, v > as a backtracking role mapping role pair.

Definition 8: Insecure backtracking role mapping path
In the global role system, there is a backtracking role

mapping path (u, v) assuming the same role system to which
both u and u belong is Gi =< Vi, Ei >, if (u, v) � E+i ,
then (u, v) is called insecure backtracking role mapping
path (IBRMP) and is called insecure backtracking role pair
(IBRP).

Theorem 2: The sufficient and necessary condition of se-
curity inconsistency is that there exist insecure backtracking
role mapping paths.

Proof: see the Appendix B.

Fig. 2 Inconsistency detecting algorithm.

Fig. 3 Procedure for inconsistency detecting algorithm.

Definition 9: Minimal Role Graph (MRG)
G′ =< V ′, E′ > is the minimal role graph, wherein:

V ′ = {u|∃v, (u, v) ∈ M∨ (v, u) ∈ M}, E′ = M∪{(u, v)|(u, v) ∈
H+i ∧ u ∈ V ′ ∧ v ∈ V ′}.

A minimal role graph is essentially a sub-graph of the
global role system graph. It only includes the roles and role
hierarchies, which are involved in the role mapping. As the
interoperation shown in Fig. 1, hierarchies (X,Y) and (Y,Z)
are included in the corresponding minimal role graph, and
hierarchies (A, B) and (B,C) are not included, because of
B � V ′ and C � V ′.

Theorem 3: A minimal role graph contains the same in-
secure backtracking role mapping paths as the global role
system graph does.

Proof: see the Appendix C.
According to Theorem 3, the inconsistency detection

could be simplified via performing the detection on the min-
imal role graph. Based on Theorem 2, we give the inconsis-
tency detecting algorithm (IDALG) in Fig. 2 and Fig 3.

For the convenience of description, we assume the fol-
lowing abbreviations:

• RNode: the node which is reached via role mapping

HUANG et al.: INCONSISTENCY RESOLUTION METHOD FOR RBAC BASED INTEROPERATION
1073

edge.
• URNode: the node which is reached without any role

mapping edge.

The core of the IDALG is to build a depth first search
tree first, via determining whether the connections exist
among the roles nodes in each single domain. The span()
procedure marks the nodes which are reached via role map-
ping edges. After invoking IDALG, if the returned set s is
empty, then there is no security inconsistency, otherwise the
elements in s are the insecure backtracking role pairs, which
cause the security inconsistencies.

The time complexity of IDALG is: T1 = O(n × (m +
m)) = O(nm), wherein n = |V ′|, i.e. the vertex number in
the minimal role graph, m = |E′|, i.e. the edge number in
the minimal role graph. The time complexity of detection
algorithm in [12] is: T2 = O(N3), wherein N = |V |, i.e. the
vertex number in the global role system graph. The time
complexity of detection algorithm in [15] is: T3 = O(n3),
n = |V ′|, i.e. the vertex number in the minimal role system
graph.

For a RBAC role system graph, the maximum edge
number is: m = n(n−1)

2 , thus m < n2. Furthermore, according
to the case study report in [8], for a practical role system, m
is much smaller than n2, i.e. m << n2, with n < N, thus we
can get:

T1 < T3 < T2,

i.e. our algorithm is the most efficient one based on theoreti-
cal analysis. We will verify this in the simulated test section.

4. Resolving Security Inconsistency

Based on the inconsistency detection algorithm, the set con-
taining all of the insecure backtracking role pairs could be
obtained. According to Theorem 2 and 3, eliminating those
corresponding insecure backtracking role mapping path will
resolve the inconsistency in the global role system. The
mapping relationship from insecure backtracking role pair
to insecure backtracking role path is one to many, i.e. one
IBRP can be mapped to several IBRMPs. However, one
IBRMP can only be mapped to exactly one IBRP. Pointing
to the above factors, we design an inconsistency resolution
algorithm based on Minimum-Cut (MC) theory [17]. The
content of MC problem is not the focus of this paper, so we
just explain the basics of MC to introduce our inconsistency
resolution algorithm.

Definition 10: Minimum-Cut (Min-Cut), [17]
If in the digraph G there exist a set of edges, eliminat-

ing which will make vertex s unreachable to vertex t, i.e.
there is no pathway from s to t, then the set of edges are
called cut set of digraph G. The cut set with the minimal
sum of edge’s capacity (weight) is called the minimal cut of
G.

For digraph G, the vertex set is V , if S ⊂ V and T =
S = V − S , assuming X = (S ,T) containing all the edges

Fig. 4 Sample Min-Cut of S and T .

whose starting vertex is contained in set S and ending vertex
is contained in set T , i.e.

X = {(vi, v j)|vi ∈ S , v j ∈ T },
then X is a cut of G, since eliminating the edges in X will
make any vertex in S disconnected to T .

For all of the cuts, if cut X′ satisfying:

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

(vi,v j)∈X
wi j|X is the cut set of G

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

wherein wi j is the capacity (weight) of edge (vi, v j), then X′
can be call the Min-Cut of G.

Figure 4 shows the sample cuts of S and T, in which
there are three marked sets:

C1 = {(v1, v3), (v2, v4)}

C2 = {(v4, v5)},C3 = {(v5,T)}.

According to Definition 10, C2 is not the cut set for S
and T , since removing (v4, v5) does not disconnect the path
from S to T . Both C1 and C3 are the cuts, and the cut value
of C1 and C3:

|C1| =
∑

(vi,v j)∈C1

wi j = 2 + 2 = 4, |C3| = 2.

C3 is a smaller cut than C1, and furthermore we can see that
C3 actually is the cut with smallest cut value, thus C3 is the
Min-Cut for S and T of the example in Fig. 4.

Now we reduce the inconsistency resolution problem
to Min-Cut problem.

Definition 11: Min-Cut of IBRP
For a role system G =< V, E >, assuming < V, E > is

the insecure backtracking role mapping pair, to find:

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

(vi,v j)∈X
wi j|X is the cut set of G

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

wherein wi j =

{
1 if(u, v) is RME
+∞ if(u, v) is RHE

.

1074
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Fig. 5 Sample Min-Cut of insecure backtracking role pair.

Utilizing the min-cut method to resolve security inconsis-
tency provides the great flexibility to choose the way of in-
consistency resolution, since different capacity weight set-
tings will yield different resolution strategies. In most situ-
ations, the resolution needs to keep the role hierarchy, since
the autonomy principle should be complied with.

The capacity of role hierarchy is set to +∞, in this way
any resolution candidate which tries to eliminate role hierar-
chy edges will be not selected, since the minimum cut algo-
rithm will choose a smaller one. The capacity of role map-
ping edge is set to one, which indicates role mapping edge
could be eliminated in the final inconsistency resolution, and
the one which needs to eliminate least number of role map-
ping edges will be selected based on minimum cut method.
The less the eliminated edges are, the more the data could be
shared. Due to the above settings, the inconsistency could
be resolved at the same time complying with the autonomy
principle and maximizing the data sharing.

Based on the results from detection algorithm in Fig. 2,
the insecure backtracking role pairs could be obtained. For
each pair (u, v), {u} can be regarded as S , and {v} can be
regarded as T , applying the minimum cut algorithm and
according to the specification of the algorithm in [13], S
will not be connected to T after removing the minimum cut
edge sets. According to definition 8, the insecure backtrack-
ing role mapping paths will be removed. We have proved
in Theorem 2 that eliminating the insecure backtracking
role mapping paths will eliminate the security inconsistency.
Thus minimum cut problem is applicable to resolve the se-
curity inconsistency.

For the inconsistency resolution, the common rule is
not to change the role hierarchy relationships in each indi-
vidual system, whereas to modify the role mapping in order
to obey the consistency restriction. The objective of inter-
operation is to share data and information, thus eliminat-
ing role mapping edges is against the objective. In order to
comply with the consistency restriction and maximize the
data sharing, the number of eliminated role mapping edges
should be minimized. For each insecure backtracking role
pair, it is required to find the corresponding Min-Cut, i.e.
the minimum set of role mapping edges which should be
eliminated to guarantee the consistency.

Figure 5 shows the insecure backtracking role pair

Fig. 6 Inconsistency resolving algorithm.

Fig. 7 Procedure for inconsistency resolving algorithm.

< u, v >, and the corresponding insecure backtracking role
mapping path. The inconsistency exists since a junior role
u obtains the permission from its senior role v via role map-
pings (u,R1) (R1,R3) (R3,R6) and hierarchy (R6, v). The
cut shown in Fig. 5 is as following:

Cut1 = {(R1,R3), (R2,R4)}, |Cut1| = 1 + 1 = 2,

Cut2 = {(R3,R6), (R4,R6)}, |Cut2| = 1 + 1 = 2,

since the role hierarchy needs to be preserved. Thus the
marked Cut1 or Cut2 are the minimal cuts for < u, v >,
and eliminating the edges in Cut1 or Cut2 will resolve the
inconsistency.

There has been a lot of research work to solve the MC
problem, we choose the one proposed in [13], since it’s easy
to implement and pretty efficient. Our inconsistency reso-
lution algorithm (IRALG) is shown in Fig. 6 and Fig 7. The
algorithm consists of two major steps:

(1) Before the inconsistency resolution, the weight of role
hierarchy edges and role mapping edges in G′ needs to
be set.

HUANG et al.: INCONSISTENCY RESOLUTION METHOD FOR RBAC BASED INTEROPERATION
1075

(2) For each insecure backtracking role pair < u, v >, we
set S = {u} and T = {v}, then invoke the existing Min-
Cut algorithm to calculate the minimal cut. The edges
in the minimal cut are the ones need to be eliminated
for resolving the inconsistency.

Two implementation issues need to be addressed:

• In the practical implementation, +∞ can be imple-
mented via setting the value as MAX INTEGER. The
Min-Cut algorithm [13] needs to be changed a lit-
tle bit. During each iteration of flow calculation,
the weight value of those edges that are marked as
MAX INTEGER will not be reduced. In this way, the
role hierarchy edge will not be considered as a candi-
date eliminating edge.
• Since the algorithm is based on the existing Min-Cut

algorithm, the extensibility is pretty good. If the secu-
rity manager considers that some role hierarchy edges
can be eliminated to keep the consistency of the access
control policy, he only has to make a little change to the
weight of those role hierarchy edges, setting a reason-
able integer value instead of setting as MAX INTEGER,
then such role hierarchy edges will be considered as the
candidate eliminating edge during the Min-Cut calcu-
lation. On the other side, if the security manager thinks
that some role mapping edges must be preserved, he
just needs to set the weight value of those edges as
MAX INTEGER.

The Min-Cut algorithm proposed in [13] is a very effi-
cient one, whose time complexity is O(nm log(n)), wherein
n is the vertex number in G′ and m is the edge number. Thus
the overall time complexity of inconsistency resolution al-
gorithm is:

T = O(m + n) + O(kmn log(n)) = O(kmn log(n)),

wherein k is the number of elements in insecure backtrack-
ing role pair set generated in Algorithm 1.

5. Simulated Test and Discussion

The purpose of the experimental evaluation is three-fold:

(1) To evaluate whether our algorithm is efficient enough
for large enterprise application. Now that in [15] Wang
has demonstrated his method (Minimal inconsistency
detection, MIDALG) is more efficient than the one in
[12], we only compare our algorithm to Wang’ method.

(2) To validate that our algorithm works in a wide variety
of environments ranging from small to large organiza-
tion, and comprising of complex role mapping relation-
ship.

(3) To evaluate the efficiency as well as effectiveness of our
inconsistency resolution algorithm. We want to verify
whether removing all the edges generated by our reso-
lution algorithm would eliminate all the inconsistencies
via applying both our detection algorithm and Wang’s
method again.

We create a test data generator, which performs as fol-
lows:

(1) A set of domains are created, the number of which is
set to a certain maximum number ND.

(2) For each domain, a set of roles are created randomly,
the number of which is set to a maximum number NR,
and based on each role set, the role hierarchies are
added randomly under a certain ratio RRH (equals to
NRH/NR wherein NRH is the number of role hierar-
chies).

(3) We randomly choose several roles to be involved in the
interoperation, the number of which is set to NI, and
the role mappings are added across the domains ran-
domly over the chosen interoperation role set under a
certain ratio RRM (equals to NRM/NI, wherein NRM is
the number of role mappings).

Our generator uses a simple randomization strategy.
Thus the possible security inconsistencies are embedded in
the global role systems randomly, which allows us to test in
an unbiased manner.

Our experiment focuses on the impact of different RRM
to the performance of our algorithms. Thus we set the pa-
rameters, which are related to the local role system, such as
NR, RRH, as fixed values and vary the parameters which in-
fluence the interoperation, including NI and RRM. Based on
the case study report of a large European Bank in [8], we set
the parameters as follows:

• ND = 20
• NR = 1000
• NI = 200, 400, . . . , 1800, 2000
• RRH = 0.5
• RRM = 0.1, 0.2, 0.3, 0.4, 0.5, and WC

The case study in [8] has shown that a role system with
role hierarchy ratio RRH of 0.5 has been pretty complex.
The role mapping ratio varies from 0.1 to WC for the worst
case, which means for the certain NI, the number of role
mapping NRM among the interoperation roles reaches the
maximum possible value, i.e. NRM =

NI(NI−1)
2 , the maxi-

mum mapping edge number for a role graph. Thus our ex-
periment could cover the worst theoretical situation.

The experimental data is collected on a machine with
following configuration:

• Single Intel Core 2 T7500 @ 2.20 GH.
• 2 G main memory.
• Operating system is Microsoft XP SP4.
• Java with JRE 1.6.0 13.

Table 1 and Table 2 show the CPU time records of our
detection algorithm IDALG and Wang’s MIDALG with the
different NI and RRM. The result shows that our algorithm
has better performance than MIDALG in most situations.
Even in the worst case (WC), our approach still runs a lit-
tle faster than MIDALG.

Figure 8 shows the comparison of the two algorithms.

1076
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Table 1 Execution time of algorithm MIDALG.

NI T1 (milliseconds)
RRM= 0.1 0.2 0.3 0.4 0.5 WC

200 49 49 49 51 51 54
400 328 329 329 488 489 513
600 1101 1101 1117 1135 1119 1175
800 2628 2663 2662 2694 2679 2813
1000 5256 5272 5306 5290 5307 5572
1200 9212 9246 9230 9263 9330 9797
1400 14597 14695 14713 14665 14715 15451
1600 21851 21853 22002 22085 22103 23208
1800 31058 31355 31078 31244 31426 32997
2000 43434 42927 42715 42898 42967 45115

Table 2 Execution time of algorithm IDALG.

NI T2 (milliseconds)
RRM= 0.1 0.2 0.3 0.4 0.5 WC

200 9 15 20 32 49 53
400 44 87 122 250 315 497
600 99 193 322 437 543 1139
800 193 365 570 772 967 2728
1000 289 595 899 1205 1658 5405
1200 421 862 1247 1748 2276 9503
1400 596 1105 1691 2328 2991 14990
1600 746 1523 2309 3111 3919 22518
1800 986 1935 2800 3857 4957 32018
2000 1198 2179 3560 4714 5729 43779

Fig. 8 Execution time comparison of inconsistency detection algorithms.

We calculate the value of log(T1/T2), which shows the
execution time comparison more clearly. The value of
log(T1/T2) can be categorized into the following three
cases:

(1) log(T1/T2) > 0, which means T1 > T2, i.e. IDALG
runs faster than MIDALG.

(2) log(T1/T2) = 0, which means T1 = T2, i.e. IDALG
runs as fast as MIDALG.

(3) log(T1/T2) < 0, which means T1 < T2, i.e. IDALG
runs slower than MIDALG.

From Figure 8, the following observations could be ob-
tained:

• IDALG runs faster than MIDALG, even in the worst

Table 3 Execution time of algorithm IRALG.

NI T (milliseconds)
RRM= 0.1 0.2 0.3 0.4 0.5 WC

200 1 1 2 3 3 17
400 1 2 4 6 8 45
600 2 4 6 8 10 78
800 3 5 8 11 14 97
1000 4 7 11 14 18 134
1200 4 9 13 18 23 162
1400 5 10 16 21 27 181
1600 6 12 18 25 31 203
1800 7 14 21 28 36 236
2000 8 16 24 32 40 277

case.
• The efficiency advantage of our approach will become

more remarkable as the number of interoperation roles
increases, which means our approach is more suitable
for the large enterprise application. Although such kind
of advantage will become less remarkable as the num-
ber of role mapping edges increases, as long as NI is
large enough, our approach still runs faster than MI-
DALG or at least as fast as MIDALG.

We execute IRALG based on the results generated by
our IDALG. Table 3 shows the execution time records of
IRALG with different NI and RRM. We can see that execu-
tion time of our resolution algorithm increases as NI and
RRM become larger. However, even in the worst case the
running time is still pretty efficient. Another observation is
that although from the time complexity analysis, it seems
that IRALG takes more execution time than IDALG, the ac-
tual execution time result is contrary to the expectation.

The reason is that although the time complexity of
IRALG is O(kmn log(n)), the actual impact factors of the ex-
ecution time of IRALG are k which is the number of incon-
sistencies, m′ which is the number of vertexes involved in
the insecure backtracking role mapping path, and n′ which
is the number of edges involved in the IBRMP. Because of
m′ << m and n′ << n, the actual execution time is much
less than expected.

The number of resolved inconsistencies is not pre-
sented here, since the result only reflects the mock test data,
and the result is pretty simple. The number of resolved in-
consistencies is the same as the one detected by IDALG,
i.e. all of the detected consistencies are resolved by our
IRALG. The detailed resolved information is presented in
Case Study section with real application data.

The number of resolved inconsistencies is not pre-
sented here, since the result only reflects the mock test data,
and the result is pretty simple. The number of resolved in-
consistencies is the same as the one detected by IDALG,
i.e. all of the detected consistencies are resolved by our
IRALG. The detailed resolved information is presented in
Case Study section with real application data.

6. Case Study

The purpose of case study is to show the effectiveness of

HUANG et al.: INCONSISTENCY RESOLUTION METHOD FOR RBAC BASED INTEROPERATION
1077

Table 4 Access control information of four systems.

Systems NR NRH RRH NI NRM RRM
FXS 1988 457 0.23 281 31 0.11
TATS 3970 1349 0.34 403 36 0.09
GMS 3012 934 0.31 323 39 0.12
RPS 1131 215 0.19 155 11 0.07
Summary 10101 2955 0.27 1162 117 0.097

our approach in practical applications. Our approach has
been applied in a global bank State Street Corporation. In-
consistency management for distributed interoperation is a
part of the bank’s enterprise application integration (EAI)
project, whose purpose is to integrate the legacy enterprise
distributed systems as a seamless combination. We present
four major systems involved in the EAI project:

• FXS: a foreign exchange order management system.
• TATS: a trading audit trial system.
• GMS: a global software management system.
• RPS: a resource planning system.

The access control information of the above four sys-
tems is listed in Table 4, from which we can see that the role
hierarchy ratio is less than 0.4 and the average value is 0.27.
The role mapping ratio is less than 0.2 and the average value
is 0.097. Both RRH and RRM are less than the values we set
in simulated test.

The practical application data of our approach are listed
in Table 5. Due to the space limitation, we only list 10
records of the detection and resolution. And we define the
following acronyms:

• DIN means detected inconsistency number.
• RIN means resolved inconsistency number.
• DRMN is the number of deleted role mapping.

From Table 5 (the unit of Time is millisecond), we
could see that, our detection method still performs much
more efficient than MIDALG. which takes more than 7 sec-
onds to do a cycle of checking, while IDALG only needs less
than 0.5 second. The security checking is not a one time job,
every time the security policy is changed, the inconsistency
checking will be performed. The more efficient the detection
algorithm is, the more frequently the checking can be per-
formed. Besides detection, the resolution algorithm could
resolve all the practical inconsistencies efficiently with a low
cost.

7. Conclusions

We propose an inconsistency resolution method based on a
new concept, insecure backtracking role mapping. Via an-
alyzing the role graph, we prove that the root cause of se-
curity inconsistency in distributed interoperation is the exis-
tence of insecure backtracking role mapping. To detect the
inconsistency, a novel and efficient algorithm is presented,
which will not only report the existence of inconsistency,
but also generate the inconsistency information for future
resolution. We reduce the inconsistency resolution problem

Table 5 Results of applying our approach to practical systems.

MIDALG IDALG IRALG
NO Time* DIN Time* DIN Time* RIN DRMN
1 7684 3 432 3 24 3 5
2 7201 1 381 1 23 1 2
3 7535 2 452 2 22 2 2
4 7891 2 437 2 23 2 5
5 7603 1 398 1 23 1 2
6 7493 3 454 3 28 3 4
7 7725 1 432 1 19 1 1
8 7697 3 455 3 29 3 5
9 7402 1 389 1 21 1 2
10 7239 2 392 2 22 2 5

*Time: unit is milliseconds

to the known Minimum-Cut problem, and propose an in-
consistency resolution algorithm which could guarantee the
security of distributed interoperation.

The research on the security consistency concerning
the access control constraints in the interoperation will be
our future work.

Acknowledgements

This research is sponsored by StateStreet Corporation and
conducted at StateStreet Zhejiang University Technology
Center. The content of this paper is the opinions and con-
clusions of the authors only and do not necessarily represent
the position of StateStreet Corporation and its subsidiaries,
affiliates, officers, directors or employees.

References

[1] P. Centonze, G. Naumovich, and S.J. Fink, “Role-based access con-
trol consistency validation,” Proc. International Symposium on Soft-
ware Testing and Analysis, pp.121–132, 2006.

[2] D.F. Ferraiolo, R. Chandramouli, G. Ahn, and S.I. Gavrila, “The role
control center: Features and case studies,” Proc. 8th ACM Sympo-
sium on Access Control Models and Technologies, pp.12–20, 2003.

[3] R. Sandhu, “Role based access control,” Adv. in Computer Science,
vol.48, no.1, pp.38–47, 1998.

[4] N. Li and M.V. Tripunitara, “Security analysis in role-based access
control,” ACM Trans. Inf. Syst. Secur., vol.9, no.4, pp.391–420,
2006.

[5] D.F. Ferraiolo, R. Sandhu, and S. Gavrila, “Proposed NIST standard
for role-based access control,” ACM Trans. Inf. Syst. Secur., vol.4,
no.1, pp.224–274, 2001.

[6] W. Essmayr, S. Probst, and E. Weippl, “Role-based access controls:
Status, dissemination, and prospects for generic security mecha-
nisms,” Electronic Commerce Research, vol.4, no.1, pp.127–156,
2004.

[7] M. Shehab, E. Bertino, and A. Ghafoor, “SERAT: SEcure role mAp-
ping technique for decentralized secure interoperability,” 10th ACM
Symposium on Access Control Models and Technologies, pp.159–
167, 2005.

[8] A. Schaad, J. Moffett, and J. Jacob, “The role-based access control
system of a European bank: A case study and discussion,” Proc.
6th ACM Symposium on Access Control Models and Technologies,
pp.3–9, 2001.

[9] S. Basit, J. James, and B. Elisa, “Secure interoperation in a multido-
main environment employing RBAC policies,” IEEE Trans. Knowl.
Data Eng., vol.17, no.11, pp.1557–1577, 2005.

[10] E.C. Lupu and M. Sloman, “Conflicts in policy-based distributed

1078
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

systems management,” IEEE Trans. Softw. Eng., vol.25, no.6,
pp.852–869, 1999.

[11] L. Chen and J. Crampton, “Inter-domain role mapping and least priv-
ilege,” Proc. 12th ACM Symposium on Access Control Models and
Technologies, pp.157–162, 2007.

[12] L. Gong and X. Qian, “Computational issues in secure interopera-
tion,” IEEE Trans. Softw. Eng., vol.22, no.1, pp.43–52, 1996.

[13] D.D. Sleator and R.E. Tarjan, “A data structure for dynamic trees,”
Proc. 13th Annual ACM Symposium on Theory of Computing,
STOC ’81, pp.114–122, ACM, New York, NY, 1981.

[14] H.J. Huang and H. Kirchner, “Secure interoperation in heteroge-
neous systems based on Colored Petri Nets,” (to appear), available
from http://hal.inria.fr/docs/00/39/69/52/PDF/conflicts.pdf, 2009.

[15] X. Wang, J. Sun, X. Yang, C. Huang, and D. Wu, “Security viola-
tion detection for rbac based interoperation in distributed environ-
ment,” IEICE Trans. Inf. & Syst., vol.E91-D, no.5, pp.1447–1456,
May 2008.

[16] C. Huang, J. Sun, X. Wang, and Y. Si, “Security policy management
for systems employing role based access control model,” Informa-
tion Technology J., vol.8, no.5, pp.726–734, 2009.

[17] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Intoduction
to Algorithms, Second ed., MIT Press, 2005.

Appendix A: Proof of Theorem 1

The relationship between the two roles Ri and Rj in the same
single domain role system can be categorized into three sit-
uations:

(1) Ri is a senior role to Rj

(2) Rj is a senior role to Ri

(3) There is no hierarchy relation between Ri and Rj, which
means Ri and Rj are independent roles.

After adding role mappings for the multi-domain interoper-
ations, if there are security inconsistencies, for situation 1)
and 2), since the autonomy principle can be guaranteed in
the process of constructing the role mapping, thus the hi-
erarchy relation will still exist after the interoperation, the
only insecure situation is that junior role obtains the per-
mission of its senior role, i.e. founded inconsistency. For
situation 3), the only insecure situation is that the hierarchy
relation between Ri and Rj comes into being, which doesn’t
exist before interoperation. This kind fits into the unfounded
security inconsistency. To sum up, Theorem 1 is proved.�

Appendix B: Proof of Theorem 2

(1) Sufficiency: according to Definition 8, the existence of
insecure backtracking role mapping path leads to the
security inconsistency consequently.

(2) Necessity: according to Theorem 1, in the global multi-
domain environment, there are only two kinds of secu-
rity inconsistencies, i.e. unfounded and founded. For
both of the inconsistencies, there must be a single role
system Gi, in which there are two different role nodes
u and v. In Gi, u and v are not connected, i.e. no path
exists between u and v. On the other side, in global
role system G, u and v are connected, i.e. path (u, v)
exists, and path (u, v) must go through at least one in-
dividual role system G j, otherwise, u and v should be

connected in Gi. From Gi to G j, role mapping edge is
the only way, thus path (u, v) contains at least one role
mapping edge. Thus path (u, v) with the start and end
nodes in the some domain contains the role mapping
edge. According to Definition 8, (u, v) is the insecure
backtracking mapping path. Given the above, theorem
is proved.�

Appendix C: Proof of Theorem 3

Assuming the sets of insecure backtracking role mapping
path in minimal role graph and global role system graph
are minIBRMP and gloIBRMP respectively. Then Theo-
rem 3 can be converted to prove that minIBRMP equals to
gloIBRMP.

(1) Based on the definition of minIBRMP, we have
minIBRMP ⊆ gloIBRMP, since minimal role graph is
constructed from global role graph without adding any
extra role, role hierarchy or role mapping.

(2) Hypothesizing that gloIBRMP � minIBRMP, and as-
suming the insecure backtracking role mapping (u, v),
is the one (u, v) ∈ gloIBRMP and (u, v) � minIBRMP.
According to the definition of IBRMP, there must be
a role mapping edge (u′, v′) on the path (u, v). Ac-
cording to the construction of minimal role graph G′,
u′ ∈ V ′ and v′ ∈ V ′. It is connected from u to u′ (since
it’s on the same path), and there is only role hierarchy
or role mapping to connect u and u′, if the connecting
edge is role mapping, then u ∈ V ′ and (u, u′) ∈ E′;
if the connecting edge is role hierarchy edge, then
(u, u′) ∈ H+i ⇒ (u, u′) ∈ E′. The similar proof could be
given to (v′, v). Thus all the vertexes on path (u, v) are
included in V ′ and all the edges on path are included
in E′. According to Definition 9, (u, v) ∈ minIBRMP,
which violates the assumption. The hypothesis does
not hold, gloIBRMP ⊆ minIBRMP.

Thus minIBRMP ⊆ gloIBRMP and gloIBRMP ⊆
minIBRMP infer minIBRMP = gloIBRMP. Theorem is
proved.�

Chao Huang received the B.E. degree in the
department of Computer Science and Engineer-
ing from Zhejiang University (China) in 2005.
He is a research assistant and Ph.D. candidate in
Zhejiang University now. His primary research
interests include distributed software architec-
ture, and enterprise security architecture.

HUANG et al.: INCONSISTENCY RESOLUTION METHOD FOR RBAC BASED INTEROPERATION
1079

Jianling Sun received the B.E. and D.E. de-
grees of Computer Application from Zhejiang
University (China) in 1990 and 1993 respec-
tively. Since October 1993, he has been a faculty
member of the College of Computer Science and
Engineering at Zhejiang University. His cur-
rent research interests include database systems,
software engineering,and software architecture.

Xinyu Wang received the B.E. degree in
the department of Computer Science and En-
gineering from Zhejiang University (China) in
2002. From 2002 to 2007, he was a research
assistant in the Zhejiang University, where he
got the D.E. degree from the college of Com-
puter Science. Since the June 2007, he has been
the lecturer in the same university. His primary
research interests include Software engineering,
distributed software architecture and distributed
computing. He is a member of IEEE CS.

Di Wu received the B.E. degree in the de-
partment of Computer Science and Engineering
from Zhejiang University (China) in 2001. He
received his Ph.D. degree of computer science at
Department of Computer Science and Engineer-
ing, Zhejiang University in 2006. Since 2007,
he has been a software engineer in the State
Street Technology Zhejiang. His primary re-
search interests include distributed software ar-
chitecture, distributed computing and enterprise
security architecture.

