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PAPER

Identifying High-Rate Flows Based on Sequential Sampling

Yu ZHANG†,††a), Binxing FANG††,†b), Nonmembers, and Hao LUO††c), Member

SUMMARY We consider the problem of fast identification of high-rate
flows in backbone links with possibly millions of flows. Accurate identifi-
cation of high-rate flows is important for active queue management, traffic
measurement and network security such as detection of distributed denial of
service attacks. It is difficult to directly identify high-rate flows in backbone
links because tracking the possible millions of flows needs correspondingly
large high speed memories. To reduce the measurement overhead, the de-
terministic 1-out-of-k sampling technique is adopted which is also imple-
mented in Cisco routers (NetFlow). Ideally, a high-rate flow identification
method should have short identification time, low memory cost and pro-
cessing cost. Most importantly, it should be able to specify the identifica-
tion accuracy. We develop two such methods. The first method is based on
fixed sample size test (FSST) which is able to identify high-rate flows with
user-specified identification accuracy. However, since FSST has to record
every sampled flow during the measurement period, it is not memory ef-
ficient. Therefore the second novel method based on truncated sequential
probability ratio test (TSPRT) is proposed. Through sequential sampling,
TSPRT is able to remove the low-rate flows and identify the high-rate flows
at the early stage which can reduce the memory cost and identification time
respectively. According to the way to determine the parameters in TSPRT,
two versions of TSPRT are proposed: TSPRT-M which is suitable when
low memory cost is preferred and TSPRT-T which is suitable when short
identification time is preferred. The experimental results show that TSPRT
requires less memory and identification time in identifying high-rate flows
while satisfying the accuracy requirement as compared to previously pro-
posed methods.
key words: traffic monitoring, high-rate flow, identification, sequential
sampling

1. Introduction

In this paper, we address the problem of fast identification
of high-rate flows in very high speed backbone links. Identi-
fying high-rate flows is an important aspect of active queue
management, traffic measurement and network security. As
all we know, current Internet has no mechanism for con-
trolling the throughout of each flow, which is performed by
end hosts using TCP. As a result, the packet-sending rates
of UDP flows or malicious TCP flows will not be reduced
even when packet dropping is detected. In order to provide
fairness in networks, active queue management is proposed.
The main idea is to identify high-rate flows and selectively
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drop their packets during times of congestion. The traffic
study has shown that even though there are a large number
of flows in the network, a significant fraction of the traffic is
carried by a small number of flows. The flows with rates in
the highest 10% can constitute as much as 30%–90% of all
traffic transmitted [1]. Therefore, only dropping the packets
of a small number of high-rate flows will effectively improve
the network traffic congestion. Furthermore, by defining a
flow by the destination IP address and the destination port
number, a sudden increase in a flow can be a sign of dis-
tributed denial of service (DDoS) attacks.

A naive method to identify high-rate flows is to keep
per-flow counter for each arriving flow and identify flows of
which the counter is bigger than a pre-specified threshold.
However, as the link transmission capacity increases, it is
unable to process each packet in the large DRAM memories
at the speed of current backbone links. Although the small
SRAM memories are fast enough for per-packet processing,
it is unable to store all the per-flow counters because of the
large number of concurrent flows in backbone links (may
be one million or more). In this paper, we adopt the de-
terministic 1-out-of-k packet sampling technique which is
widely used in today’s operational networks, for instance, it
has been implemented in Cisco routers (NetFlow [2]). Af-
ter sampling, both the packet arriving rates and number of
flows are reduced. Consequently, it becomes possible to up-
date the per-flow counters in the large DRAM memories at
the speed of backbone links or to store all the per-flow coun-
ters in the small SRAM memories. However, since the sam-
pled packets are only a part of the whole packets transmit-
ted, it is critically important to identify high-rate flows cor-
rectly. There are several requirements for a good high-rate
flow identification algorithm. First of all, the identification
accuracy should be satisfied. There should be a low false-
positive rate (FPR) and a low false-negative rate (FNR), i.e.,
a low probability of non-high-rate flows being incorrectly
identified and a low probability of high-rate flows being in-
correctly not identified, respectively. Second, the operations
performed should be very simple, otherwise it will not be
suitable for real-time processing. Third, it should be mem-
ory efficient as keeping the memory requirement low leads
to ease of the implementation. Fourth, it should identify
high-rate flows quickly. This is because that the traffic char-
acteristics will change over time, therefore the identification
should be accomplished before the traffic varies. Moreover,
fast identification is also very important for early detection
of DDoS attacks.
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The rest of this paper is organized as follows. In Sect. 2,
we describe relative work before formally defining the high-
rate flow identification problem in Sect. 3. We first propose
a high-rate flow identification method based on fixed sample
size test (FSST) in Sect. 4 and then propose the second novel
high-rate flow identification method based on truncated se-
quential probability ratio test (TSPRT) in Sect. 5. A theoreti-
cal analysis of the identification accuracies for both methods
is provided in Sect. 6. We present the results of our experi-
mental evaluation in Sect. 7 and the conclusion in Sect. 8.

2. Related Work

In identifying high-rate flows, the identification accuracy is
evaluated and determined by the identification curve which
gives the identification probability of flows with arbitrary
flow rates, e.g., the identification probability of f ∗ (the flow-
rate threshold defining high-rate flows). Therefore, it is
practically important that we can specify the identification
curve according to the accuracy requirement.

Stabilized RED (SRED) [3] presented a method for
identifying high-rate flows in a bottleneck link. The basic
idea is to compare the arriving packet with a randomly se-
lected flow from a flow table, SRED increases the packet
counter value of the flow if the comparison is successful.
High-rate flows are more likely to get higher counter val-
ues since they send more packets. Stochastic Fair Blue
(SFB) [4] uses L independent hash functions to increase the
counter values of the corresponding bins at L levels upon
each packet arrival. SFB identifies a flow if all the coun-
ters associated with this flow go above a preset threshold. I.
Smitha and A. Reddy [5] suggest a method to identify high-
rate flows based on LRU cache replacement policy. Random
Early Detection with Preferential Dropping (RED-PD) [6]
counts the number of packets dropped by RED and identi-
fies flows if the number exceeds a preset threshold during
a specified time interval. However, RED-PD can only be
used with RED equipped routers in heavy traffic loads. At
last, unfortunately there is no way to specify or evaluate the
identification accuracy in the above four methods.

According to [1], since there is a strong positive cor-
relation between the flow size and flow rate, the high-rate
flows might be identified by using a method that identifies
the elephant flows [7]–[12]. However, because the relation-
ship between these two properties can not be formulated,
there is no way to specify or evaluate the identification ac-
curacy either.

The short timeout method (ST) [13], [14] is the state-
of-the-art mechanism for identifying high-rate flows by us-
ing sampled packets, which simply identifies flows from
which a fixed number of packets are sampled during the
measurement period. Although ST derives the identification
probability for flows with arbitrary rates, it can not specify
the identification curve according to the accuracy require-
ment. As a result, we first propose FSST which changes the
parameter setting process of ST so that it can identify high-
rate flows with user-specified identification accuracy. How-

ever, FSST is not memory efficient as it has to record every
sampled flow in the flow table during the measurement pe-
riod. Therefore, we propose TSPRT which can reduce the
memory cost and shorten the identification time a lot while
satisfying the accuracy requirement as compared to ST.

3. Problem Definition and Dataset

The definition of flows can be very flexible, here we use
the definition based on the 5-tuples in the IP header, i.e.,
all packets that have the same source IP address, destina-
tion IP address, source port number, destination port number
and protocol identifier are considered to be in the same flow.
Let’s assume that each arriving packet belongs to one of M
flows. During a measurement period Δ of duration δ (sec-
onds), the arriving rate of flow i ∈ M is defined as: fi =

ui

δ
(packets/s), where ui is the number of unsampled packets
arriving within Δ from flow i. The flows with f ≥ f ∗ are de-
fined to be high-rate flows, where f ∗ is an arbitrary thresh-
old. And the objective is to identify high-rate flows of which
the f ≥ f ∗ within Δ.

However, N. Kamiyama and T. Mori [13], [14] suggest
setting the traffic ratio threshold p∗ directly instead of f ∗.
Let Λ denote the packet arrival rate in the target link (pack-
ets/s) and let’s assume both Λ and fi are constant within
Δ [13]–[16]. Let pi =

fi
Λ

denote the traffic ratio of flow
i, therefore pi is stationary within Δ [13]–[16], accordingly
p∗ = f ∗

Λ
. Since it is easy to measure Λ, instead of directly

identifying high-rate flows of which the f ≥ f ∗, we solve the
equivalent problem of identifying high-rate flows of which
the p ≥ p∗. Consequently the objective becomes to identify
high-rate flows of which the p ≥ p∗ within Δ.

Since the flow rate might vary during a long time, the
measurement period Δ should be very short. And if we need
to identify high-rate flows during a long time, we can divide
the time into several measurement periods, and then identify
high-rate flows in each continuous measurement period.

We describe below how to model the high-rate flow
identification problem. Over the whole measurement period
Δ, let N = Λ×δ denote the total number of unsampled pack-
ets sent by all flows. First let’s assume that all packets are
sampled with the same sampling interval K, thus the total
number of sampled packets n = N

K . Then according to [17],
the probability of an arrival packet belonging to a given flow
is independent of all other packets. This is because that in a
high speed backbone link, the number of simultaneous flows
is very large and the packets of different flows are highly in-
terleaved, hence the consecutive packets of a given flow are
separated by a random number of packets of other flows.
Therefore the number of sampled packets belonging to flow
i is an approximate hypergeometric random variable, the
probability of taking value ci is

P{X = ci} =
(

ui
ci

)(
N−ui
n−ci

)
(

N
n

) (1)

where N =
∑M

i=1 ui, n =
∑M

i=1 ci.
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When n is small relative to N (e.g., K ≥ 10), we can
approximate the hypergeometric probabilities with binomial
probabilities as below:

P{X = ci} =
(
n
ci

)
pci

i (1 − pi)
n−ci (2)

where pi =
ui

N is the ratio of the number of packets of
flow i over the total number of packets during Δ. Because
ui = fi × δ, N = Λ × δ, thus pi =

ui

N =
fi×δ
Λ×δ =

fi
Λ

is the traf-
fic ratio of flow i. Therefore, the number of sampled packets
belonging to flow i is an approximate binomial random vari-
able and we can consider traffic ratio pi as the probability of
an arrival sampled packet belonging to flow i in a Bernoulli
trial. Hence, we can call pi the success probability of flow
i as well. As a result, we can use the number of sampled
packets ci to infer whether pi is bigger than p∗ or not. At
last, the problem becomes to test the hypothesis below:

H0 : p < p∗, against the alternative

H1 : p ≥ p∗

The four metrics along which we measure the perfor-
mance of the method are:

• Identification Accuracy: We use FPR and FNR to mea-
sure the identification accuracy. FPR is defined as the
proportion of non-high-rate flows that are incorrectly
misidentified. FNR is defined as the proportion of high-
rate flows that are incorrectly not identified.
• Identification Time: Identification time is the time

needed for identifying the high-rate flows with satisfied
accuracy. It is different from the measurement time.
Since the high-rate flows can be identified before the
end of the measurement period, the identification time
is no more than the measurement time. Since the traf-
fic characteristics will change over time, we would like
the identification time scale to be smaller than the time
scale in which the traffic varies.
• Memory Cost: We use the number of flows needed to

be maintained in memory as surrogate for the amount
of memory required. In practice, low memory require-
ment will lead to ease of the implementation.
• Sample Size: Sample size is the number of total sam-

pled packets needed to achieve the desired identifica-
tion accuracy. Given the same measurement time, the
less the sample size is, the bigger the sampling inter-
val K would be, and thus the more the processing cost
would be reduced.

For illustration reason, we use the Abilene-III Internet
trace data which is measured at an OC192c backbone link
by the PMA project of NLANR [18]. It is the first pub-
licly available 10 Gigabit Internet backbone trace. In this
trace, we consider the first 2.0×107 packets from Indianapo-
lis (IPLS) to Kansas City (KSCY) as in [14], which corre-
sponds to about 147 seconds of the observed traffic. The to-
tal number of flows in this truncated trace was 706,571, the
average link utilization was 0.207 and the maximum flow

Table 1 Meaning of selected symbols.

Symbol Meaning

Δ measurement period
δ measurement time (seconds)
ui number of packets of flow i
fi packet arrival rate of flow i
Λ total packet arrival rate
p traffic ratio
pi traffic ratio of flow i
f ∗ packet arrival rate threshold
p∗ traffic ratio threshold
N total number of packets
K sampling interval
n total number of sampled packets
ci number of sampled packets of flow i
p0 limiting high-rate level
p1 acceptable high-rate level
α Prob. of misidentifying a flow with p0

β Prob. of not identifying a flow with p1

I(p) Prob. of identifying a flow with p
n∗ sample size
c∗ acceptance number
ε identification time
m memory cost
s slope

h1 intercept of rejection line
h2 intercept of acceptance line

m1, m2 mixture degree in TSPRT

rate was 1.75× 104 packets/s [14]. For convenience, Table 1
summarizes the notations introduced in this paper.

4. Single Sampling Method

Sampling inspection [19] is an important aspect of statistical
quality control. It involves testing a batch of data to deter-
mine if the proportion of units having a particular attribute
exceeds a given percentage. In identifying high-rate flows,
we can use sampling inspection to determine if the traffic
ratio of a given flow exceeds a pre-defined threshold. Single
sampling plan [19] is the most common and simple sampling
plan of which the sample size is fixed at the beginning of the
experiment, therefore it is also named fixed sample size test.

4.1 Fixed Sample Size Test

A fixed sample size test (FSST) [19] for attributes denoted
as (n, c) consists of a sample of size n and an acceptance
number c. The procedure works as follows: first randomly
select n items from the lot, and then check the number of
defectives. If it is less than c, then the lot is accepted, other-
wise the lot is rejected. In a FSST, there are 4 key parameters
involved: p0 (acceptable quality level), p1 (limiting quality
level), α (Type I error probability), β (Type II error prob-
ability). The acceptable quality level p0 is the percent de-
fective that is the baseline requirement for the quality of the
product, which means the product is considered to be high
quality if its unqualified rate p ≤ p0. The limiting quality
level p1 (p1 > p0) is a designated high defect level that will
be unacceptable to a consumer, which means the product is
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considered to be low quality if its defective rate p ≥ p1. The
Type I error probability α is the probability of rejecting a lot
that has a defect level p = p0. The Type II error probability
β is the probability of accepting a lot that has a defect level
p = p1.

The operating characteristic (OC) [19] curve is used to
evaluate the performance of a given FSST. The OC curve
plots the probability of accepting the lot versus the lot frac-
tion defective and displays the discriminatory power of the
sampling plan. For a given FSST (n, c), the probability of
finding c or fewer defectives in a sample of size n can be
approximated by the binomial distribution. Let X denote
the binomial random variable, L(p) denote the probability
of accepting a lot having the defect level p, then

L(p) = P{X ≤ c} =
c∑

X=0

(
n
X

)
pX(1 − p)n−X (3)

From the above equation we can see that for a given FSST
(n, c), the probability of acceptance depends upon p which
is the actual and unknown proportion of defectives in the lot.
Thus, the OC curve can be drawn that gives the probability
of accepting a lot as a function of the defective rate p.

Suppose we want to construct a FSST (n, c) such that
the Type I error probability is α for lots with fraction defec-
tive p0, and the Type II error probability is β for lots with
fraction defective p1. The sample size n and acceptance
number c are the solution to{

L(p0) = 1 − α
L(p1) = β

(4)

4.2 Identifying High-Rate Flows Based on FSST

In order to identify high-rate flows based on FSST, we need
to introduce two definitions about the traffic ratio p.

Definition 1 (Limiting High-rate Level p0): It is a desig-
nated low traffic ratio and it would be unacceptable if a flow
with this traffic ratio is identified as a high-rate flow, which
means the flow is considered to be low-rate if its traffic ratio
p ≤ p0.

Definition 2 (Acceptable High-rate Level p1 > p0): It is
the traffic ratio that is the baseline requirement for the high-
rate flows, which means the flow is considered to be high-
rate if its traffic ratio p ≥ p1 and non-high-rate if its traffic
ratio p < p1. Hence, p1 = p∗ here.

As a result, the problem of identifying high-rate flows
becomes to test the hypothesis below:

H0 : p ≤ p0, against the alternative

H1 : p ≥ p1

Accordingly, the Type I error probability α is the probability
of misidentifying a flow with traffic ratio p = p0. The Type
II error probability β is the probability of not identifying a
flow with traffic ratio p = p1.

For a given FSST (n, c + 1), let I(p) denote the prob-
ability of identifying a flow with traffic ratio p. Since the
number of sampled packets belonging to a flow is an ap-
proximate binomial variable (Sect. 3), I(p) can be derived as
below:

I(p) = P{X > c} =
n∑

X=c+1

(
n
X

)
pX(1 − p)n−X

= 1 − L(p) (5)

The identification curve of this FSST (n, c+1) is determined
by the above equation. Therefore, if we want to construct a
FSST (n, c+1) such that the Type I error probability is α for
flows with traffic ratio p0, and the Type II error probability
is β for flows with traffic ratio p1, and then the sample size
n and acceptance number c are the solution to

{
I(p0) = 1 − L(p0) = α
I(p1) = 1 − L(p1) = 1 − β (6)

It is equivalent to

{
L(p0) = 1 − α
L(p1) = β

(7)

It is difficult to get the accurate values of n and c from
the above equations, however we can use the central limit
theorem [20] to estimate these two values. Let X ∼ B(n, p)
(that is X follows the binomial distribution with parameters
n and p), then the expected value of X is E(X) = np and
the variance is Var(X) = np(1 − p). Since B(n, p) is the
sum of n independent, identically distributed Bernoulli ran-
dom variables with parameter p, Z = (X − E(X))/Var(X) =
(X − np)/

√
np(1 − p) is, for large n, approximately a stan-

dard normal random variable according to the theorem of de
Moivre-Laplace [20] which is a special case of the central
limit theorem. As a result,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(p0)=P{X ≤ c}=P

{
X − np0√

np0q0
≤ c − np0√

np0q0

}
=1−α

L(p1) = P{X ≤ c} = P

{
X − np1√

np1q1
≤ c − np1√

np1q1

}
= β

where q0 = 1 − p0, q1 = 1 − p1. Obviously, the sample size
n and acceptance number c are the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c − np0√
np0q0

= −Zα

c − np1√
np1q1

= Zβ

(8)

where Zα is the α percentile for the unit normal distribution,
i.e., P{Z ≤ Zα} = α, P{Z ≤ Zβ} = β. By solving the above
equations, we get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∗ =
(

Zα
√

p0q0 + Zβ
√

p1q1

p1 − p0

)2

c∗ =
p0 p1(Z2

αq0+Z2
βq1)+ZαZβ

√
p0 p1q0q1(p0+p1)

(p1 − p0)2

(9)

4.3 Complete Description of FSST

Assume that we are currently in the measurement period Δd

of duration δ seconds, where d = 1, 2, . . ., then the sampling
interval is

K =
N
n∗

(10)

where N = Nd = Λ × δ is the total number of packets in
Δd. However, Nd is unknown when the identification pro-
cess starts. Generally, we can use the value of N in the x-th
most recent measurement period as in [14], i.e., N = Nd−x.
In practice, we use the value of N in the previous measure-
ment period for convenience, i.e., N = Nd−1.

Given a FSST (n∗, c∗ + 1), let e denote the number of
sampled packets needed to identify a high-rate flow with
traffic ratio p. It is a negative binomial random variable:

P{e = t|p} =
(
t − 1

c∗

)
pc∗+1(1 − p)t−c∗−1 (11)

where t = c∗ + 1, c∗ + 2, . . . , n∗. Therefore, the expected
number of sampled packets needed to identify a high-rate
flow with traffic ratio p is

E(e|p) ≈ c∗ + 1
p

(12)

Consequently, the expected identification time needed to
identify a high-rate flow with traffic ratio p is

ε(p) = E(e|p) × K
Λ
≈ c∗ + 1

p
× K
Λ
=

c∗ + 1
pn∗

× δ (13)

where K
Λ
= δ

n∗ is derived from Eq. (10). From Eq. (13) we
can see that the expected identification time will be less than
or equal to c∗+1

p∗n∗ × δ as a result of p ≥ p∗.
The memory cost of a given FSST (n∗, c∗ + 1) is the

memory amount required for the flow table which records
every sampled flow during the measurement period. Fig-
ure 1 plots the relationship between the average flow count
and sample size n∗ with standard deviation for three different
values of K for the truncated Abilene-III trace. As shown in
Fig. 1, the average flow count increases almost linearly with
n∗ and the bigger the sampling interval K is, the faster the
average flow count increases. Therefore, the approximate
memory cost m is

m ≈ rn∗ (14)

where 0 < r ≤ 1 is a constant coefficient determined by K.

Fig. 1 Memory cost versus sample size n∗.

Fig. 2 Identifying high-rate flows based on FSST.

Finally, the overall FSST based high-rate flow identifi-
cation algorithm is presented in Fig. 2. First of all, we need
to compute the sample size n∗ and acceptable number c∗ ac-
cording to the input parameters (p0, p1, α, β). At the be-
ginning of each measurement period Δd, firstly we need to
initialize the flow table which stores the flow id i as well as
its corresponding number of sampled packets ci. And then
the sampling interval K is computed using the total number
of packets in the previous measurement period Nd−1. When
the n-th (n ≤ n∗) packet is sampled, we first check whether
the flow to which the packet belongs is already in the flow
table. If the flow is not in the flow table, then a new entry
with ci = 1 is created. Otherwise, we increment the ap-
propriate counter and identify the flow as a high-rate flow
if ci ≥ c∗ + 1. As illustrated in Fig. 2, we can see that the
identifying process in each Δd will not stop until the total
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number of sampled packets reaches n∗.
From the above analysis we can see that although FSST

can adjust and bound the identification accuracy through the
input parameters α and β, it is not memory efficient due to
recording every sampled flow in the table during the mea-
surement period. Is it possible to recognize and remove the
low-rate flows at the early stage so that we do not have to
keep counters for all the flows during the measurement pe-
riod? We propose TSPRT below.

5. Sequential Sampling Method

Sequential sampling plan [19] is a special sampling plan of
which the sample size is not fixed at the beginning of the
experiment. In classical sampling plans, the sample is col-
lected without analysis and consideration. However, in a se-
quential sampling plan the data is evaluated as it is sampled,
and the decision of whether or not needing further sampling
depends on the samples observed previously. As a result, the
conclusion may be drawn earlier than other classical sam-
pling plans (e.g., FSST). Consequently, the average sample
size can be reduced. Theoretically, the sequential sampling
may continue infinitely; however, in practice it is often trun-
cated after a certain number of samples.

5.1 Sequential Probability Ratio Test

Sequential probability ratio test (SPRT) methodology pro-
posed by Wald [21] is one kind of the sequential sampling
plan, which can satisfy the identification accuracy while re-
quiring the minimum average sample size. Let X denote the
number of sampled packets of the inspected flow which is an
approximate binomial random variable (See Sect. 3). After
n (n ≥ 1) total packets are sampled, let dn denote the actual
number of sampled packets of the inspected flow, then the
probability ratio Ln is

Ln =
P{X = dn|H1}
P{X = dn|H0} =

pdn

1 (1 − p1)n−dn

pdn

0 (1 − p0)n−dn

(15)

See definitions of H0, H1, p0, p1 in Sect. 4.2. Then Ln is
compared with two positive constants A and B (0 < A <
1 < B). If Ln ≥ B, this means that there is strong enough
statistical evidence to accept hypothesis H1 : p ≥ p1, in
other words, the inspected flow is considered to be a high-
rate flow. If Ln ≤ A, this means that there is strong enough
statistical evidence to accept the hypothesis H0 : p ≤ p0,
that is to say, the inspected flow is considered to be a low-
rate flow. Otherwise, continue with more samples. The con-
stants A and B are approximated by the following formulas:

A ≈ β

1 − α (16)

and

B ≈ 1 − β
α

(17)

Fig. 3 Graphical illustration of SPRT.

See definitions of α, β in Sect. 4.2. Equivalently, the execu-
tion process of SPRT can be described as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
reject H1 (accept H0) if dn ≤ h1 + n · s
accept H1 (reject H0) if dn ≥ h2 + n · s
continue sampling Otherwise

(18)

where h1 =
ln A

k , h2 =
ln B

k , s =
ln

1−p0
1−p1
k , k = ln p1(1−p0)

p0(1−p1) .
The operation of SPRT can be depicted as in Fig. 3,

where the number of arrivals (total number of sampled pack-
ets so far), n, is the abscissa, and the number of sampled
packets of the inspected flow, dn, is the ordinate. Two lines
are defined as below:

l1 : dn = h1 + n · s (rejection line) (19)

l2 : dn = h2 + n · s (acceptance line) (20)

It is obvious that dn is a linear function of n since h1, h2 and
s are already determined by the input parameters (p0, p1, α,
β). Among them, s is the slope of both lines, h1 (h1 < 0)
is the intercept of the rejection line and h2 (h2 > 0) is the
intercept of the acceptance line. According to the execu-
tion process of SPRT (Eq. (18)), the accepting region, re-
jecting region and continue sampling region are bounded by
line l1 and line l2 in turn. When sampling the n-th packet,
if the point (n, dn) stays within the accepting region, then
the inspected flow will be identified as a high-rate flow; if
the point (n, dn) stays within the rejecting region, then the
inspected flow will be identified as a low-rate flow; if the
point (n, dn) stays within the continue sampling region, then
no conclusion will be drawn and the (n + 1)-th sample will
be needed.

5.2 Truncated Sequential Probability Ratio Test

Theoretically, SPRT can continue infinitely; however, in
practice SPRT is often truncated after a certain number of
samples. Let n∗ denote the predetermined maximum sam-
ple size. As a result, the execution process of truncated se-
quential probability ratio test (TSPRT) can be described as
below:

if n < n∗
⎧⎪⎪⎪⎨⎪⎪⎪⎩

reject H1 if dn ≤ h∗1 + n · s
accept H1 if dn ≥ h∗2 + n · s

continue sampling Otherwise
(21)
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Fig. 4 Graphical illustration of TSPRT.

if n = n∗
{

reject H1 if dn < c∗ + 1
accept H1 if dn ≥ c∗ + 1

(22)

where c∗+1 is the fixed threshold. Therefore, the test will be
truncated at n = n∗ if it has not been terminated previously.

Figure 4 shows a TSPRT diagram. When sampling the
n-th packet, the inspected flow will be identified as a high-
rate flow if the point (n, dn) crosses the acceptance line and
regarded as a low-rate flow if the point (n, dn) crosses the
rejection line, otherwise another sample will be needed. A
careful reader might notice that the execution process de-
picted in Fig. 4 is slightly different from the execution pro-
cess described in Eq. (21) and Eq. (22). The acceptance line
becomes a line parallel to the x-axis after reaching the point
(

c∗+1−h∗2
s , c∗ + 1). This is because that each flow i remaining

in the flow table with counter ci ≥ c∗ + 1 will be identified
as a high-rate flow at the end of each measurement period
according to Eq. (22). Therefore, the flow is identified as a
high-rate flow as soon as its counter ≥ c∗+1 which will also
accelerate the identification of high-rate flows.

However, the problem is that we need to choose an ap-
propriate n∗ so that the identification accuracy of TSPRT
will be satisfied. According to [22], by viewing the TSPRT
as a mixture of SPRT and FSST, the truncation point (n∗)
and boundaries (c∗, h∗1, h∗2) can be obtained while satisfying
the accuracy requirement (p0, p1, α and β) as long as the
mixture degree is specified.

Let m1 and m2 (0 < m1,m2 < 1) be two constants de-
termining the degree of mixture. According to the design
procedure proposed in [22], the truncation point and bound-
aries are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∗1 =
ln A∗

k

h∗2 =
ln B∗

k

n∗ =
(

ZαFSST

√
p0q0+ZβFSST

√
p1q1

p0−p1

)2

c∗ =
p0 p1(Z2

αFSST
q0+Z2

βFSST
q1)+ZαFSST ZβFSST

√
p0 p1q0q1(p0+p1)

(p0−p1)2

(23)

where A∗ = βSPRT

1−αSPRT
, B∗ = 1−βSPRT

αSPRT
, k = ln p1(1−p0)

p0(1−p1) , αSPRT =

(1 − m1)α, βSPRT = (1 − m2)β, αFSST = m1α, βFSST = m2β

and s =
ln

1−p0
1−p1
k . According to Eq. (9) and Eq. (23), we can

see that when given the same accuracy constraint (p0, p1,
α, β), the maximum sample size of TSPRT must be bigger
than the sample size of FSST as a result of αFSST < α and
βFSST < β. However, in practice we usually first determine
the maximum sample size n∗ from the hardware limits, and
then choose the appropriate mixture degree constants m1,
m2. Therefore, we propose two ways to choose appropriate
m1, m2 below.

Unlike FSST, TSPRT based high-rate flow identifica-
tion algorithm does not need to record every sampled flow
during the measurement period. According to the execution
process of TSPRT (Eq. (21)), we can see that the inspected
flow is considered to be a low-rate flow if its number of sam-
pled packets dn is less than or equal to h∗1 + n · s. As a result,
its record in the flow table can be removed or reused for new
arriving flows. Therefore, the memory cost of TSPRT will
be much less than that of FSST. In the formula h∗1+n · s, n is
a variable which records the total number of sampled pack-
ets, s is determined by p0 and p1, only h∗1 is involved with
m1 and m2. From the above analysis, we can see that the
bigger the parameter h∗1 is, the earlier the low-rate flows will
be removed from the flow table, thus the memory cost will
be reduced. As a result, m1 and m2 can be chosen to max-
imize h∗1 which leads to a TSPRT with minimum memory
cost.

Let TSPRT-M denote the TSPRT of which the mix-
ture degree constants m1 and m2 are chosen to maximize
h∗1. However, the side effect is that the resultant parameters
(h∗1, h∗2) favor FPR over FNR, which means that FPR will
be reduced as much as possible. This is because the low-
rate flows will be removed as early as possible, it will be
of course more difficult for a low-rate flow to be misidenti-
fied which leads to a smaller FPR. Since there is a tradeoff
between FPR and FNR, FNR will be bigger than usual.

There is another way to choose m1 and m2. According
to the execution process of TSPRT (Eq. (21)), the inspected
flow is considered to be a high-rate flow if its number of
sampled packets dn is more than or equal to h∗2 + n · s. As
a result, the less the h∗2 + n · s is, the earlier the high-rate
flow will be identified, thus the identification time will be
reduced. In the formula h∗2+n · s, only h∗2 is involved with m1

and m2. Thereby, m1 and m2 can be chosen to minimize h∗2
which leads to a TSPRT with minimum identification time.

Let TSPRT-T denote the TSPRT of which the mix-
ture degree constants m1 and m2 are chosen to minimize h∗2.
However, the side effect is that the resultant parameters (h∗1,
h∗2) favor FNR over FPR, which means that FNR will be
reduced as much as possible. This is because that the high-
rate flows will be identified as early as possible, it will be
of course more difficult to miss a high-rate flow which then
leads to a smaller FNR. Since there is a tradeoff between
FPR and FNR, FPR will be bigger than usual.

5.3 Complete Description of TSPRT

Assume that we are currently in measurement period Δd of
duration δ seconds, where d = 1, 2, . . ., then the sampling
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interval is

K =
N
n∗

(24)

where N = Nd = Λ × δ is the total number of packets in
Δd. Since Nd is unknown when the identification process
starts, in practice we can use the value of N in the previous
measurement period for convenience, i.e., N = Nd−1.

Let us explore the expected number of sampled pack-
ets needed to identify a high-rate flow with traffic ratio p
in TSPRT. First, if the inspected flow is identified under
the condition of its counter ≥ c∗ + 1 which means in the
case of FSST, then the expected number of sampled packets
is about c∗+1

p (See Sect. 4.2). Second, if the inspected flow
is identified under the condition of its counter ≥ h∗2 + n · s
which means in the case of SPRT, then according to [23] the
expected number of sampled packets is a joint function of
αSPRT , βSPRT , p0, p1:

(1−I(p))h∗1+I(p)h∗2
p−s . Among them

I(p) =
1 − A∗h

B∗h − A∗h
(25)

See the definitions of h∗1, h∗2, s, A∗ and B∗ in Sect. 5.2. Equa-
tion (25) determines the identification probability of a flow
with traffic ratio p in SPRT. Since h is determined by p =

1−(
1−p1
1−p0

)h

(
p1
p0

)h−(
1−p1
1−p0

)h
, I(p) is a function of p when given p0, p1, αSPRT ,

βSPRT . Moreover, I(p0) = αSPRT and I(p1) = 1 − βSPRT . Let
e denote the expected number of sampled packets needed to
identify a high-rate flow with traffic ratio p in TSPRT, then
it is

E(e|p) = min
(

c∗ + 1
p
,

(1 − I(p))h∗1 + I(p)h∗2
p − s

, n∗
)

(26)

Moreover, when p = p1, the expected number of sampled
packets in SPRT is

βSPRT h∗1+(1−βSPRT )h∗2
p1−s . Since p1 = p∗, the up-

per bound of expected number of sampled packets in TSPRT
is

E(e|p) ≤ min
(

c∗ + 1
p∗
,
βSPRTh∗1 + (1 − βSPRT )h∗2

p∗ − s
, n∗

)

(27)

where p ≥ p∗.
The expected identification time and its upper bound in

TSPRT are derived as below:

ε(p) = E(e|p) × K
Λ
= E(e|p) × δ

n∗
(28)

where K
Λ
= δ

n∗ is derived from Eq. (24).

ε(p) ≤ min
(

c∗ + 1
p∗
,
βSPRTh∗1 + (1 − βSPRT )h∗2

p∗ − s
, n∗

)
× δ

n∗

(29)

where p ≥ p∗.

Fig. 5 Identifying high-rate flows based on TSPRT.

Finally, the overall TSPRT based high-rate flow iden-
tification algorithm is presented in Fig. 5. First of all, we
need to compute the parameters s, h∗1, h∗2, c∗. At the be-
ginning of each measurement period Δd, firstly we need to
initialize the flow table which stores the flow id i as well as
its corresponding number of sampled packets ci. And then
the sampling interval K is computed using the total number
of packets in the previous measurement period Nd−1. There
are six points to be noted. First, the mixture degree con-
stants m1 and m2 are chosen appropriately according to the
user requirement (TSPRT-M or TSPRT-T). Second, the new
arriving flows will be recorded in the flow table only when
n < − h∗1

s . This is because that if a new flow arrives after

n = − h∗1
s which means the number of sampled packets for

this flow is dn = 0, and then according to the execution
process of TSPRT (Eq. (21)), this flow is considered to be
low-rate. Therefore, we do not need to record this flow.
Thus, there will be no new flows to be recorded in the ta-
ble after n ≥ − h∗1

s . As a result, the maximum number of
flows recorded in the table is the number of flows in the first
min(− h∗1

s , n
∗) sampled packets during the measurement pe-

riod. Therefore, the approximate memory cost of TSPRT
is

m ≈ r ·min
(
−h∗1

s
, n∗

)
(30)

where 0 < r ≤ 1 is a constant coefficient. Third, since
flows with counter ≤ h∗1 + n · s are considered to be low-
rate, their entries in the flow table can be reused when a
new flow entry needs to be created. Fourth, the flow will
be identified as a high-rate flow as soon as its counter ≥
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min(c∗ + 1, h∗2 + n · s). Fifth, we do not need to check each
flow remaining in the table at the end of the measurement
period as compared to the execution process described in
Eq. (22). This is because that each flow with counter ≥ c∗+1
has already been identified and the rest flows remaining in
the table all have counters < c∗ + 1. Last, the flow entry is
removed from the table as soon as the flow is consider to be
low-rate (ci ≤ h∗1 + n · s).

6. Identification Accuracy Analysis

In this section, we give the formal definitions of FPR and
FNR, and then investigate the relationship between FPR,
FNR and p0, p1, α, β. The following discussion applies
to both FSST and TSPRT.

Let I(p) denote the identification curve which deter-
mines the identification probability of a flow with traffic ra-
tio p. The ideal identification curve is the unit step func-
tion as presented in Fig. 6 in which I(p) = 0 for p < p1

and I(p) = 1 for p ≥ p1, where p1 = p∗ = 0.01. How-
ever, we can not get such a good identification curve un-
less the sampling interval K = 1 which means there will
be no packet sampling in identifying high-rate flows. Fig-
ure 6 also presents an actual identification curve (I(p0) = α,
I(p1) = 1 − β). From this figure we can see that the actual
identification curve is very close to the ideal identification
curve except that it is a steep curve not a straight line around
p = p1.

Let us start analyzing what happens when considering
only one flow. Let p (0 < p < 1) denote the traffic ratio
of this flow with a uniform prior distribution, FNR1 denote
the probability of not identifying when it is a high-rate flow,
FPR1 denote the probability of misidentifying when it is not
a high-rate flow. They are defined by

FNR1 =

∫ 1

p1
(1 − I(p))dp

1 − p1
(31)

FPR1 =

∫ p1

0
I(p)dp

p1
(32)

where
∫ 1

p1
(1 − I(p))dp is the size of area surrounded by the

identification curve and the unit step function when p ≥ p1

Fig. 6 Ideal and actual identification curve.

(See S FNR1 in Fig. 6),
∫ p1

0
I(p)dp is the size of area sur-

rounded by the identification curve and the unit step func-
tion when p < p1 (See S FPR1 = S FPR

p0
1
+ S FPR

p1−p0
1

in Fig. 6).
From Fig. 6 we can obtain that S FNR1 ≤ (1 − p1)β, therefore

FNR1 =
S FNR1
1−p1

≤ (1−p1)β
1−p1

= β.

Let FPRp0

1 denote the FPR of one given flow with traffic
ratio p ≤ p0. Then it is defined by

FPRp0

1 =

∫ p0

0
I(p)dp

p0
(33)

Since I(p) is a monotone increasing function (For both
FSST and TSPRT), I(0) ≤ I(p) ≤ I(p0) when 0 ≤ p ≤ p0.

Thus, FPRp0

1 =

∫ p0
0

I(p)dp

p0
≤

∫ p0
0

I(p0)dp

p0
= I(p0) = α. Conse-

quently, FPR1 =

∫ p1
0

I(p)dp

p1
<

∫ p1
0

I(p)dp

p0
=

∫ p0
0

I(p)dp+
∫ p1

p0
I(p)dp

p0
=

FPRp0

1 +

∫ p1
p0

I(p)dp

p0
≤ α+

∫ p1
p0

I(p)dp

p0
. From Fig. 6 we can obtain

that
∫ p1

p0
I(p)dp = S FPR

p1−p0
1

≤ (p1 − p0)(1 − β), therefore

FPR1 < α +
(p1−p0)(1−β)

p0
.

However, since the number of simultaneous flows in a
high speed link is extremely large (may be more than 10,000
per second in an OC192c backbone link), we shall consider
the FNR and FPR of all flows, not just one flow. Let G(p)
denote the frequency distribution of traffic ratio for all flows,
then FNR and FPR are defined by

FNR =

∫ 1

p1
(1 − I(p))G(p)dp∫ 1

p1
G(p)dp

= 1 −
∫ 1

p1
I(p)G(p)dp∫ 1

p1
G(p)dp

(34)

FPR =

∫ p1

0
I(p)G(p)dp∫ p1

0
G(p)dp

(35)

Since I(p) is a monotone increasing function, I(p1) ≤ I(p) ≤
I(1) when p1 ≤ p ≤ 1. Thus, 1− I(1) ≤ 1− I(p) ≤ 1− I(p1)

when p1 ≤ p ≤ 1. Therefore, FNR =

∫ 1

p1
(1−I(p))G(p)dp∫ 1

p1
G(p)dp

≤
∫ 1

p1
(1−I(p1))G(p)dp∫ 1

p1
G(p)dp

= (1 − I(p1))

∫ 1

p1
G(p)dp∫ 1

p1
G(p)dp

= 1 − I(p1) = β.

This means that whatever the parameters p0, p1, α and β
set, FNR ≤ β.

The relative frequency distribution of the traffic ratio
for three different values of δ is presented in Fig. 7. In order
to get this distribution, we divide the traffic ratio into 10,000
bins between 0 and 1. Since the average relative frequency
distribution is extremely small when traffic ratio is bigger
than 0.05, we omit the values when p ≥ 0.05. From Fig. 7
we can clearly see that the frequency distribution of traffic
ratio decays in an approximate power-law fashion. As a re-
sult, G(p) is an approximate monotone decreasing function.

Suppose α(t) : [a, b]→ R is monotone increasing, and
f , g : [a, b] → R are both monotone increasing or decreas-
ing. Then
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Fig. 7 Average relative frequency distribution of traffic ratio.

(∫ b

a
f dα

) (∫ b

a
gdα

)
≤ [α(b) − α(a)]

∫ b

a
f gdα (36)

The orientation of the inequality sign changes if f is mono-
tone increasing and g is monotone decreasing. This is the
famous Grüss-type inequality. As a result, we have FPR =∫ p1

0
I(p)G(p)dp∫ p1

0
G(p)dp

≤
1

p1−0

∫ p1
0

I(p)dp
∫ p1

0
G(p)dp∫ p1

0
G(p)dp

= 1
p1

∫ p1

0
I(p)dp =

FPR1. Since FPR1 < α +
(p1−p0)(1−β)

p0
, we have FPR <

α + (p1−p0)(1−β)
p0

. To sum up, we have

FPR < α +
(p1 − p0)(1 − β)

p0
(37)

FNR ≤ β (38)

FNR is less than β whatever the parameters p0, p1, α
and β set according to Eq. (38). And by carefully selecting
the input parameters p0, p1, α and β, FPR will not exceed α
too much according to Eq. (37). Since both FPR and FNR
are proportional to α and β, FPR (FNR) improves as α (β)
decreases while other parameters stay unchanged.

7. Evaluation

In this section, we first make a comparison between TSPRT
and FSST (as well as ST) in terms of four metrics (identifi-
cation accuracy, identification time, memory cost and sam-
ple size) through an actual packet sampling process for the
truncated NLANR trace. Since the maximum sample size n∗
is an important parameter governing the behavior of TSPRT,
we then explore how n∗ affect the resultant performance of
TSPRT. At last, we investigate the performance of TSPRT
and FSST with different measurement time.

Within the measurement period, let n̂h denote the num-
ber of identified high-rate flows in sampled packets, nh de-
note the number of actual high-rate flows among the n̂h

identified high-rate flows, Nh denote the number of total ac-
tual high-rate flows in unsampled packets and Na denote the
number of all flows in unsampled packets. As a result, the
experimental FPR and FNR can be defined by

FPR =
n̂h − nh

Na − Nh
(39)

Table 2 Comparison of TSPRT and FSST.

Algorithm FPR FNR ε(s) m

TSPRT-M 0.460e-4 0.758e-2 0.911 1289.699

TSPRT-T 0.460e-4 0.758e-2 0.828 1819.000

FSST 0.470e-4 0.675e-2 0.925 2141.671

FNR =
Nh − nh

Nh
(40)

We consider the problem to identify high-rate flows of
which pi ≥ 0.01 in the truncated NLANR trace under the
following accuracy constraint: the probability of misidenti-
fying a flow with pi = 0.008 is less than 0.2 and so is the
probability of not identifying a flow with pi = 0.01. That is
to say, the parameters are: p0 = 0.008, p1 = 0.01, α = 0.2,
β = 0.2.

7.1 Comparison of Methods

So far as we know, ST [13], [14] is the only method which is
able to derive the identification probability for flows with ar-
bitrary rates as well as the identification curve which demon-
strates the identification accuracy. Therefore, we make a
comparison between our proposed methods and ST.

7.1.1 Relationship between FSST and ST

FSST and ST are the same in essence. They all simply iden-
tify flows from which a certain number of packets are sam-
pled during the measurement period. The difference is that
we put forward the concepts of limiting high-rate level p0

and acceptable high-rate level p1 as well as their correspond-
ing Type I error probability α and Type II error probability β
in FSST which enable us to specify the identification curve
according to the accuracy requirement. Therefore, we use
FSST in place of ST when compared with TSPRT.

7.1.2 Comparison of FSST and TSPRT

According to the algorithm of FSST in Fig. 2, we get the
following approximate sample size and acceptance num-
ber: n∗ = 6297, c∗ = 56. We choose the maximum sam-
ple size n∗ = 6350 for TSPRT. Consequently, the pa-
rameters of TSPRT-M are: h∗1 = −27.971, h∗2 = 52.052,
s = 0.896 × 10−2, c∗ = 56 and the parameters of TSPRT-T
are: h∗1 = −44.966, h∗2 = 27.560, s = 0.896 × 10−2, c∗ = 56.
Table 2 shows the comparison result of TSPRT and FSST
when δ = 2s. The result is an average of 73 experiments
as the truncated NLANR trace contains about 147s traffic.
There are five points to be noted.

First, we explore the identification accuracies of FSST
and TSPRT. As expected, the false positive rates (FPRs) of
TSPRT-M, TSPRT-T and FSST are very close to each other,
and so are the false negative rates (FNRs). This is because
that they have the same accuracy constraint, i.e., p0 = 0.008,
p1 = 0.01, α = 0.2, β = 0.2. FPRs are less than α = 0.2 and



1172
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

FNRs are less than β = 0.2.
Second, we explore the average identification time

of FSST and TSPRT. The average identification time of
TSPRT-M (ε = 0.911) and TSPRT-T (ε = 0.828) is less
than that of FSST (ε = 0.925). This means that TSPRT
spends less time in identifying high-rate flows as compared
to FSST which is very important for some applications such
as DDoS attack detection. This is because that the high-rate
flows can be identified before reaching the maximum sam-
ple size according to execution process of TSPRT (Eq. (21)).
And as expected, the average identification time of TSPRT-
T (ε = 0.828) is less than that of TSPRT-M (ε = 0.911).
This is because that the mixture degree constants m1 and m2

in TSPRT-T are chosen to minimize h∗2 which results in the
early identification of high-rate flows.

Third, we explore the memory costs of FSST and
TSPRT. As can be seen, both the memory costs of TSPRT-
M (m = 1289.699) and TSPRT-T (m = 1819.000) are
less than that of FSST (m = 2141.671). This is because
that TSPRT only needs to record the sampled flows when
n < − h∗1

s ; however, FSST has to record every sampled flow
during the whole measurement period. And as expected, the
memory cost of TSPRT-M (m = 1289.699) is less than that
of TSPRT-T (m = 1819.000). This is because that the mix-
ture degree constants m1 and m2 in TSPRT-M are chosen to
maximize h∗1 which results in the early removal of low-rate
flows.

Fourth, we examine the sample size and sampling inter-
val for both FSST and TSPRT. The maximum sample size
of TSPRT (n∗ = 6350) must be bigger than that of FSST
(n∗ = 6297), otherwise we can not get valid mixture degree
constants m1 and m2 (See Sect. 5.2). As a result, the sam-
pling interval of TSPRT will be a little smaller than that of
FSST with the same measurement time. Therefore, the pro-
cessing cost of TSPRT is a little bigger than that of FSST.

Last, we explore the operations performed by FSST
and TSPRT. As shown in Fig. 2 and Fig. 5, all the opera-
tions of FSST and TSPRT are simple in general. Perhaps,
the most time-consuming operation is to search the flow ta-
ble at each packet sampling which can be accomplished by
hash techniques. Therefore, both the operations of FSST
and TSPRT are very suitable for real-time processing.

7.2 The Effect of n∗ in TSPRT

The maximum sample size n∗ is an important parameter
governing the behavior of TSPRT. However, since we do
not change the accuracy constraint (p0, p1, α and β), FPR
and FNR will not change too much. Thus, we just study the
effect of n∗ (6,350 ≤ n∗ ≤ 26,000) on the memory cost m
and identification time εwhen δ = 2s. Let us take TSPRT-M
and TSPRT-T as examples.

The effect of n∗ on the identification time with standard
deviation is presented in Fig. 8. The identification time of
both TSPRT-M and TSPRT-T decreases with n∗. This is be-
cause that h∗2 in both TSPRT-M and TSPRT-T decreases with
n∗. Since h∗2 is the intercept of acceptance line in Fig. 4, it is

Fig. 8 ε versus n∗ of TSPRT-M and TSPRT-T.

Table 3 Calculated h∗1 and h∗2.

n∗ h∗1 (TSPRT-T) h∗2 (TSPRT-M)

16250 −44.133 54.903

17333 −44.104 43.440

18571 −21.033 44.007

20000 −14.810 15.806

21666 −12.306 12.684

Fig. 9 m versus n∗ of TSPRT-M and TSPRT-T.

obvious that with the decrease of h∗2, high-rate flows will be
identified earlier than usual. Table 3 lists the calculated h∗2 of
TSPRT-M. The phase step of h∗2 around n∗ = 20000 leads to
the phase transition of TSPRT-M in Fig. 8. As expected, the
identification time of TSPRT-T decreases much faster than
that of TSPRT-M.

The effect of n∗ on the memory cost with standard de-
viation is presented in Fig. 9. Both the memory costs of
TSPRT-M and TSPRT-T decrease with n∗. This is because
that h∗1 (h∗1 < 0) in both TSPRT-M and TSPRT-T increases
with n∗. According to Eq. (30), it is obvious that the mem-
ory cost will be reduced with the increase of h∗1. Table 3 lists
the calculated h∗1 of TSPRT-T. The phase step of h∗1 around
n∗ = 18571 leads to the phase transition of TSPRT-T in
Fig. 9 As expected, the memory cost of TSPRT-M decreases
much faster than that of TSPRT-T. To sum up, the maxi-
mum sample size n∗ in TSPRT is involved with the tradeoff
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Fig. 10 FPR versus δ of FSST and TSPRT.

Fig. 11 FNR versus δ of FSST and TSPRT.

between the processing cost (n∗), memory cost (m) and iden-
tification time (ε).

7.3 The Effect of δ in FSST and TSPRT

In this section, we investigate the performance of FSST and
TSPRT when the measurement time δ ranges from 2s to
18s. Since the accuracy constraint (p0, p1, α and β) stays
unchanged, the parameters of FSST and TSPRT remain un-
changed too (See Sect. 7.1.2). All the figures are plotted
with standard deviation. There are three points to be noted.

First, from Fig. 10 we can see that FPRs of FSST,
TSPRT-M and TSPRT-T with different measurement time
are very close to each other, so are the FNRs as shown in
Fig. 11. This is because that they share the same accuracy
constraint.

Second, as shown in Fig. 12, the average identification
time of FSST, TSPRT-M and TSPRT-T increases almost lin-
early with the measurement time. This is because that the
expected identification time is proportional to the measure-
ment time when other parameters stay unchanged according
to Eq. (13) and Eq. (28). The identification time of FSST
and TSPRT-M is very close to each other. As expected, the
identification time of TSPRT-T is less than that of FSST and
TSPRT-M all along.

Last, the memory costs of FSST, TSPRT-M and
TSPRT-T increase slightly with the measurement time as

Fig. 12 ε versus δ of FSST and TSPRT.

Fig. 13 m versus δ of FSST and TSPRT.

shown in Fig. 13. According to Eq. (10) and Eq. (24), when
the sample size maintains unchanged, the longer the mea-
surement time is, the bigger the sampling interval will be
which then results in a larger memory cost (See Sect. 4.3).
Moreover, both the memory costs of TSPRT-M and TSPRT-
T are much less than that of FSST all along.

8. Conclusion and Future Work

In this paper, we study the problem of identifying high-rate
flows in high speed backbone links. We proposed two meth-
ods: FSST and TSPRT. Compared to the state-of-the-art
high-rate flow identification method ST [13], [14], FSST and
TSPRT can specify the identification curve according to the
accuracy requirement. To be exact, FSST changes the pa-
rameter setting process of ST so that it can identify high-
rate flows with user-specified identification accuracy. FSST
and ST share the same memory cost and identification time.
Moreover, TSPRT can decrease the memory cost and identi-
fication time by removing the low-rate flows and identifying
the high-rate flows at the early stage as compared to ST. We
proposed two ways to choose the mixture degree constants
m1 and m2 in TSPRT: memory cost optimization (TSPRT-
M) which is suitable when low memory cost is preferred and
identification time optimization (TSPRT-T) which is suit-
able when short identification time is preferred. Through an
actual packet sampling process for the truncated NLANR
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trace, TSPRT was compared to FSST (as well as ST) in
terms of four metrics (identification accuracy, identification
time, memory cost and sample size). The results showed
that with a slightly relaxed processing power, TSPRT re-
quired less memory and identification time in identifying
high-rate flows with satisfied accuracy as compared to FSST
(as well as ST). Although, the identification accuracy can
be adjusted by specifying different identification curves, we
still can not specify the exact FPR and FNR in FSST or
TSPRT. We attempt to address this issue as part of the future
work.
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