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A Novel Post-Silicon Debug Mechanism Based on Suspect Window∗

Jianliang GAO†, Yinhe HAN†, Members, and Xiaowei LI†, Nonmember

SUMMARY Bugs are becoming unavoidable in complex integrated cir-
cuit design. It is imperative to identify the bugs as soon as possible through
post-silicon debug. For post-silicon debug, observability is one of the
biggest challenges. Scan-based debug mechanism provides high observ-
ability by reusing scan chains. However, it is not feasible to scan dump
cycle-by-cycle during program execution due to the excessive time re-
quired. In fact, it is not necessary to scan out the error-free states. In
this paper, we introduce Suspect Window to cover the clock cycle in which
the bug is triggered. Then, we present an efficient approach to determine
the suspect window. Based on Suspect Window, we propose a novel de-
bug mechanism to locate the bug both temporally and spatially. Since scan
dumps are only taken in the suspect window with the proposed mechanism,
the time required for locating the bug is greatly reduced. The approaches
are evaluated using ISCAS’89 and ITC’99 benchmark circuits. The exper-
imental results show that the proposed mechanism can significantly reduce
the overall debug time compared to scan-based debug mechanism while
keeping high observability.
key words: debug, scan dump, real-time trace, suspect window

1. Introduction

Before an integrated circuit (IC) is manufactured, pre-
silicon verification techniques are used to eliminate func-
tional bugs in the circuit. Due to the increasing system
complexity, existing pre-silicon techniques such as simu-
lation, emulation and formal verification cannot guarantee
that first silicon will be bug free [1]. Moreover, electrical
bugs are becoming more serious with the decreasing fea-
ture size. Whereas, pre-silicon methods don’t address many
deep-submicron electrical bugs that occur in the actual de-
vice [2]. Since operation needs to be checked over the entire
voltage, temperature, and frequency expected for the design,
post-silicon debug has become the most time-consuming
part - 35% on average - of the development cycle of a new
chip [3]. Considering the increasing cost, it is imperative to
identify the bugs that remain in the chip as soon as the first
silicon is available [4].

Post-silicon debug (simplified as silicon debug in the
following) needs to identify both functional bugs and elec-
trical bugs (e.g. [5], [6]). For all bugs, their symptoms are
manifested as errors when the bugs are triggered. The errors
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are recorded and propagated in sequential logic. If the er-
rors cause malfunction of the system, it is said that a failure
happens. Typical flow of debugging the failure covers three
steps: activate the bugs and detect the failure; isolate and
identify the root cause of the failure; confirm and fix the fail-
ure in some situations [7], [8]. Since the bugs are sensitive
to environmental parameters and the fault-masking effect is
serious, various test and/or application programs are run on
the chips in the first step. Once the failure is observed out-
side the chip, the second step begins to locate the root cause
of the failure. This step involves determining when (tempo-
rally) and where (spatially) the bug is triggered. After the
bug has been located, the final step is to use physical tools
to confirm and fix it or return the information to designers
for recovering the bugs. The objective of our work is to
locate the bug temporally and spatially when the failure is
observed outside the chip, i.e, belongs to the second step.

There are two kinds of environments to locate the bug
in a real chip. The chip can be placed in its application en-
vironment (on a demonstrator board), which is called in-
system debug, or it can be placed on a tester [9]. With vari-
ous programs (applications) running on the system to trigger
the potential bugs, in-system debug reveals many marginal
cases which are not encountered on a tester. In this paper,
we focus on the in-system debug.

The observability of internal signals is a main gap for
in-system debug [10]. As shown in Fig. 1, a bug is triggered
at some clock cycle during the program execution. The fail-
ure caused by the bug may be observed by monitoring soft-
ware or particular device such as logic analyzer. Unfortu-
nately, many cycles have elapsed before the failure is ob-
served outside [11]. Trace-based debug technique can cap-
ture some signals in real-time [12], but the number of trace
signals is limited by the on-chip trace resource. Reusing
scan chain is another technique to improve the observability
of internal signals [13]. Scan dump can capture a snapshot
of the chip by freezing the program execution and shifting
out the contents. Since scan dump takes place serially via
special interface such as IEEE 1149.1 (JTAG) test access
port (TAP) [14] during in-system debug, it is too slow to get
the states of flip-flops (FFs) in all clock cycles.

It remains a challenge to pinpoint both temporally
(when) and spatially (where) a failure is occurring, even if
the failure is observed outside. To solve the problem, we
propose a new debug mechanism based on Suspect Window.
The main contributions in this work, detailed in Sect. 3 and
4, are as follows:
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Fig. 1 Bug and failure.

• An efficient approach is proposed to determine Suspect
Window quantitatively. We introduce Suspect Window
to represent the range of the clock cycles in which the
bug is triggered. To determine the suspect window
quantificationally, we present an algorithm to select the
trace signals, which can ensure the observability for er-
rors in the circuits.
• A novel debug mechanism based on Suspect Window is

proposed, which can quickly locate the bug both tem-
porally and spatially. In this debug mechanism, scan
dumps are only taken in the suspect window, and there-
fore the time for locating the bug is reduced greatly.

The remainder of this paper is organized as follows.
Section 2 reviews related work in silicon debug. Section 3
presents the approach of determining the suspect window.
Section 4 describes the debug mechanism based on Suspect
Window. Experimental results and conclusions are given in
Sect. 5 and 6, respectively.

2. Related Work and Motivation

Existing post-silicon debug techniques are generally catego-
rized as scan-based and trace-based mechanisms [15]. For
either of the categories, a number of technologies have been
explored in recent years.

2.1 Scan-Based Debug Mechanism

Scan chains are commonly employed in manufacturing test
as a Design-for-Test (DFT) technique [16], [25]. This hard-
ware can be reused to improve the visibility of the internal
signals during silicon debug. The standard scan chains are
connected to tester via functional pins in test mode. How-
ever, when a chip is placed in its application environment
for in-system debug, these pins are no longer free for scan-
ning. In [13], a wrapper design for the scan chains con-
taining a set of multiplexers is proposed, which connects
all scan chains into a single chain. The chain makes the
scannable sequential elements accessible through JTAG in-
terface. Since the contents of the flip-flops (FFs) are shifted
out via Test-Data-Output (TDO) serially, scan dump opera-
tion is time-consuming.

Different from on-tester debug, the chip need to be
switched between normal functional mode and scan mode

during in-system debug. A set of operations need to be per-
formed in program execution. When the chip is stopped,
its state can be read out by scan dump operation before
continuing operation. Hardware breakpoint is proposed to
determine when to stop the program execution [17]. The
breakpoint typically contains two components: compara-
tors, to monitor important application specific signals such
as program counters and internal instruction or data buses;
and counters, to allow more complex breakpoint sequences.
However, most post-silicon bugs are not predictable in de-
sign phase [4]. The monitoring signals and triggering con-
ditions are difficult, if not impossible, to know in pre-silicon
design phase for the non-determination of electrical bugs.
Caty et al. propose a failure propagation tracing method
to locate the failed path [18]. When a failure is observed,
scan dumps are taken to provide data for pass/fail diver-
gence analysis. Whereas, the clock cycle range in which
scan dumps are taken is uncertain during in-system debug.
Scam dumps cost much time to scan out error-free data.

2.2 Trace-Based Debug Mechanism

As a complementary to scan, trace-based mechanism is used
to capture data in real-time during silicon debug [19]. The
captured data are transferred outside via trace port directly
or stored in an embedded trace buffers. Limited by the on-
chip resource, the size of trace buffers is usually small [20].
The trace ports, which provide real-time data transfer with-
out needing on-chip memories, raise the issue of committing
additional pins for debug. So the bandwidth is also limited.
In general, the number of trace signals is extremely small
relative to the number of the total signals in the chip.

Some proposals have focused on extending the trace
data in both combinational logic and sequential logic (e.g.
[15], [21]). A trace signal selection method that tries to
maximize the number of restored states is firstly proposed
in [15]. State restoration is taken place off-line using the
captured data. The authors define the forward restorability
and backward restorability for logic gates. Since forward
and backward operations require that there exist no electri-
cal errors, these methods can deal with only functional bugs,
but not electrical bugs.

To reduce the additional area for large trace buffers,
which are used only for the purpose of silicon debug, trace
compression techniques are proposed to compress debug
data on-chip before being stored into trace buffers [22]. Al-
though trace compression can increase the number of sam-
ples for each trace signal, the amount of signals that can be
monitored is still limited. Thus, it is desirable to find an
alterative objective for trace signal selection, instead of ob-
serving the errors of the trace signals alone.

2.3 Motivation

Two conclusions can be drawn from the related work:

• Scan-based debug mechanism can achieve high observ-
ability of internal signals, but it is too time-consuming
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Fig. 2 Flow of determining suspect window.

to scan dump cycle-by-cycle during the program exe-
cution.
• Trace-based debug mechanism can achieve real-time

visibility of the trace signals. However, the number of
trace signals is limited by on-chip trace resource.

The difficulties in debug process motivate the work pre-
sented in this paper. Unlike previous methods, we use trace
signals to collect the errors in the circuit. By analyzing the
trace data and circuit topology, we can draw a quantitative
range of clock cycle, named Suspect Window, to cover the
time of bug triggered. Then, scan dumps are taken only in
the suspect window. The new debug mechanism can quickly
locate the bug when a failure is observed.

3. The Approach of Determining Suspect Window

3.1 Overview the Approach

Figure 2 depicts the flow of determining Suspect Window.
It covers the following steps:

(i) Abstract the circuit under debug (design netlist) as ab-
stract graph. Abstract graph describes the dependence
relations between the sequential elements.

(ii) Trace signals are selected according to abstract graph.
The selected signals will be used as collect the errors
in the circuits.

(iii) Trace the selected signals during program execution.
Then, compare the trace data to simulation data and
obtain mismatched logs (including mismatched clock
cycle and mismatched trace signal).

(iv) Determine Suspect Window according to abstract
graph and the mismatched logs.

The first two steps are taken before tape-out. The de-
tails are presented in Sect. 3.2 and 3.3, respectively. The se-
lected signals are traced in real-time when programs run on
the chip. Trace data are then compared with simulation data.
The mismatched logs is used to determine Suspect Window,
which is detailed in Sect. 3.4.

3.2 Abstracting the Circuit

Since the entire chip is surrounded by FFs, the errors can
always be recorded in some FFs [23]. Then the errors are

Fig. 3 An example of abstract graph.

propagated between the FFs cycle-by-cycle until they are
observed outside. We use abstract graph to represent the
relationship between the FFs in the circuit.

Define 1: Abstract graph G(V, E) is a directed graph,
with each vertex vi ∈ V representing a FF and the directed
edge (vi, v j), denoted as ei, j ∈ E, representing that FFi are
connected to FF j via combinational logic.

Figure 3 shows an example that demonstrates how the
abstract graph is obtained from a design netlist. In this ex-
ample, five FFs are turned into five nodes in the abstract
graph. If two FFs are connected via combinational logic,
the corresponding nodes in the abstract graph are connected
with a directed edge. The direction of the edge represents
that the state of the source node may influence the state of
the destination node in next clock cycle. For example, in
Fig. 3, since the current state of FFA may influence the states
of FFC, FFD, and FFE after one clock cycle, there is a di-
rected edge from A to C, D, and E, respectively.

3.3 Trace Signal Identification

We use trace signals to collect the errors in the circuit un-
der debug (CUD). For a trace signal in the circuit, its corre-
sponding node in the abstract graph is named a sink. Denote
the set of all sinks as S , i.e.,

S = {i | i ∈ V and i is a sink}
Fan-in cone of a sink i is the set of the nodes which

have at least one path to sink i, denoted as cone(i). The set
of the nodes, which belong to any fan-in cone of the sinks,
are named monitored FF, i.e.,

monitored FF = {j | j ∈ V and j ∈ (∪
i∈S cone(i))}

Define 2: FF coverage is the ratio of the number of the
FFs which are fanned in by the sinks (monitored FF) to the
total number of FFs in the CUD. It is computed as:
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Algorithm 1: Identify trace signals
Input: BW, TH, Abstract graph G(V, E)
Output: The set of sinks S

1 Initiate S = Ø; cur cov = 0; monitored FF = Ø;
2 for each i ∈ V , calculate cone(i);
3 while (#S < BW) do
4 if cur cov < T H then
5 for each node i, i ∈ (V\S) do
6 Inc set(i) = cone(i)\monitored FF
7 end for
8 k = argmax

i
(#Inc set(i))

9 else
10 for each node i, i ∈ (V\S ) do
11 calculate PF assuming i is a sink
12 end for
13 k = argmin

i
(PF(i))

14 end if
15 S = S ∪ {k};
16 monitored FF = monitored FF ∪ cone(k);
17 cur cov = #monitored FF/#V
18 end while
19 return S

FF coverage =
#monitered FF

#V
(1)

where # means to return the number of the elements in the
set and V is the set of the nodes in abstract graph. FF cover-
age reflects the ability of the sinks to collect the errors in the
CUD. To collect more errors, the nodes which can fan in the
most FFs are the best candidates as trace signals. For exam-
ple, in Fig. 3, FFC can collect errors that come from FFA and
FFC; FFD can collect errors that come from FFA, FFC, and
FFD. It means cone(D) > cone(C) . So FFD is better than
FFC as a trace signal. If some sinks have been selected, we
choose the node which can increase the most FF coverage as
a new sink. When all or the most FFs have been fanned-in
by the selected trace signals, adding more trace signals has
little or no increase in FF coverage. For this situation, we
introduce Propagation-Factor (PF) as a metric for selecting
trace signals:

PF =
∑

i∈V
hopi (2)

where hopi is the number of the hops from node i to its near-
est sink in abstract graph. It represents the speed of the er-
rors being caught by the sinks. The smaller PF is, the faster
the sink can record the errors in the CUD.

Algorithm 1 details the process of trace signals identi-
fication. The input parameters BW and TH represent trace
bandwidth and the required minimum FF coverage, respec-
tively. The output of the algorithm is the set of selected trace
signals. The algorithm is divided into two phases. In the first
phase, the objective is to achieve the highest FF coverage.
For each non-sink node i, (i.e., i ∈ (V\S )), the correspond-
ing increased set of monitored nodes is calculated (Line 6).
The node with the largest increased set is then selected as a
sink (Line 8). In the second phase, the metric PF is used to
guide the signal selection. For each non-sink node, compute

Algorithm 2: Get suspect window size for one sink
Input: Sink, Abstract graph G(V, E)
Output: suspect window size SW Size

1 Initiate Q = Ø;
2 for each node i ∈ V , set Hop(i) = 1;
3 TAIL(Sink,Q)
4 while not EMPTY(Q) do
5 i = HEAD(Q)
6 SW Size = Hop(i);
7 for all node j, j ∈ V and (i, j) ∈ E
8 if not EXIST( j,Q) then
9 TAIL( j,Q);
10 Hop( j) = Hop(i)+1;
11 end if
12 end for
13 end while
14 return SW Size

the PF assuming that it is a sink (Line 11). Then, the node
with the least PF is selected as a sink in this loop (Lines 13).
As can be seen, if TH is set to 1, the algorithm will select
the sinks toward the object of 100% FF coverage.

3.4 Suspect Window Determining

When the errors are collected by sinks during real-time
trace, we need to find out the root cause for the errors. Sus-
pect Window represents the range of the clock cycles in
which the bug is triggered. If the suspect window is too
small, the root cause may escape examination, but if it is
too broad, the operation time can be considerable. In the
following, we present the approach of determining Suspect
Window according to the number of mismatched sinks.

First, we consider the situation of one mismatched sink.
The bug, which causes the error, must be triggered before
the first mismatched clock cycle. We let the first mismatched
clock cycle be the end point of the suspect window (e T ).
The next objective is to specify the start point of the suspect
window (s T ). Denote the suspect window size as δ, the
start point s T can be calculated as:

s T = e T − δ (3)

Thus, the objective is transformed to obtain the suspect
window size. We present an efficient algorithm to get the
suspect window size for one sink. In Algorithm 2, we use a
queue (Q) to store the to-be-processed nodes. HEAD, TAIL,
and EMPTY are three operations on queue. They represent
to get the first element form the head, to add an element to
the tail, and to decide whether the queue is empty or not,
respectively. For each processed node, its next hop neigh-
boring nodes are put into the queue if they are not in the
queue already (Lines 8-11). Finally, the number of hops
corresponding to the last processed node in the queue is re-
turned as suspect window size.

Second, we consider the situation that more than one
sink collects the error caused by the bug. Using the pre-
ceding approach for one sink, the suspect window of each
mismatched sink can be obtained. The bug must be trig-
gered after all start points and before all end points of these



GAO et al.: A NOVEL POST-SILICON DEBUG MECHANISM BASED ON SUSPECT WINDOW
1179

Fig. 4 Suspect window of multiple mismatched sinks.

Fig. 5 Debug mechanism based on suspect window.

suspect windows. Thus we can take the latest start point as
the final start point and the earliest end point as the final
end point. For example, in Fig. 4, the error caused by the
bug is collected by FFA, B and C. Three suspect windows
(SW(A), SW(B), and SW(C)) are obtained using the preced-
ing method. The intersection of SW(A),SW(B) and SW(C)
is taken as the final suspect window. It can be seen that the
final suspect window is smaller than any of the separate sus-
pect windows.

For multiple clock domain SoC, the suspect window
can be determined using “divide-and-conquer” method. For
each clock domain, the trace signals are selected accord-
ing to their abstract graphs respectively. The selected trace
signals are monitored in real-time. Note that trace mem-
ory can be shared by the trace signals of different clock do-
mains [29]. Once the mismatch occurs, debug engineer fo-
cuses on the corresponding clock domain and the preceding
method which is applied to a single clock domain can be
used to determine the suspect window for the mismatched
clock domain.

4. The Proposed Debug Mechanism

Various programs (e.g., real applications or/and test pro-
grams) run on the chip to trigger the potential bugs that re-
main in chip. Once a failure is observed outside, the de-
bug process of locating the root cause of the failure begins.
As shown in Fig. 5, the proposed debug mechanism requires
that the program executes twice. The first execution is free
run from the start point 1© to the point 4© at which the fail-
ure is observed. The objective of the first run is to determine
the suspect window ( 2©- 3©). Scan dumps are taken in the
suspect window during rerunning the program. In the fol-
lowing subsections, we detail the debug mechanism.

Fig. 6 Trace sequential logic in real-time.

4.1 Free Run with Real-Time Trace

In normal functional mode, programs are input to the chip
via primary input (PI). The results observed on primary out-
put (PO) can be used to judge whether the failure occurs or
not. Since the sequential logic is not controllable via scan
chains in normal functional mode, the trace signal is the only
part of observable internal states. As shown in Fig. 6, the
selected signals (belonging to sequential logic) are traced
in real-time. The contents of trace signals can be obtained
by two approaches. One is to transfer them via high-speed
trace port. Trace port provides the capability of real-time
data transfer. The other approach is to store trace data into
on-chip trace memory. The data in trace memory can be
exported outside via JTAG port. A design for debug can
provides either or both of the approaches. When the trace
data are obtained, they are compared with golden simulation
results. The mismatched sinks and clock cycles can be ob-
tained by this way. Then, the suspect window can be gotten
by use of the method described in Sect. 3. Once the suspect
window is known, the debug mechanism can take the rerun
process.

4.2 Rerun with Scan Dump

The rerun process is divided into two parts. In the former
part ( 1©- 2©), program runs non-intrusively. In the second
part, single step execution and scan dump are taken in the
suspect window ( 2©- 3©). The rerun process can be auto-
mated by controlling the clock system. Figure 7 shows the
transfer among the operations. It includes the following op-
erations:

• Free run
The internal clock is driven by system clock, and the
program run freely until the functional clock cycle
number reaches the begin point of the suspect window
(clk num < η).
• Stop

When the clocks are stopped, the contents in FFs are
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Fig. 7 Operations during rerun process (suspect window: [η, γ]).

Fig. 8 Scan chain design for silicon debug.

frozen for scan dumps or continue to run. Clocks can
be stopped via primary input, IEEE 1149.1 instruction,
or system interrupts. Functional mode and scan mode
are switched via stop state.
• Single step

To get the internal contents in successive clock cy-
cles, single step operation is implemented by control-
ling system clock. The clock is toggled a single clock
pulse and applied to the chip. The contents of FFs be-
come the corresponding states of the next clock cycle.
• Scan dump

Scan chains are standard design for test. During post
debug, the scan output (SO) is connected with scan in-
put (SI), which forms a probe. When program runs in
the suspect window (η ≤ clk num ≤ γ), the internal
contents are scanned out cycle-by-cycle via the probe.

Scan dump contributes the main part of time cost for
in-system debug. Two approaches are used to reduce the
time cost of scan dump. One approach is to bypass the
error-free scan chains when connecting scan chains into a
probe. As shown in Fig. 8, we use a latch to control the
selection of scan chains. For a mismatched sink, the error
must come from its fan-in cone. Assuming only one bug is
triggered at a time, the intersection of the fan-in cones of
the mismatched sinks are the candidate error source. The
FFs, which do not belong to the intersection, must be error-
free and need not be scanned out. If all FFs of a scan chain
are error-free, it can be bypassed. The other approach is to

circle the probe. Since scan dump changes the contents of
FFs, it must be recovered to support resume execution. As
shown in Fig. 8, the probe output (TDO) is connected to the
probe input (TDI), which forms a circle. When the contents
of the FFs are obtained, the clock cycle at which the bug
is triggered and the FFs which first catch the error are both
known. Confirming and fixing the bug can be taken accord-
ing to design specifications or via physical tools [24].

4.3 Discussion

The proposed debug mechanism combines the advantages of
trace-based and scan-based debug mechanisms. The same
as existing trace-based techniques such as [26], the pro-
posed mechanism also assumes that the simulation results
are available. In some applications, simulation results might
be difficult to obtained for simulation speed limitation and
non-determination. For simulation speed, FPGA-based em-
ulator provides a much faster approach to obtain gold results
before silicon [27]. For non-determination, there are several
methods to eliminate it [31]. In fact, how to obtain and uti-
lize the gold results is still an interesting research field today.
When trace data cannot be compared with gold results, de-
tecting the violation between trace signals [28] can be as a
compromise to determine the end boundary of the suspect
window consequently.

5. Experimental Results

In this section, we show the experimental results on IS-
CAS’89 (s9234, s13207, and s15850) and ITC’99 (b20,
b22) benchmark circuits. We simulate the effect of trig-
gered bugs by changing the values of the flip-flops in the
benchmark circuits with the same probability. Trace sig-
nals are selected under different bandwidth and threshold
constraints. We evaluate FF coverage (defined in Sect. 3.2),
suspect window size, error-free FFs, debug time, and circuit
volume through a series of experiments. The experimental
results are described in the following subsections.

5.1 FF Coverage of Trace Signals

FF coverage is an important metric for trace signals selec-
tion. The higher FF coverage means the higher observabil-
ity for detecting the errors. Table 1 shows the results of FF
coverage under fixed bandwidth constrains. The trace sig-
nals are obtained by Algorithm 1 under given bandwidth and
threshold constraints. First, we analyze the influence of the
threshold to FF coverage. Before the FF coverage reaches
the threshold, the threshold has no influence to FF cover-
age. For example, the FF coverage of b22 is 88.44% under
three different thresholds (0.9, 0.95, and 1) when bandwidth
is 8 bits. The highest FF coverage is achieved When thresh-
old is set to 1 (4th, 7th, and 10th column in Table 1). Sec-
ond, we analyze the influence of bandwidth to FF coverage.
As can be seen from Table 1 that, the larger bandwidth is,
the higher FF coverage can be obtained. Taking s13207 as
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Table 1 Results of FF coverage under fixed bandwidth constraint (%).

Fig. 9 The FF coverage when th=1.

example, when the bandwidths are 8, 16 and 32 bits respec-
tively, the corresponding FF coverage are 89.03%, 94.83%,
and 98.12% (th=1).

In resource-limited design, the bandwidth need be as
small as possible under the requirement of FF coverage. Fig-
ure 9 depicts the relationship between various bandwidth
and the highest FF coverage (when th=1). The highest
FF overages increase as the increase of bandwidth. The
FF coverage of all the circuits except b22 is higher than
91% when bandwidth is 32 bits. The circuit b22 is differ-
ent from the other circuits for its circuit topology. 4.35%
FFs are not sinked by the primary outputs in b22. Consid-
ering the bugs which can be observed outside, the ratio of
(#monitored FFs by sinks)/(#monitored FFs by POs)) can
reach 95.87% when bandwidth is 32 bits. The ratio indicates
the percent that the bugs lies in the suspect window. As can
be seen in Fig. 9, the most ratios reach 100% with less than
50 bits bandwidth.

Trace signals collect the errors that propagate from
other logic. The extended observability for errors is defined
as the ratio of the number of monitored FF to the bandwidth.
As shown in Fig. 10, all benchmark circuits achieve high ex-
tended observability. Since most FFs have been monitored
by a small number of sinks, the ratio decreases as the in-
crease of bandwidth. The results of extended observability
illustrate the predominance of the proposed mechanism over
trace-based mechanism.

5.2 Suspect Window Size

To obtain the suspect window size, bugs need to be inserted

Fig. 10 The extended observability.

into the circuit under debug. In the experiments, it is as-
sumed that bugs are triggered uniformly in the circuit. We
trigger one bug at a time and obtain the corresponding sus-
pect window. The average suspect window size is obtained
by averaging them. Table 2 depicts the average suspect win-
dow size under various bandwidths and thresholds. All sus-
pect window sizes are considerable small compared to the
program lengths. It can be seen that, with the same thresh-
old, the suspect window size decreases as the increase of
bandwidth. Taking s9234 as example, the suspect window
sizes are 4.44, 4.31, and 4.13 at 8, 16 and 32 bits bandwidth
respectively when threshold (th) is 0.9 and the number of
mismatched sink (# mismatched sink in Table 2) is 1. We
get the suspect window sizes considering 1, 2, and 3 mis-
matched sinks (2nd column in Table 2). It can be seen that
more mismatched sinks can reduced the suspect windows
size. For example, for s13207, the suspect window sizes
are 16.55, 15.27 and 14.89 respectively when the number of
mismatched sinks increases from 1 to 3.

5.3 Error-Free FFs

As presented in Sect. 4.2, the FF must be error-free if it does
not lie in the intersection of the fan-in cones of the mis-
matched sinks. It can reduces the candidates of bug source
in spatial dimension. The scan chain whose FFs are all
error-free can be bypassed when connecting the scan chains
into a probe. This helps to reduce shift time during scan
dump. Since the organization of scan chains is determined
by many factors such as placing and routing, the number of
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Table 2 Results of average suspect window size.

Table 3 Ratio of the number of error-free FFs to the number of total FFs (%).

bypassed scan chains correlates with the actual design re-
quirement [25]. Here, we give the ratio of the number of
error-free FFs to the number of total FFs, which can show
the potential capacity of time reduction. Table 3 shows the
results of the ratio under different constraints. It can be seen
that the ratio increase as the increase of the number of mis-
matched sinks. For example, for s13207, the ratio increases
as 44.78, 46.95 and 48.48 for 1, 2, and 3 mismatched sinks,
respectively when th=0.9. It is because that the intersection
becomes smaller as mismatched sinks increase.

5.4 Debug Time

Since trace-based mechanism can be taken with the program
execution in real time (via high-speed trace ports), it has no
additional time cost (the disadvantage of trace-based mech-

Table 4 The components of debug time.

Execution time Scan dump time

Scan-based
1
fn
× N

1
fs
× N ×C

Suspect Window based
1
fn
× 2N

1
fs
× S izesw ×C′

anism is low observability, as evaluated in Sect. 5.1). Here,
we compare debug time between scan-based and Suspect
Window based mechanism. Debug time consists of execu-
tion time and scan dump time. Let N,C,C′, S izesw, fn, fs

denote the program length (clock cycles), the number of
total FFs, the number of FFs excluding the error-free FFs,
suspect window size, functional clock frequency, and scan
clock frequency, respectively. The execution time and scan
dump time is represented in Table 4. Let T scan, T sw be
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Fig. 11 Debug time comparison.

Table 5 Circuit volume of the sequential logic of the benchmark circuits.

Circuit s9234 s13207 s15850 b20 b22
# of FFs 228 638 597 490 735

Table 6 Estimated wire area.

Bandwidth (bits) 8 16 32 64
Wire area (um2) 2.16 4.32 8.64 17.28

the debug time of scan-based and Suspect Window based
mechanism, respectively. As a case, Fig. 11 shows the ra-
tio T scan/T sw when bandwidth, threshold, the number of
mismatched sink are 32, 1, and 1 respectively (let fn/ fs = 10
and C = C′ in this experiment for simplicity of explanation).
It can be seen that the ratio increases as the program length
increases. It is because that the program length influences
only the scan time of scan-based mechanism, but not that of
Suspect Window based mechanism. The scan dump time of
Suspect Window based mechanism correlates with the sus-
pect window, which is unrelated to program length. Since
the lengths of real application programs are usually large,
the debug time of scan-based mechanism is much longer
than that of Suspect Window based mechanism.

5.5 Circuit Volume

The sequential logic in the benchmark circuits is the FFs
that they contain. Table 5 shows the numbers of FFs in the
benchmark circuits which are used in our experiments. The
numbers of FFs range from 228 to 735, which demonstrates
that the circuits are representative.

Trace memory is an essential infrastructure in trace-
based technology. Experimental studies form [20] indicate
that trace memory of hundreds of bits size are acceptable
in practice today. Figure 12 shows the needed trace memory
volume which meets the requirement of FF coverage assum-
ing the depth of the trace memory is 1k. As can be seen from
Fig. 12, the needed trace memory is relatively small even if
the required FF coverage is high. Furthermore, it is common
that the trace memory is used as a time-shared resource [29]
if one needs to debug larger logic blocks.

Fig. 12 Trace memory volume.

Many factors may influent wire area such as routing
algorithm. We estimate wire area according to the model
presented in [30]. In this model, wire width is 3λ and the
line-to-line pitch is 6λ, where λ is the minimum feature size.
In 90 nm technology, λ=45 nm. Assume the wire length is
1 mm, the estimated wire area is shown in Table 6. As can
be seen, the wire area is very small even if the bandwidth is
as many as 64 bits.

6. Conclusions

As design complexity continues to increase, structured de-
bug methods become crucial for decreasing the length of
debug cycle during silicon debug. In this paper, we have
proposed a novel silicon debug mechanism based on Sus-
pect Window. Suspect Window is introduced to represent
the clock cycle range in which the bug is triggered. We
present an efficient approach to determine the suspect win-
dow. By converting the circuit to abstract graph, an algo-
rithm of selecting the trace signals, which can collect the
most errors in the circuit, is presented. The selected sig-
nals are traced in real-time during the first run with the pro-
posed debug mechanism. The suspect window can be deter-
mined according the trace information and abstract graph.
In the rerun process, scan dumps are taken only in the sus-
pect window to locate the bug exactly. The proposed mech-
anism achieves high observability compared to trace-based
mechanism, and reduces the debug time greatly compared to
scan-based mechanism. Experimental results demonstrate
that the proposed mechanism can achieve high observability
at small time cost.
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