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PAPER

Robust Character Recognition Using Adaptive Feature Extraction
Method

Minoru MORI†a), Minako SAWAKI†, and Junji YAMATO†, Members

SUMMARY This paper describes an adaptive feature extraction
method that exploits category-specific information to overcome both im-
age degradation and deformation in character recognition. When recogniz-
ing multiple fonts, geometric features such as directional information of
strokes are often used but they are weak against the deformation and degra-
dation that appear in videos or natural scenes. To tackle these problems,
the proposed method estimates the degree of deformation and degradation
of an input pattern by comparing the input pattern and the template of each
category as category-specific information. This estimation enables us to
compensate the aspect ratio associated with shape and the degradation in
feature values and so obtain higher recognition accuracy. Recognition ex-
periments using characters extracted from videos show that the proposed
method is superior to the conventional alternatives in resisting deformation
and degradation.
key words: OCR, feature extraction, category-dependent, compensation

1. Introduction

Most character recognition applications target machine
printed and handwritten characters on paper documents. Re-
cently, the recognition of text in videos, web documents,
and natural scenes has become an urgent demand; research
has intensified because this task is difficult to realize [1]–[6].
The problems posed by recognizing low quality characters
in the above mentioned applications are mainly due to de-
formation such as the variety of font styles and style effects,
as well as image degradation like background noise, blur,
and low resolution. A key weakness of most conventional
character recognition methods is that they tackle either one
problem or the other, not both.

For overcoming image degradation, some methods,
e.g. [7]–[9], design templates that reflect the degradation
type anticipated. Also a robust discriminant function for
recognizing degraded characters was proposed in [10], [11].
Unfortunately, these methods are sensitive to shape defor-
mation, since they employ image-based template matching.
They fail to effectively handle multiple fonts and several
style effects.

On the other hand, geometric features are often used
for recognizing multiple fonts. Stroke direction is particu-
larly effective against character deformation [12]. For ex-
ample, the direction contribution based on stroke run-length
is effective [13]–[15]. However, geometric features are not
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robust against corruption of information due to image degra-
dation. In addition, although geometric features are more ro-
bust against deformation than image-based template match-
ing, they are not invariant for deformation such as aspect
ratio fluctuation and stroke position shift. Therefore, geo-
metric features are weak against the kinds of deformation
that are not present in the training samples.

For overcoming deformation problems mentioned
above, nonlinear shape normalized techniques [16], [17]
have been proposed as a pre-processing method to relocate
strokes uniformly. They normalize a pattern by exploit-
ing the distance between strokes [16] and stroke line den-
sity [17], and are mainly aimed at the recognition of Kanji
characters that consist of many strokes in mostly square pat-
terns. Therefore, applying these methods to the recognition
of numerals, alphabets and kana characters, which consist
of fewer strokes and are not square shape, is difficult. Also
these methods are ineffective for degraded characters with
backgrounds noise and blur because when calculating stroke
line density or distance between strokes they basically as-
sume that characters are not degraded.

To reduce the influence caused by image degradation
in the recognition based on geometric features, some meth-
ods try to compensate for the inaccuracy in the values of
discriminant function or geometric feature by assuming the
type of degradation and estimating the degree of degrada-
tion using local pixel distributions [18], [19]. The method
in [18] detects blurred areas using the thinning technique
and compensates similarity values in those areas. Another
approach [19] offsets the feature values based on the com-
plexity of pixel distributions. They, however, are counter-
productive when the assumption of the degradation type is
invalid. This suggests the difficulty of compensating geo-
metric information using local pixel distributions; discrimi-
nating noise from the strokes of the character is almost im-
possible.

To tackle the problems mentioned above, we focus on
a category-dependent method with the top-down approach.
All category-dependent methods assume the category of an
input pattern and adaptively compensates deformation or
image degradation by exploiting category-specific informa-
tion. Category-dependent methods include a shape normal-
ization method that tackles the deformation [20], [21]. In
this paper we propose a category-dependent method that
achieves robustness against both deformation and image
degradation. Our method estimates the degree of deforma-
tion and degradation of the input pattern on the basis of spe-
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cific information of each category. Exploiting the category
information enables us to extract the variation of the aspect
ratio and that of the run-length used for computing feature
values. The fluctuations in shape and feature values are then
offset by the estimated compensation coefficients. To eval-
uate the proposed method, we apply it to the recognition of
video text that is degraded by background noise and blur,
and deformed by aspect ratio fluctuations.

The paper is organized as follows: Section 2 provides
a description of the directional feature and the algorithm
of the proposed method. Experimental results gained from
video text are reported in Sect. 3. Section 4 summarizes this
paper and lists future work.

2. Adaptive Feature Extraction Using Category Infor-
mation

2.1 Overview

This section describes the geometric feature used and details
the algorithm of our method; feature extraction that exploits
category-specific information. We use the stroke directional
information based on the stroke run-length as the geomet-
ric feature. The proposed method tackles deformation and
image degradation in two ways. One is adaptive normal-
ization. Adaptive normalization is applied after the classifi-
cation stage, and yields a normalization size appropriate for
the input pattern with fluctuation in aspect ratio by repeating
the processes of normalization and classification. The other
is feature compensation. Feature compensation is applied to
the candidates output by the classification stage, and offsets
the feature values corrupted by image degradation to obtain
higher recognition accuracy in the final recognition stage.
Figure 1 overviews the process flow including the proposed
method.

2.2 Directional Feature

Geometric features that extract stroke direction are effective
for discriminating multiple fonts. In this paper we use the

Fig. 1 Overview of processing.

stroke directional feature [13]–[15] that is based on stroke
run-length. This feature is extracted as follows: Let l1, l2,
l3, and l4 be the run-lengths on the horizontal, right diago-
nal, vertical, and left diagonal directions at each black pixel
of strokes, respectively. Let lm,i be the run-length yielded
by averaging li on the m-th block obtained by partitioning a
pattern. Let dm,i be the degree of contribution in stroke di-
rection as components of feature vector for the m-th block.
dm,i can be computed by the following steps.

Step 1: The input pattern is divided into N × N blocks.
Step 2: li (i = 1, . . . , 4) is extracted at each black pixel.
Step 3: lm,i (m = 1, . . . ,N × N) is calculated by averaging li

on each block.
Step 4: dm,i is computed on each block by

dm,i =
lm,i√∑4
j=1 lm, j

2
. (1)

Here we use N = 8. Figure 2 shows each step in the extrac-
tion of stroke directional feature from an input pattern.

2.3 Adaptive Normalization

Characters used in videos or natural scenes come in vari-
ous fonts and are often deformed when they are superim-
posed or aligned. The fluctuation in aspect ratio based on
these diversities is one of the factors that degrade the recog-
nition accuracy. However Japanese characters contain so
many various structures and ratios, that estimating the most
appropriate ratio is difficult. The shape normalization to
a pre-defined aspect ratio often normalizes a pattern such
that it approaches an erroneous category which degrades
the recognition accuracy. To normalize a pattern effectively,
the shape normalization methods proposed in [20], [21] use
templates for each category and are effective for normaliz-
ing such deformed characters. These methods, however, are
too time-consuming because they produce normalized pat-
terns for every each category. Here we propose an adaptive

Fig. 2 Directional feature extraction.
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normalization scheme that uses category-specific informa-
tion; it is simple but effective for compensating aspect ratio
fluctuation. Figure 3 shows the flow of the adaptive normal-
ization scheme.

Our proposal uses the ratio information of training
samples of each category and is applied after the first clas-
sification stage as follows: First the input pattern is normal-
ized for the pre-defined size retaining the aspect ratio of the
input pattern; Here let r0

x and r0
y be the horizontal and verti-

cal rectangular size of the input pattern, respectively. Let R
be the pre-defined size for pattern normalization, and max(, )
be the operation that returns the larger element. The hori-
zontal and vertical rectangular dimensions of the normalized
pattern, rx and ry, are given by

rx = r0
x · R/max(r0

x , r0
y ), (2)

ry = r0
y · R/max(r0

x , r0
y ). (3)

When R < max(r0
x , r

0
y ), the input pattern is scaled down so

that the longer rectangular size fits pre-defined size R, and
otherwise the input pattern is scaled up. Next the normal-
ized pattern is classified and candidate categories are ob-
tained. Let rc

x and rc
y be the rectangular sizes for the c-th

category obtained by averaging rx and ry of training sam-
ples in the c-th category, where c (= 1, . . . ,C) denotes the
category number. Here we define the new rectangular sizes,
r′x and r′y, by averaging rc

x and rc
y among the top candidates

as follows:

r′x =
1

N1

∑N1

c=1
rc

x, (4)

r′y =
1

N1

∑N1

c=1
rc

y, (5)

where N1 is the number of the candidate categories used for
calculating new rectangular sizes. Finally, the input pattern
is re-normalized to fit the size of r′x and r′y and re-classified;
When r′x > r0

x , the horizontal rectangular size of the input
pattern is enlarged by the factor of r′x/r0

x , otherwise shrunk
by r′x/r0

x times. The new vertical rectangular size is obtained
in the same manner. The new candidate categories are ob-
tained by re-classifying the re-normalized pattern.

Fig. 3 Flow of adaptive normalization.

It should be noted here that when the classification re-
sult involves many error candidates, the normalization of in-
put pattern tends to result in an erroneous size or shape. To
avoid over-fitting to erroneous sizes and obtain appropriate
values, we define the confidence measure, sconf , as follows:

sconf =

N2∑
c=1

dist1/distc, (6)

where distc is the distances obtained in the classification
stage for the c-th candidate category. N2 is the number of
categories used for calculating the confidence measure. sconf

is defined as the summation of the ratio between the 1st can-
didate’s distance and the c-th candidate’s one and means the
reliability of the classification result. We can select the ap-
propriate normalization pattern using this measure. When
sconf obtained using the first normalized pattern is less than
that of the re-normalized one, the ratio of the first normal-
ized one is more reliable and so the first normalized pattern
is selected as indicating the appropriate rectangular size.
Otherwise, the re-normalized pattern is selected. The nor-
malized pattern with the selected aspect ratio is submitted
for the following stage.

2.4 Feature Compensation

Feature values extracted from a degraded pattern are often
corrupted and cause mis-recognition. To tackle this prob-
lem, we introduce a feature compensation technique that es-
timates the degree of degradation in the input pattern [22].
Figure 4 shows the flow of feature compensation technique.

Feature values extracted from parts degraded like back-
ground noise or blur and those extracted from strokes are
generally combined. In other words, the influence of degra-
dation appears as a weight that depends on the degree of
degradation. Therefore, by estimating the degree of degra-
dation, we can acquire the compensation coefficient needed
to compensate the degraded feature values. This estimation
thus enables us to obtain the most approximate feature vec-
tor by compensating the degraded feature vector.

The key to estimating the degree of degradation is us-
ing the variation in run-length distribution of the input pat-
tern. The variation of run-length basically depends on the

Fig. 4 Flow of feature compensation.
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degree of degradation. Therefore, the degree of degrada-
tion can be estimated by extracting the degree of variation
in run-length distribution of the input pattern. However, as
mentioned in Sect. 1, it is impractical to estimate the varia-
tion from just pixel distribution in the input pattern. To real-
ize this estimation, we exploit the template of each category
as category-specific information. Comparing the input pat-
tern to the template of each category enables us to calculate
the variation of run-length against the focused category.

As the template of each category, we use the directional
stroke run-length. The templates for each category are ob-
tained as follows: The averaged stroke run-length lm,i is cal-
culated using same steps given in Sect. 2.2. The run-length
vectors used as the template for the c-th category, l̄cm,i, are
then obtained by averaging lm,i from training samples of the
c-th category.

Next we define the degree of degradation as the aver-
age of the degree of degradation from blocks obtained by
partitioning the input pattern. The degree of degradation on
focused block, pc

m,i, is calculated as the ratio between the
run-length distribution of the input pattern, lm,i, and that of
the c-th category’s template, l̄cm,i, as follows:

pc
m,i =

{
(lm,i − l̄cm,i)/lm,i if (lm,i > l̄cm,i)
(l̄cm,i − lm,i)/l̄cm,i otherwise.

(7)

The degree of degradation over the pattern against the c-th
category, gc, is defined by

gc =

∑N2

m=1
∑4

i=1 pc
m,i

4 · N2
. (8)

gc approaches 1 as the input pattern become degraded or
dissimilar. gc becomes 0 if we are comparing the identical
patterns.

The compensation coefficient is then calculated. First
the compensated run-length, l′m,i, an indication of the com-
pensation amount, is computed using the above degree of
degradation by

l′m,i = lm,i · (1 − gc) + l̄cm,i · gc. (9)

The compensation coefficient wc
m,i is computed from l′m,i in

each block by

wc
m,i = (lm,i − l′m,i)/(lm,i − l̄cm,i). (10)

Finally, a new feature value against the c-th category,
dc

m,i, is obtained by compensating dm,i with coefficient wc
m,i

as follows:

dc
m,i = dm,i · (1 − wc

m,i) + d̄c
m,i · wc

m,i (11)

where d̄c
m,i is the mean vector of the c-th category. C feature

vectors are obtained by repeating the above procedure for
every category and the input pattern is recognized by cal-
culating distances between the vector from the input pattern
and the reference vector of each category. Figure 5 shows
the flow of the feature extraction and recognition stage in
the proposed method and the conventional one.

Fig. 5 Flow in feature extraction and recognition.

Fig. 6 Examples of feature values.

Figure 6 visualizes the feature values obtained using
compensation technique and those of the original feature for
the character with background noise. Darker block repre-
sents higher contribution strength in each stroke direction.
Figure 6 shows that the compensated feature yielded by the
proposed method still retains stroke direction while sup-
pressing the influence of background noise.

3. Recognition Experiments

3.1 Data

To confirm the proposed method’s robustness against degra-
dation and deformation, we used the characters in videos
as the experimental data. Characters extracted from bina-
rized video frames suffer from several types of degradation
and deformation; Fluctuation in aspect ratio, background
noise, and blur are the main causes of poor recognition ac-
curacy. Ratio fluctuation comes from the variety of fonts
used and shape adjustment caused by aligning characters in
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Fig. 7 Characters extracted from video.

fixed space when superimposing them. Background noise
is caused by misjudging the background region as character
region due to similar properties such as color or size. Blur
is derived from the low spatial resolution of the image and
inappropriate thresholds used in binarizing the video frame.
Figure 7 shows typical characters extracted from binarized
frames using the method proposed in [23]. Characters with
varied aspect ratio are shown on the upper row (a) and char-
acters with background noise or blur are shown on the lower
row (b). On the upper low, each value of “Origin. ratio” indi-
cates the original aspect ratio (horizontal size/vertical size)
of the each sample, and each value of “Ave. ratio” indicates
the averaged aspect ratio of training data mentioned below
in each sample’s category. These values show that the aspect
ratio of these samples are strongly fluctuated.

We used the following data in the recognition ex-
periments. As the training data set, we used 67 fonts
of machine-printed Japanese characters from 3,190 cate-
gories. As the test data set, 9,980 samples were selected
from samples we gathered; They contained 7,841 clean /
ratio-fluctuated / slightly noisy characters and 2,139 noisy /
blurred ones.

3.2 Experimental Conditions

Normalization size for each sample was R = 64 pixels.
Each feature vector consisted of 256 dimensional compo-
nents (8× 8 blocks × 4 directions). The dictionary was con-
structed by averaging features from the training samples for
each category. The following Euclidean distance was used
as the classifier

distc =

√∑64

m=1

∑4

i=1
(dc

m,i − d̄c
m,i)

2. (12)

In the adaptive normalization process, the adaptation itera-
tion was set to the 1 time. N1 and N2 were decided through
a preliminary experiment. We used N1 = 128 for the aspect

Fig. 8 Classification rates versus normalization parameter.

ratio estimation and N2 = 16 for the recognition confidence
measure.

3.3 Experimental Results

First, we compared the adaptive normalization technique to
conventional fixed normalization; the input pattern was nor-
malized using a pre-defined aspect ratio. In this paper we
applied the following two normalization flows as conven-
tional techniques; In the first one (fixed normalization 1),
multiply the shorter rectangular length by the normalization
parameter, rt (= 1.0 ∼ 1.6), so that the input pattern be-
comes more square. For example, when r0

x < r0
y , rx and ry

are given by

rx = r0
x · R/min(r0

x · rt, r0
y ), (13)

ry = R, (14)

where min(, ) is the operation that returns the smaller ele-
ment. When r0

x > r0
y , the operation is applied to r0

y in the
same manner. Normalization with rt = 1.0 yields the nor-
malized pattern retaining the original aspect ratio of the in-
put pattern as the standard normalization method. On the
other hand, the second conventional method (fixed normal-
ization 2) normalizes the input pattern to a square shape; the
horizontal and vertical lengths of the normalized pattern are
R and the aspect ratio is constant at 1.0.

Figure 8 shows the 1st and 10th classification rates of
the adaptive normalization method and the two conventional
techniques for all test data. The horizontal axis shows the
normalization parameter rt for the fixed normalization 1.
Figure 8 indicates that the adaptive normalization yielded
12.3% better rates for the 1st classification rates and 5.8%
better rates for the 10th rates than the standard normaliza-
tion, rt = 1.0. Also the best result of the 1st and 10th clas-
sification rates obtained by rt = 1.3 in fixed normalization
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Fig. 9 Classification rates for each feature.

1 and the 1st classification rate of fixed normalization 2 are
lower than that offered by the adaptive normalization. These
results show that the proposed adaptive normalization ac-
curately estimates and determines the rectangular sizes for
each input pattern in the presence of aspect ratio fluctuation.
On the other hand, the 10th classification rate obtained by
the fixed normalization 2 is only slightly higher than that
of the proposed adaptive normalization method. From these
results, square normalization by the fixed normalization 2
seems to offset some degree of the ratio fluctuation in the
compulsory normalization method. However, this method
deforms patterns of different categories to a similar shape
and so degrades the 1st classification rate.

Next, we examined the effectiveness of the proposed
feature compensation technique. The conventional method
consists of the original directional feature without compen-
sation technique. Adaptive normalization was applied to
both features. Figure 9 shows the classification rates of
these methods for a data set containing only background
noise and blur. The compensated feature achieved about
8% better classification rates than the original one for all
candidate orders. In particular, for the top ten candidates,
the compensated feature obtained 7.7% higher rates than the
original one; that means our proposed method yielded 28%
fewer errors than the original one. This result proves that
the proposed feature compensation effectively achieves ro-
bustness against image degradation such as that caused by
background noise and blur.

Finally, we evaluated the overall performance of the
proposed method using all test data including clean and de-
graded data. Figure 10 shows the classification rates for
each method. We used rt = 1.0 in the fixed normalization
1 as the standard method retaining the original aspect ratio
of the input pattern. Figure 10 shows that adaptive normal-
ization offers significantly higher rates for every candidate
order than the normalization method that holds the original
aspect ratio of the input pattern. Moreover, the compensated
feature yields about 2% higher classification rates than the

Fig. 10 Classification rates for all test data.

Table 1 Classification rates with/without ratio selection.

1st rate 10th rate
With ratio selection 78.53% 91.93%

Without ratio selection 75.20% 90.56%

Table 2 Classification rates using adaptive normalization and fixed nor-
malization 1 with ratio selection.

1st rate 10th rate
Adaptive norm. 78.53% 91.93%

Fixed norm. 1 with ratio selection 78.12% 91.34%

original one for both fixed and adaptive normalization. This
advantage proves that our method can effectively offset the
variation in features caused by degradation without lowering
the recognition accuracy for clean data. The results shown in
Fig. 10 mean that our proposed method is effective for both
fluctuation of aspect ratio as deformation and background
noise and blur as image degradation.

3.4 Discussion

We first evaluated the effect of ratio selection using the
confidence measure. Table 1 shows the classification rates
with/without the ratio selection. From Table 1, the use of ra-
tio selection raised the recognition accuracy for both 1st and
10th rates. This shows that the proposed confidence mea-
sure and ratio selection procedure are effective for avoiding
over-fitting to erroneous sizes.

Next, we compared the classification rates obtained by
adaptive normalization to those obtained by the fixed nor-
malization 1 using ratio selection between rt = 1.0 and
rt = 1.3 to examine the effectiveness of aspect ratio esti-
mation. Table 2 shows the 1st and 10th classification rates
for each method. From Table 2, the aspect ratio estimation
yielded more appropriate ratios automatically and so raised
the recognition accuracy. It should be noted that it’s difficult
to know parameter rt = 1.3 for the best rates in the fixed
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Fig. 11 Classification rates for each iteration time.

Table 3 CPU run time with each normalization method.

CPU run time
Adaptive normalization 3.13 msec

Fixed normalization 1.97 msec

normalization 1 in advance.
Then, we examined the classification rates in repeating

the adaptive normalization for validating the effect of the
normalization iteration. Figure 11 shows the 1st and 10th
classification rates for each iteration with the adaptive nor-
malization. When the iteration time, N1, is more than 1, the
classification rates for both 1st and 10th are saturated. This
result indicates that the adaptive normalization effectively
estimates the rectangular sizes but has also limited ratio es-
timation ability.

Moreover, we compared the CPU run time required
for the recognition with adaptive normalization to that with
fixed normalization. The system resources and development
environment are as follows:

• CPU: Core2 Duo E6600 2.4 GHz
• Memory: 1.5 GB
• OS: Windows XP
• Language: C/C++

Table 3 shows the CPU run time per sample for each nor-
malization method. The process assessed ran from pattern
normalization to classification, and the CPU run time was
computed by averaging the time taken to process each sam-
ple in the complete test data set. Table 3 shows that adaptive
normalization has consumes more CPU run time. The in-
crease is caused by the repetition of feature extraction and
classification and the addition of the ratio selection process.
However, this increase in time is offset by the increase in
recognition accuracy.

Figure 12 shows examples recognized correctly by the
proposed method which were recognized erroneously by
the conventional one (correct result ← erroneous result).
Figure 12 (a) shows examples with ratio fluctuation and
Fig. 12 (b) shows examples with background noise or blur.

Fig. 12 Examples of correct recognition.

Fig. 13 Examples of mis-recognition.

The upper row in (a) expresses first normalized patterns and
their aspect ratios. The lower one in (a) expresses adap-
tive normalized patterns and their aspect ratios. “Ave. ratio”
means the averaged aspect ratio of training data. Those ex-
amples show that the proposed normalization method well
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handles aspect ratio fluctuation and can estimate the most
appropriate aspect ratios. With regard to the examples in
(b), the proposed method effectively compensated the fea-
ture fluctuation, and so suppressed errors.

Figure 13 shows examples recognized correctly by the
original feature that were recognized erroneously by the
compensated one for the first candidate (correct category→
erroneous result). The errors in (a) are caused by the mis-
normalization of the aspect ratio of the input pattern, it ap-
proaches erroneous category’s ratio, and the failure of ratio
selection using the confidence measure. The errors in (b) are
caused by the compensation of feature values on the blocks
deemed to be strongly degraded.

4. Conclusion

We have proposed a feature extraction method that is based
on category-dependent processing for the recognition of
characters exhibiting both deformation and degradation.
Our method estimates the degrees of deformation and degra-
dation of the input pattern by exploiting category-specific
information. The estimation realizes adaptive compensa-
tion of aspect ratio fluctuations and feature value corrup-
tion caused by image degradation. Recognition experiments
with video texts exhibiting varying levels of deformation
and degradation showed that our method achieves higher
classification rates than the conventional method.

Future works include examining an iterative compen-
sation procedure and expanding our method to achieve ro-
bustness against subtractive noise.
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