
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010
1303

LETTER

Generalized Hash Chain Traversal with Selective Output

Dae Hyun YUM†a), Jae Woo SEO†, Kookrae CHO††, Nonmembers, and Pil Joong LEE†, Member

SUMMARY A hash chain H for a one-way hash function h(·) is a se-
quence of hash values 〈v0, v1, . . . , vn〉, where v0 is a public value, vn a secret
value, and vi = h(vi+1). A hash chain traversal algorithm T computes and
outputs the hash chain H, returning vi in time period (called round) i for
1 ≤ i ≤ n. While previous hash chain traversal algorithms were designed
to output all hash values vi (1 ≤ i ≤ n) in order, there are applications
where every m-th hash value (i.e., vm, v2m, v3m, . . .) is required to be out-
put. We introduce a hash chain traversal algorithm that selectively outputs
every m-th hash value efficiently. The main technique is a transformation
from a hash chain traversal algorithm outputting every hash value into that
outputting every m-th hash value. Compared with the direct use of previous
hash chain traversal algorithms, our proposed method requires less memory
storages and computational costs.
key words: hash chain, fractal traversal, amortization

1. Introduction

A one-way hash function h : {0, 1}∗ → {0, 1}l converts an
arbitrary block of input message into a fixed-size bit string.
It is easy to compute the hash value for a given message but
infeasible to find a message that has a given hash value. A
hash chain H for the one-way hash function h(·) is a se-
quence of hash values 〈v0, v1, . . . , vn〉, where vn is a ran-
domly chosen secret value, vi is iteratively generated by
vi = h(vi+1) (from i = n − 1 to i = 0), and v0 is a pub-
lic value. For i < i′, vi can be easily calculated from vi′

by vi = hi′−i(vi′) but computing vi′ from vi is infeasible be-
cause of the one-wayness of h(·). A hash chain traversal
algorithm T computes and outputs the hash chain H, start-
ing from v1 and ending with vn, by using dynamic memory
storages (called pebbles). All previous hash chain traver-
sal algorithms (e.g., [1]–[5]) have the output interval m = 1,
which means that T outputs all hash values v1, v2, v3, . . . , vn.

Hash chains have been used for a variety of security ap-
plications such as one-time password [6], secure routing [7],
multicast authentication [8], payment system [9], and on-
line auction [10]. To utilize hash chains efficiently, applica-
tions need appropriate hash chain traversal algorithms. As
each application requires a different hash output interval,
hash chain traversal algorithms with various m are required.
For example, a distance vector update originated from a
node in SEAD (Secure Efficient Ad hoc Distance vector)

Manuscript received November 11, 2009.
†The authors are with the Department of Electronic and Elec-

trical Engineering, POSTECH, Pohang, Kyungbuk, 790–784, Re-
public of Korea.
††The author is with the Division of Advanced Industrial Sci-

ence & Technology, DGIST, Daegu, 704–230, Republic of Korea.
a) E-mail: dhyum@postech.ac.kr

DOI: 10.1587/transinf.E93.D.1303

routing protocol contains a sequence number and a metric
for each destination [7]. The sequence number is used to
indicate the freshness of each route update and is limited
by n (the length of hash chain). The metric is the distance,
measured in number of hops, from the originating node to
the destination and is limited by m (the output interval). To
date, no hash chain traversal algorithm with m ≥ 2 is known.
Therefore, one has no choice but to use a hash chain traver-
sal algorithm T with m = 1 and extract vm, v2m, v3m, . . . from
the outputs of T (i.e., v1, v2, v3, . . . , vn).

In this work, we introduce a generalized hash chain
traversal algorithm that selectively outputs every m-th hash
value efficiently where m ≥ 1, to which previous algorithms
belong as a special case of m = 1. The main technique is
a transformation from a hash chain traversal algorithm T
with m = 1 into a generalized traversal algorithm GT with
m ≥ 1. Since we treat the underlying traversal algorithm T
as a black-box, any previous hash chain traversal algorithm
can be used as an input to the proposed transformation. The
generalized hash chain traversal algorithm obtained from the
transformation reduces memory storages and computational
costs.

2. Hash Chain Traversal for m = 1

Influenced by amortization techniques of [11], Jakobs-
son [1] first introduced a single-layer fractal hash chain
traversal algorithm that can traverse a hash chain of length n
with 	log n
 budget and 	log n
 pebbles, where budget means
the worst case computational cost to output each hash value
and log � log2. To reduce the budget, Coppersmith and
Jakobsson [2] adopted a double-layer fractal structure with
extra pebbles and constructed a hash chain traversal algo-
rithm that can traverse a hash chain of length n with � 1

2 log n�
budget and 	log n
+	log(log n+1)
 pebbles, which is almost
optimal in terms of budget-times-storage complexity.

At CT–RSA 2009, we introduced a single-layer frac-
tal hash traversal algorithm that is also almost optimal [5]∗.
While our algorithm of [5] is based on the simple single-
layer fractal structure of [1], it reduces budget by half with-
out using extra pebbles; total 	log n
 pebbles and 	 1

2 log n

budget are needed. In terms of the budget-times-storage
complexity, our algorithm of [5] is the best hash chain
traversal algorithm.

∗Note that Sungwook Eom was a co-author of the CT-RSA
paper, while Kookrae Cho joins in this work.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

1304
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Algorithm 1 Traversal algorithm T
Input:

(
n, l, h(·), �p)

1: Tsetup
(
n, l, h(·), �p);

2: v = ⊥;
3: for c = 1 to c = n do
4: Ttraversal

(
n, h(·), �p, c, v);

5: output v;
6: end for
7: halt;

Algorithm 2 Subroutine Tsetup

Input:
(
n, l, h(·), �p)

1: κ ← log n;

2: vn
R← {0, 1}l;

3: v0 ← hn(vn);
4: i← 1;
5: while i ≤ κ do
6: pi.position← 2i;
7: pi.destination← pi.position;
8: pi.value← hn−2i

(vn);
9: pi.status← arrived;

10: i← i + 1;
11: end while
12: halt;

As all previous hash chain traversal algorithms have the
output interval m = 1, we can think of a traversal algorithm
T as a combination of two subroutines Tsetup and Ttraversal.
As an example, we present the traversal algorithm of [5]
in Algorithm 1 with subroutines in Algorithm 2 and Algo-
rithm 3, where n is the length of the hash chain, l is a security
parameter, h(·) is a hash function, and �p is an array of peb-
bles. Tsetup stores in pebbles some carefully chosen hash
values of the chain including the secret value vn. Each time
Ttraversal is executed, it outputs the next hash value and re-
arranges pebbles to facilitate future computations. The per-
formance of Algorithm 1 is as follows.

Theorem 1 ([5]): Algorithm 1 can traverse a hash chain of
length n = 2γ for an integer γ, with 	 1

2 log n
 budget and
log n pebbles.

For details on the algorithm and its analysis, please refer to
[5].

3. Hash Chain Traversal for m ≥ 1

In this section, we build a generalized hash chain traversal
algorithm GT with an output interval m ≥ 1 based on a
traversal algorithm T with m = 1. For simplicity, we let
n = 2γ = km for some integers γ, k and use Algorithm 1 as
T .

Firstly, to construct a generalized hash chain traver-
sal algorithm GT 1, we can use the traversal algorithm
T directly by extracting every m-th hash value (i.e.,
vm, v2m, v3m, . . .) from the outputs ofT ; algorithm 4 formally
describes the idea. An example run of GT 1 for n = 16 and
m = 4 is given in Fig. 1, which is based on the correspond-
ing example of T in [5]; we only change C to V from the

Algorithm 3 Subroutine Ttraversal

Input:
(
n, h(·), �p, c, v)

1: κ ← log n;
2: if c > n then
3: halt;
4: else
5: available← 	 κ2
;
6: end if
7: i← P(�p, arrived, 0);
8: if c mod 2 = 1 then
9: v← h(pi.value);

10: available← available − 1;
11: else
12: v← pi.value;
13: pi.position← pi.position + 3 · 2i;
14: pi.destination← pi.destination + 2 · 2i;
15: pi.value← ⊥;
16: pi.status← ready;
17: j← P(�p, arrived, pi.position);
18: if j � ⊥ then
19: pi.value← p j.value;
20: pi.status← active;
21: end if
22: end if
23: i← P(active, 0);
24: if i = ⊥ then
25: halt;
26: end if
27: while available > 0 do
28: pi.position← pi.position − 1;
29: pi.value← h(pi.value);
30: available← available − 1;
31: if pi.position = pi.destination then
32: pi.status← arrived;
33: j← P(�p, ready, pi.destination);
34: if j � ⊥ then
35: p j.value← pi.value;
36: p j.status← active;
37: end if
38: go to line 23;
39: end if
40: end while
41: halt;

example of [5] if the round is a multiple of m (= 4).
The storage requirement of GT 1 is the same as that of

T , i.e., log n pebbles. To compute each output hash value
v jm where 1 ≤ j ≤ k, GT 1 needs m executions of Ttraversal.
Therefore, the budget of GT 1 is m · 	 1

2 log n
 evaluations of
h(·). Theorem 2 follows easily.

Theorem 2: GT 1 can traverse a hash chain of length n =
2γ = km for integers γ, k, and the output interval m, with
m · 	 1

2 log n
 budget and log n pebbles.

To build a more efficient traversal algorithm, we should
remove unnecessary computations from GT 1. Let us ex-
plain how to simplify the traversal algorithm with the pre-
vious example of Fig. 1. Basically, we introduce four im-
provements. First, the pebble P1, which is marked by © in
Fig. 2, is not necessary in the setup stage, because we do not
output v1 or v2. Second, we may compute v4 from v8 instead
of storing v4 in the setup stage. This technique, which does
not increase budget while reducing a pebble, was also used

LETTER
1305

Fig. 1 Generalized traversal algorithm GT 1.

Fig. 2 Simplification of GT 1.

Algorithm 4 GT 1

Input:
(
n, l, h(·), �p,m)

1: Tsetup
(
n, l, h(·), �p);

2: v = ⊥;
3: for c = 1 to c = n do
4: Ttraversal

(
n, h(·), �p, c, v);

5: if c ≡ 0 (mod m) then
6: output v;
7: end if
8: end for
9: halt;

in previous works [1], [2], [5]. Therefore, P2 marked by ⊗
in Fig. 2 can be removed. Third, as we do not output hash
values vi for i � 0 (mod 4), the computations marked by �
in Fig. 2 can be omitted. Finally, rearrangement of pebbles
can be simplified by eliminating computations related to vi

for i � 0 (mod 4). That is, the computations marked by �
in Fig. 2 can also be omitted.

Fortunately, these four simplifications can be applied
without modifying the inner codes of Tsetup or Ttraversal. Let
us denote h′(·) � hm(·) and define an auxiliary hash chain
Haux = 〈u1, u2, u3 . . . , uk〉 of length n

m (= k) with respect to
h′(·). Note that h′(·) is only for notational convenience. If
we set uk = vn (= vkm), we have Haux = 〈u1, u2, u3, . . . , uk〉 =
〈vm, v2m, v3m, . . . , vkm〉 because each element ui of Haux sat-
isfies ui = h′(ui+1) = hm(ui+1). Therefore, we can design
an improved generalized traversal algorithm GT 2 as Algo-
rithm 5.

The storage requirement of GT 2 is that of T with re-
spect to the auxiliary hash chain H′ of length n

m , i.e., 	log n
m

pebbles. To compute each output hash value v jm where
1 ≤ j ≤ k, GT 2 executes the underlying traversal algorithm
Ttraversal only one time and thus the budget is 	 1

2 log n
m
 eval-

uations of h′(·) or equivalently m · 	 1
2 log n

m
 evaluations of
h(·). Consequently, Theorem 3 follows easily.

Theorem 3: GT 2 of Algorithm 5 can traverse a hash chain

1306
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Algorithm 5 GT 2

Input:
(
n, l, h(·), �p,m)

1: Define h′(·) as hm(·);
2: Tsetup

(
n
m , l, h

′(·), �p
)
;

3: v = ⊥;
4: for c = 1 to c = n

m do

5: Ttraversal

(
n
m , h

′(·), �p, c, v
)
;

6: output v;
7: end for
8: halt;

of length n = 2γ = km for integers γ, k, and the output
interval m, with m · 	 1

2 log n
m
 budget and 	log n

m
 pebbles.

For example, if the SEAD routing protocol [7] with a
16-bit sequence number and maximum distance 16 hops be-
tween routers implementsGT 1 andGT 2, thenGT 1 requires
	log 216
 = 16 pebbles and 16 · 	 1

2 log 216
 = 128 budget and

GT 2 requires 	log 216

16
 = 12 pebbles and 16·	 1
2 log 216

16
 = 96
budget.

Generally, if T requires p(n) pebbles and b(n) budget
with respect to a hash chain of length n, then GT 1 needs
p(n) pebbles and m · b(n) budget and GT 2 needs p(n

m) peb-
bles and m · b(n

m) budget.

Remark. Sella [4] proposed a scalable hash chain traversal
algorithm that traverses a hash chain of length n with budget
b, where b is a constant unrelated to n. Kim [3] reduced the
storage requirement of Sella’s algorithm slightly by n1/(b+1)−1

n1/(b+1) .
If the Sella algorithm requires p(n, b) pebbles for a given
b, the transformed traversal algorithm by GT 2 uses p(n

m , b)
pebbles.

4. Conclusion

We, for the first time, studied the hash chain traversal algo-
rithm that selectively outputs hash values. We constructed
an efficient hash chain traversal algorithm with the out-
put interval m ≥ 1 based on previous traversal algorithms
with m = 1. As the proposed transformation is generic,
it can be directly applied to known traversal algorithms.
We leave a non-black-box approach to design more efficient

generalized traversal algorithm as an open problem.

Acknowledgement

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2009-0075147), the Deagu Gyeongbuk insti-
tute of science and technology (DGIST) Basic Research
Program of the MEST, and BK21.

References

[1] M. Jakobsson, “Fractal hash sequence representation and traversal,”
IEEE International Symposium on Information Theory, pp.437–
444, 2002. Available at IACR ePrint Archive, Report 2002/001,
http://eprint.iacr.org/

[2] D. Coppersmith and M. Jakobsson, “Almost optimal hash sequence
traversal,” Financial Cryptography 2002, Lect. Notes Comput. Sci.,
vol.2357, pp.102–119, Springer, 2002.

[3] S.R. Kim, “Improved scalable hash chain traversal,” ACNS 2003,
Lect. Notes Comput. Sci., vol.2846, pp.86–95, Springer, 2003.

[4] Y. Sella, “On the computation-storage trade-offs of hash chain
traversal,” Financial Cryptography 2003, Lect. Notes Comput. Sci.,
vol.2742, pp.270–285, Springer, 2003.

[5] D.H. Yum, J.W. Seo, S. Eom, and P.J. Lee, “Single-layer fractal hash
chain traversal with almost optimal complexity,” CT-RSA 2009,
Lect. Notes Comput. Sci., vol.5473, pp.325–339, Springer, 2009.

[6] N. Haller, “The s/key one-time password system,” RFC 1760, Inter-
net Engineering Task Force, 1995.

[7] Y.C. Hu, D.B. Johnson, and A. Perrig, “SEAD: Secure efficient dis-
tance vector routing for mobile wireless ad hoc networks,” Ad Hoc
Networks, vol.1, no.1, pp.175–192, 2003.

[8] A. Perrig, R. Canetti, J.D. Tygar, and D.X. Song, “Efficient authen-
tication and signing of multicast streams over lossy channels,” IEEE
Symposium on Security and Privacy, pp.56–73, IEEE Computer So-
ciety, 2000.

[9] R.L. Rivest and A. Shamir, “Payword and micromint: Two simple
micropayment schemes,” Security Protocols Workshop, Lect. Notes
Comput. Sci., vol.1189, pp.69–87, Springer, 1996.

[10] S.G. Stubblebine and P.F. Syverson, “Fair on-line auctions without
special trusted parties,” Financial Cryptography 1999, Lect. Notes
Comput. Sci., vol.1648, pp.230–240, Springer, 1999.

[11] G. Itkis and L. Reyzin, “Forward-secure signatures with optimal
signing and verifying,” CRYPTO 2001, Lect. Notes Comput. Sci.,
vol.2139, pp.332–354, Springer, 2001.

