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Efficient Analyzing General Dominant Relationship Based on
Partial Order Models

Zhenglu YANG†a), Lin LI††, Nonmembers, and Masaru KITSUREGAWA†††, Fellow

SUMMARY Skyline query is very important because it is the basis of
many applications, e.g., decision making, user-preference queries. Given
an N-dimensional dataset D, a point p is said to dominate another point q
if p is better than q in at least one dimension and equal to or better than q
in the remaining dimensions. In this paper, we study a generalized problem
of skyline query that, users are more interested in the details of the dom-
inant relationship in a dataset, i.e., a point p dominates how many other
points and whom they are. We show that the existing framework proposed
in [17] can not efficiently solve this problem. We find the interrelated con-
nection between the partial order and the dominant relationship. Based on
this discovery, we propose a new data structure, ParCube, which concisely
represents the dominant relationship. We propose some effective strategies
to construct ParCube. Extensive experiments illustrate the efficiency of our
methods.
key words: skyline query, algorithm, dominant relationship analysis, per-
formance evaluation

1. Introduction

The skyline query [3] has attracted considerable attention
these years because it is the basis of many applications,
e.g., multi-criteria decision making [3], user-preference
queries [9], [11] and microeconomic analysis [17]. Skyline
mining aims to find those points, which are not dominated
by others, in a d-dimensional spatial dataset. This prob-
lem can be seen as a special class of pareto preference
queries [11], convex hull [23] or maximum vectors [14].
Figure 1 shows one classic example of skyline query that
customers are always interested in those “best” hotels that
are better than others at least at one of the two criteria, the
distance and the price, with smaller values. The skyline of
the example dataset in Fig. 1 consists of a and c.

There are many issues related to skyline query, includ-
ing the general full-space skyline points querying [3], [7],
[13], [21], subspace skyline points mining [26], [28], [31],
skyline points extracting in stream [18], [20], [27], Top-k
and high-dimensional skyline points extracting [5], [6], min-
ing skyline in distributed environments [2], [10], [29], ap-
proximate skyline querying [12]. All these issues, how-
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Fig. 1 Example of the skyline query.

ever, concerned only the pure dominant relationship among
a dataset, i.e., a point p is whether dominated by others or
not, and got those non-dominated ones as results.

Recently, Li et al. [17] proposed to analyze the dom-
inant relationship in a business model that, users are more
interested in the detail of the dominant relationship in a
dataset, i.e., a point p dominates how many other points and
is dominated by how many others. Here we show an exam-
ple.

Example 1: Consider you are a manager of hotel company.
You want to know the business position of a local hotel b in
the current market with regard to your preference, i.e., price
and distance to the beach, by checking how many other ho-
tels are better/worse than b. For the sample hotels shown in
Fig. 1, you can deduct the conclusion that hotel b is better
than 2 other hotels but worse than another 2 hotels with re-
gard to your preference∗.

In real world, however, users are always interested in
not only “how many” objects are dominating/dominated by
a specific object, but also “whom” they are, which was not
mentioned in [17]. This problem can be seen as a general
dominant relationship analysis to the ones proposed in [17].
It is naively thought, can be easily solved by associating
each object with its corresponding cuboid in DADA [17].
So when users query the dominant relationship, these ob-
jects will be extracted simultaneously. Nevertheless, due to
a huge number of duplicate existence in DADA, the stor-
age overhead and the query time will be unacceptable for
users. In this paper, we aim at proposing efficient and ef-
fective methods to answer the “whom” problem. Because
of the interrelated connection between the partial order and
the dominant relationship, we propose a new data structure

∗Note that the analysis here can be further used to determine
the price of a hotel, which should be competitive in the current
market while reserving the most profit.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers
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Fig. 2 DAG representation in 2-d space.

called ParCube, which concisely represents the complete
information of the general dominant relationship based on
the partial order analysis. Specifically, we record the partial
order as a Directed Acyclic Graph (DAG) for each cuboid in
ParCube and propose efficient data structures and strategies
to answer the general dominant relationship queries. More-
over, we introduce efficient strategies to construct ParCube.
The experimental results and performance study confirms
the efficiency and effectiveness of our strategies.

To illustrate the core idea of this paper, here we show
a simple example. Figure 2 represents the partial order (en-
coded as DAG format) of the example dataset in Fig. 1 in
2-dimensional space. We can know the point b dominates
the points d and e and is dominated by the points a and c, by
counting the out-link and in-link of d, respectively.

Here we solve not only the how many problem, but
also the whom problem. From this example, we know that
the general dominant relationships of a dataset can be rep-
resented into their corresponding partial order representa-
tion (i.e., DAGs). In contrast, the DADA data structure [17]
applies the grid-based index technique, which does not ef-
ficiently record the dominant relationship, as will be illus-
trated in the experimental evaluation.

Our contributions in this paper are as follows:

• We generalize the dominant relationship queries pro-
posed in [17], as General Dominant Relationship
Query (GDRQ). We find the interrelated connection
between GDRQ and the partial order analysis.
• We propose a data cube, ParCube, which concisely

represents the complete information of the general
dominant relationship as DAGs based on the partial or-
der for each cuboid. We introduce effective methods to
construct the ParCube.
• We conduct comprehensive experiments to illustrate

the effectiveness and efficiency of our methods.

The remainder of this paper is organized as follows. In
Sect. 2, we discuss the related work. In Sect. 3, we present
the preliminaries of this paper. A naive method based on
existing strategy to answer GDRQ is introduced in Sect. 4.
The computation of ParCube is presented in Sect. 5.1 and
the query processing strategies for generalized dominant re-
lationship analysis using ParCube is described in Sect. 5.2.
The performance analysis are reported in Sect. 6. We con-
clude the paper and provide suggestions for future work in
Sect. 7.

2. Related Work

2.1 Skyline Query

Skyline query was first introduced in [3]. The problem
comes from some old classic topics, such as convex hull [23]
and maximum vectors [14].

Skyline query algorithms can be classified into two
categories. The first one is non-index based method, i.e.,
BNL [3], SFS [7], DC [3]. The second category is index
based method, i.e., NN [13], BBS [21], SUBSKY [26]. As
expected, the index-based methods have been shown to be
superior over the non-index-based ones and furthermore,
the index-based strategies can progressively return answers
without having to scan the entire data input. Specially, SUB-
SKY [26]† was proposed to compute low-dimensional Sky-
lines and is the best algorithm for subspace skyline discov-
ering. Based on the data distribution, SUBSKY creates an
anchor point for each cluster, and builds a B+-tree on the
L∞ distance between each object to its corresponding an-
chor. Then, SUBSKY scans the tree leaf nodes according
to the ascending order of the points’s smallest value of d-
dimension to get Skylines.

From the view point of dimension concerned, the ex-
isting algorithms can be also classified into two categories,
i.e., full space based method [13], [21], and subspace based
method [26], [28], [31]. Other related work on skyline min-
ing includes mining skyline in distributed environments [2],
[10], [29], skyline query in data stream [18], [20], [27], ap-
proximate skyline query [12], interesting skyline points in
high-dimensional space [5], [6].

All the above works concerned only the pure domi-
nant relationship and, outputted those points which are not
“dominated” by others. Note that in addition to the origi-
nal meaning in [3], “dominated” here can be a variant, i.e.,
k-dominant [6].

In contrast, Li et al. proposed to analyze a more general
dominant relationship from a microeconomic aspect [17].
The users are always interested in not only the binary dom-
inant relation between the points in a dataset, but also the
statistical information, i.e., how many other points are dom-
inating/dominated by a specific point. In [17], the au-
thors proposed three basic Dominant Relationship Queries
(DRQs) and constructed a data cube, DADA, to efficiently
organize the information necessary to DRQs. Moreover, a
novel data structure, D*-tree, was proposed to fulfill effi-
cient computation for DRQs.

However, users are always interested in not only “how
many” objects are dominating/dominated by a specific ob-
ject, but also “whom” they are, which was not mentioned
in [17]. This problem cannot be easily solved by using the
methodologies proposed in [17] because of the large dupli-
cate storage cost in DADA. In this paper, we propose effi-

†We describe the detail of SUBSKY because it is one of the
baseline algorithms in the experimental evaluation.
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cient data structure and strategies to solve such kind of gen-
eral dominant relationship query based on our discovery that
GDRQ has interrelated connection with partial order.

2.2 Partial Order Mining

Partial order has appeared in many computational models
and there are a lot of applications involves with partial or-
der issues, such as concurrent models [15], optimistic roll-
back recovery [25], biology [16], security [24] and prefer-
ence query [11].

In this paper, we mainly consider the problem that how
to convert the spatial dataset into partial order representa-
tion, which are then queried to get the general dominant re-
lationship efficiently. As far as we know, there is no work on
this problem. An interesting study investigated the problem
of mining a small set of partial orders globally fitting data
best [19]. Particularly, [19] addressed sequence data. Very
different from the problem studied here, [19] tried to find
one or a (small) set of partial orders that fit the whole dataset
as well as possible, which is an optimization problem. An
implicit assumption is that the whole dataset somehow fol-
lows a global order. More recently, [4] were intended for
discovering several small partial orders from a set of se-
quences instead of only one that describes all or most of the
set. They proposed to use closed partial orders to summa-
rize sequential data in a concise manner. Yet different from
this paper, they did not further explore the partial orders for
a specific purpose (i.e., dominant relationship extraction).

In this paper, however, we need to determinate the par-
tial orders given a spatial dataset. We propose a simple
method of converting the spatial dataset to the correspond-
ing sequence dataset and then, apply existing strategies such
as that used in [4] with modification by considering skyline
property to generate the partial orders.

3. Preliminaries

Given a d-dimension space S={s1, s2, . . . , sd}, a set of points
D={p1, p2, . . . , pn} is said to be a dataset on S if every pi ∈
D is a d-dimensional data point on S . We use pi.s j to denote
the jth dimension value of point pi. For each dimension si,
we assume that there exists a total order relationship. For
simplicity and without loss of generality, we assume smaller
values are preferred [3] (i.e., MIN operation) in this paper.

Definition 1 (dominate). A point p is said to dominate an-
other point q on S if and only if ∀sk ∈ S , p.sk ≤ q.sk and
∃st ∈ S , p.st < q.st.

A partial order on D is a binary relation 	 on D such
that, for all x,y,z ∈ D, (i) x 	 x (reflexivity), (ii) x 	 y and
y 	 x imply x=y (antisymmetry), (iii) x 	 y and y 	 z imply
x 	 z (transitivity). We use (D,	) to denote the partial order
set (or poset) of D. We denote by ≺ the strict partial order
on D, i.e., x ≺ y if x 	 y and x � y. Given x,y ∈ D, x and y
are said to be comparable if either x ≺ y or y ≺ x; otherwise,
they are said to be incomparable.

Fig. 3 Example dataset.

The Definition 1 can be translated into the ordering
context as follows:

Definition 2 (dominate in ordering context). A point p is
said to dominate another point q on S if and only if ∀sk ∈ S ,
p.sk 	 q.sk and ∃st ∈ S , p.st ≺ q.st.

The partial order (D,	) can be represented by a DAG
G = (D, E), where (υ, ω) ∈ E if ω 	 υ and there does
not exist another value x ∈ D such that ω 	 x 	 υ. For
simplicity and without loss of generality, we assume that G
is a single connected component.

Definition 3 (dominating set, DGS(p, D, S’)). Given a point
p, we use DGS(p, D, S’) to denote the set of points from D
which are dominated by p in the subspace S’ of S.

Definition 4 (dominated set, DDS(p, D, S’)). Given a point
p, we use DDS(p, D, S’) to denote the set of points from D
which dominate p in the subspace S’ of S.

The problem that we want to solve is as follows:

Problem 1 (General Dominant Relationship Query (GDRQ)).
Given a dataset D, dimension space S’ and a point p, find
DGS(p, D, S’) and DDS(p, D, S’).

Note that a skyline point p has the following property:
DDS(p, D, S’)=0. In other words, the skyline query can be
thought as a special case of the general dominant relation-
ship query.

Example 1. Consider the 3-dimensional dataset D = {a, b,
c, d, e, f} in Fig. 3 (a). Given a query point b, dimension
space S ′={D1, D2}, the dominating set DGS(b, D, S ′) = {d,
e} and the dominated set DDS(b, D, S ′) = {a, c}. We will use
this dataset as a running example in the rest of this paper.

4. A Naive Method

To solve the problems defined in Sect. 3, a natural idea is to
extend the framework proposed in [17]. In this section, we
briefly introduce this naive strategy and then, illustrate its
weak points.

The authors in [17] partition the data space by using
griding strategy. For example, Fig. 4 (a) shows a dataset in
2-dimensional space (i.e., {D1, D2}). In Fig. 4 (b), each grid
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Fig. 4 The strategy of DADA for GDRQ.

Fig. 5 The extension of DADA for general dominant relationship analy-
sis.

records the number of the points which current grid domi-
nates. For instance, the gray grids are all those which dom-
inates three points. Instead of recording each grid informa-
tion, [17] proposed D∗-tree to record the compressed infor-
mation (upper/lower bound of a region that dominates the
same number of points). For example, the gray grids can be
partitioned into three regions, which are represented by their
upper bound, i.e., {1, 4}, {3, 4} and {4, 2}, respectively. The
whole D∗-tree is shown in Fig. 4 (c), which is constructed
based on the rule defined in [17] (Definition 4.7). Fig. 4 (d)
shows the compressed information about the three gray re-
gions, i.e., the lower bound (1st column), the upper bound
(2nd column) and the number of points dominated (3rd col-
umn). Given a point Pquery, to get the number of the points
Pquery dominates, it needs to start from the root of the D∗-
tree and move down the node with the upper bound that can
dominate Pquery. Once it knows that Pquery is contained in
a region that the node dominates, the desired number of the
points which are dominated by Pquery can be output. Re-
fer [17] for more detail.

Yet there are two issues arising when processing the
general dominant relationship queries by using DADA’s
strategy. Firstly, the “whom” problem can not be efficiently
solved. For example, although the gray regions in Fig. 4 (b)
all dominate three points, they have different dominating
sets, i.e., {b, d, e} for blue and yellow regions and {f, d, e}
for red region. Although by adding the dominating set into
each node of the D∗-tree can naively answer the question (as
shown in Fig. 5), this simple solution will introduce serious
burden of data duplication problem. Therefore, the strategy
of DADA is not appropriate for the general dominant rela-
tionship analysis problem. Another issue is that the search
strategy in DADA while traversing the D∗-tree is inefficient,
especially when the tree has many layers.

Fig. 6 The work flow of ParCube constructing.

5. A Partial Order Based Method

In this section, we propose to efficiently apply the properties
of the partial order to analyze the general dominant relation-
ship. Specifically, we first introduce effective strategies to
construct a partial order data cube (ParCube), which con-
cisely represents the dominant relationship by using DAGs.
Moreover, we propose efficient algorithms to answer the
general dominant relationship queries based on ParCube.
In the following section, we introduce our methods of con-
structing ParCube.

5.1 Constructing ParCube

As described in Sect. 3, the dominant relationship can be
encoded in partial order representation (DAGs). In this sec-
tion, we explain how to construct the partial order data cube
(ParCube) with a spatial dataset input. As far as we know,
there is no work on this problem. In this paper, we propose
to apply strategies from another research context, sequen-
tial pattern mining [1], to get the partial order representa-
tion from a spatial dataset. The whole work flow is shown
in Fig. 6. We propose a simple method of converting the
spatial dataset to the corresponding sequence dataset in the
first process and then, apply existing strategies such as that
used in [4] with little modification in the second and third
processes to generate DAGs from the transformed sequence
dataset. Note that we mainly illustrate how to compute the
cube for a dominating set since computation of a dominated
set can be done in a similar fashion.

The first process in Fig. 6 is to convert the original spa-
tial dataset to the sequence dataset. With a k-dimensional
dataset, we simply get a k-customer sequence dataset, by
sorting the objects in each customer (dimension) according
to their value in ascending order. For example, Fig. 7 (b)
shows the converted sequence dataset of the example spatial
dataset in Fig. 7 (a).

Theorem 1. The converted sequence dataset records all the
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Fig. 7 Process 1 of constructing ParCube.

dominant relationship of the points in the spatial dataset.

Proof. Trivial because the small-large pair (dominant) re-
lationship in the spatial dataset is equivalent to the early-
late pair (dominant) relationship in the converted sequence
dataset. �

The second and the third processes in Fig. 6 aim to de-
termine a partial order that describes the point set in the
subspace S ′ of data space S in D′. The related problem
is addressed in [19] and more recently in [4]. In this paper,
we simply apply the approach in [4] with a minor modifica-
tion that, instead of mining closed sequential patterns [30],
we mine general sequential patterns [1]. In process 2 as
shown in Fig. 6, we discover the sequential patterns from the
transformed sequence dataset by applying PrefixSpan algo-
rithm [22] †, which is the state-of-the-art one.

Specifically, given a n-sequence dataset, we partition it
into several k-sequence datasets, where 2 ≤ k < n, and ap-
ply PrefixSpan to them, respectively, with minimum support
equal to 100%. For example, given the sequence dataset as
shown in Fig. 8 (a), we partition it into k-sequence datasets
where k=2, i.e., {D1,D2}, {D1,D3}, and {D2,D3}. PrefixS-
pan is then applied on them. Note that for k-sequence
datasets where k=1, i.e., {D1}, {D2}, and {D3}, we do not
need use PrefixSpan because the maximal sequential pat-
terns are straightforward (i.e., the sequence itself). For
k-sequence datasets where k=n, i.e., k=3 for the dataset
shown in Fig. 8 (a), we do not need to partition it because
the number of the possible partitioned dataset is one, i.e.,
{D1,D2,D3}.

In fact, the process is the same as building common
data cube, that we traverse every possible subspace (a k-
sequence dataset, i.e., {D1,D2}), and apply PrefixSpan on it
with minimum support equal to 100%.

To save space and convenient the query processing, we
merge these sequential patterns as local maximal sequential
sequences [1], which are not the subsequence of other se-
quential patterns in the same subspace. For example, in sub-
space {D1,D2}, although there are many sequential patterns,
i.e., 〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈 f 〉, 〈ab〉, 〈ad〉, 〈ae〉, 〈a f 〉, and so
forth. We only record the maximal sequential patterns, i.e.,
〈a f de〉, 〈abde〉 and 〈cbde〉, because all the other sequential
patterns are subsequences of these three maximal sequential
patterns.

The maximal sequential patterns of a subspace S
record the dominant relationship between items in S (as be
verified by Theorem 1, Theorem 2). For example, the pat-
tern 〈a f de〉 indicates that a dominates f , dominates d, and
dominates e in subspace {D1,D2}.

Fig. 8 Process 2 of constructing ParCube.

Fig. 9 Process 3 of constructing ParCube.

The result data cube (S eqCube) got from process 2 for
the example dataset is shown in Fig. 8 (b).

Theorem 2. SeqCube records all the dominant relationship
of the points in the sequence dataset D.

Proof. (Proof by Contradiction.) For simplicity, we only
prove for a specific subspace of S eqCube. Assume to the
contrary that there is a dominant relationship between two
points, a dominates b in a subspace S ′, is not represented
in the cuboid S ′ of S eqCube. This means that the sequen-
tial pattern 〈ab〉 is not listed in S ′ of S eqCube, which con-
tradicts our assumption that the sequential pattern mining
process can find all the sequential patterns. �

In process 3, the combinations of the local maximal
sequential sequences are enumerated to generate partial or-
ders with DAGs representation, by applying the method pro-
posed in [4]. The result data cube (ParCube) got from pro-
cess 3 for the example dataset is shown in Fig. 9 (b).

Theorem 3. ParCube records all the dominant relationship
of the points in the spatial dataset D.

Proof. Proof can be deduced based on Theorem 1, Theorem
2 in this paper and [4]. �

†Due to limited space, we skip the detail of PrefixSpan here.
Interested users can refer [22].



YANG et al.: EFFICIENT ANALYZING GENERAL DOMINANT RELATIONSHIP BASED ON PARTIAL ORDER MODELS
1399

Fig. 10 DAG representation of the example dataset in 2-dimensional
space {D1, D2}.

5.2 Querying ParCube Data Cube

The semantic meaning kept in the ParCube data cube is the
key used to extract the general dominant relationship effi-
ciently.

5.2.1 General Dominant Relationship Query (GDRQ)

Given a dataset D, a query point Pquery and a subspace S ′,
the GDRQ is to compute the points dominate or dominated
by Pquery, where Pquery ∈ D.

An important observation in this case is that, if Pquery is
in D, all the general dominant relationship related to Pquery

can be easily discovered by traversing the DAG in a specific
subspace.

As an example, Fig. 10 shows the DAG representation
in subspace {D1, D2}. To facilitate the counting process, the
numbers of points dominating/dominated by current node
(point) are inserted into each node. This process is executed
in the precomputed-mode. Suppose the query point is b,
we can get the points dominated by b immediately, which is
2. Upon users are interested in whom these two points are,
it goes downward following the out-link of b, and gets the
dominating set of b as {d, e}.

In DADA [17] framework, however, it needs to traverse
the D*-tree to get the corresponding class. For example, as-
sume the query point is b, the order of the traversed nodes in
D*-tree, as shown in Fig. 4 (c), is {〈1, 1〉,〈2, 1〉,〈2, 2〉,〈3, 4〉}.
Then it finds the dominating set of b by checking the class of
{〈3, 4〉}. Obviously, DADA consumes more time compared
with our strategy.

6. Experimental Evaluation and Performance Study

To evaluate the efficiency and effectiveness of our strate-
gies, we conducted extensive experiments. We performed
the experiments using a Intel(R) Core(TM) 2 Dual CPU PC
(3 GHz) with a 3 G memory, running Microsoft Windows
XP. All the algorithms were written in C++, and compiled
in an MS Visual C++ environment. We conducted experi-
ments on both synthetic and real life datasets.

Detailed implementation of the algorithms used to
compare is described as follows:

1. SUBSKY. SUBSKY was tested with the algorithm de-
veloped in [26], which is the state-of-the-art algorithm

Fig. 11 Execution time comparison between S UBS KY and ParCube on
skyline query.

for subspace skyline query.
2. Naive. Naive was tested with the extension of

DADA [17], by storing the dominated/dominating
points in the corresponding class, as explained in
Sect. 4.

3. ParCube. ParCube was implemented as described in
this paper.

6.1 Datasets

We employ the synthetic data generator [3] to create our syn-
thetic datasets. They have independent distribution, with di-
mensionality d in the range [3, 6] and data size in the range
[10 k, 50 k]. The default values of dimensionality were 5.
The default value of cardinality for each dimension was
50 k.

6.2 Skyline Query Performance

Because the skyline query is important and can be seen as
a special case of the general dominant relationship query, in
this section, we first evaluated the skyline query answering
performance of ParCube compared with the state-of-the-art
algorithm, S UBS KY [26].

Figure 11 (a) and 11 (b) show the skyline query time
against number of points in the datasets and dimensionality,
respectively. We can see that the ParCube algorithm out-
performs the S UBS KY in both cases by up to an order of
magnitude. This is because the S UBS KY algorithm needs
to traverse the tree data structure (i.e., B-tree) to extract the
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Fig. 12 Execution time comparison between Naive and ParCube on
general dominant relationship query.

skyline on the fly. On contrary, ParCube pre-computes and
stores the skyline points into partial order data structure,
which can be easily extracted out because they exist in the
first layer of DAG graph (no other points dominate them).
Moreover, from the figures we can know that dimensional-
ity has more effect on query performance compared with the
number of points in the datasets.

6.3 Dominant Relationship Query Performance

To test the effect of the General Dominant Relationship
query (GDRQ), we randomly selected 10 different points
based on the synthetic dataset. Figure 12 (a) and (b) show
the query time against number of points in the datasets and
dimensionality, respectively. We can see that the ParCube
approach is better than the Naive strategy. The performance
of Naive becomes worse as number of points or dimension-
ality is larger, while ParCube remains almost the same. The
reason is similar to that explained in Sect. 6.2. Naive needs
to traverse the index data structure (i.e., D∗-tree) to compare
and extract all the required points. In contrast, ParCube
only traverse the DAG graph to direct extract every node it
passed and no comparison is necessary.

6.4 Index Data Structure Construction Performance

The efficiency of ParCube is rooted in the compressed data
structure it discoveries, partial order data cube (ParCube).
In this section, we show the construction time for ParCube
compared with cost of building other index data structure

Fig. 13 Execution time comparison on index building between Naive
and ParCube.

(i.e., D∗-tree) in the Naive algorithm. Figure 13 (a) and (b)
show the execution time for index building against number
of points in the datasets and dimensionality, respectively.
We can see that the ParCube is sensitive to the number of
points in the datasets, that when the number gets larger, the
performance of ParCube construction is worse than that of
D∗-tree building. However, as illustrated in Fig. 13 (b), D∗-
tree construction becomes worse as dimensionality grows,
which means that D∗-tree index building is more sensitive to
the dimensionality compared with ParCube index building.
The reason why the performance of ParCube construction
is good, because in high dimensional space, the probability
of one point dominates another one, is very low. Hence, the
sequential pattern is very few in high dimensional space and
the mining process can terminate quickly.

6.5 Effectiveness of Compression

In this experiment, we explored the compression benefits of
ParCube compared with Naive method.

Figure 14 (a) and (b) show the compression effect
on building the data cube by partial order representation
(ParCube), compared with D∗-tree. They illustrate that us-
ing the compressed data format, DAG, is very efficient on
space usage. Similar to query performance, dimensionality
has more effect on the compression factor compared with
the number of points in the datasets.
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Fig. 14 Compression effect of ParCube against dimensionality and num-
ber of points in datasets.

7. Conclusions

In this paper, we have introduced General Dominant Rela-
tionship Analysis, which could not be easily solved by ex-
isting strategies. Due to the interrelated connection between
the partial order and the dominant relationship, we have pro-
posed a new data structure called ParCube, which concisely
represents the complete information of the general dominant
relationship based on the partial order analysis. We have in-
troduced efficient strategies to construct ParCube. The ex-
perimental results and performance study confirmed the ef-
ficiency and effectiveness of our strategies. In the future, we
will investigate how to further improve the efficiency while
querying the general dominant relationship.
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