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SUMMARY In the area of wireless sensor networks, the efficient spa-
tial query processing based on the locations of sensor nodes is required.
Especially, spatial queries on two sensor networks need a distributed spa-
tial join processing among the sensor networks. Because the distributed
spatial join processing causes lots of wireless transmissions in accessing
sensor nodes of two sensor networks, our goal of this paper is to reduce
the wireless transmissions for the energy efficiency of sensor nodes. In
this paper, we propose an energy-efficient distributed spatial join algorithm
on two heterogeneous sensor networks, which performs in-network spa-
tial join processing. To optimize the in-network processing, we also pro-
pose a Grid-based Rectangle tree (GR-tree) and a grid-based approximation
function. The GR-tree reduces the wireless transmissions by supporting
a distributed spatial search for sensor nodes. The grid-based approximation
function reduces the wireless transmissions by reducing the volume of spa-
tial query objects which should be pushed down to sensor nodes. Finally,
we compare naı̈ve and existing approaches through extensive experiments
and clarify our approach’s distinguished features.
key words: distributed spatial index, distributed spatial join, in-network
query processing, wireless sensor network

1. Introduction

A sensor network is an ad hoc network composed of tiny
sensor nodes having restricted battery, communication, and
computation capabilities. These restrictions have made
a sensor network system managed differently, compared
with traditional mobile or distributed systems. A database
community has viewed a sensor network as a virtual
database system and has proposed various query processors
such as Cougar [1], TinyDB [2], SINA [3], DSWare [4] and
COSMOS [20]. The community also has proposed much
work [2], [5]–[11] for energy-efficient query processing.

Spatial search and spatial join methods have been pro-
posed in works of a distributed Spatial IndeX (SPIX) [12]
and energy-efficient spatial join processing [15] in sensor
networks. However, spatial queries for two or more differ-
ent sensor networks, which we call heterogeneous sensor
networks, have not been much discussed. Heterogeneous
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sensor networks generally come together with different
kinds of sensor nodes and different communication proto-
cols. A typical spatial query example for two heterogeneous
sensor networks is as follows:

(Q1) Consider two heterogeneous sensor networks,
where one network consists of sensor nodes having phys-
ical sensors for humidity and thermometer monitoring and
the other consists of sensor nodes having chemical sensors
for CO, CO2, and SO2 monitoring. We assume two sen-
sor networks are laid down in the same region. However,
sensor nodes of two sensor networks were produced by dif-
ferent companies, were installed in different time and have
been managed by different organizations. Therefore, the
two heterogeneous sensor networks are unable to communi-
cate with each other in wireless networking. Here, we want
to collect a set of 6-tuples of the form <h, l1, id1, c, l2, id2>
(which indicates humidity h of sensor node id1 in location l1
and CO density c of node id2 in location l2) that satisfies
the following selection predicates and a spatial join predi-
cate: h ≥ 60%, c ≥ 8 ppm and distance (n1, n2) ≤ 30 m.
Here, distance (n1, n2) denotes a physical distance between
nodes n1 and n2. Note that node n1 and node n2 are in differ-
ent sensor networks. Informally speaking, this query finds
a set of small areas together with their humidity and CO
density where both humidity and CO density exceed certain
threshold values.

To answer the query Q1, distributed spatial join pro-
cessing should be performed to materialize a proximity re-
lationship between sensor nodes n1 and n2.

In conventional spatial databases, the distributed spa-
tial join query has been extensively studied for join pro-
cessing of the large volume and high complexity of spatial
data. However, conventional spatial join algorithms [13],
[14], [21], [22] cannot be straightforwardly applied to dis-
tributed spatial join processing on sensor networks. Most of
the conventional algorithms are based on centralized spa-
tial indexes such as the R-tree and its variants (R+-tree,
R*-tree). However, the centralized indexes cannot be built
on distributed sensor nodes. Moreover, the performance of
the conventional algorithms are compared on the total time
(composed of CPU time, IO time, and transmission time of
spatial query objects), while the performance in sensor net-
works are compared on the number of wireless transmis-
sions among sensor nodes. In other words, the distributed
spatial join algorithm in sensor networks focuses on raising
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energy efficiency of sensor nodes by reducing the wireless
transmissions.

In this paper, we propose an energy-efficient distributed
spatial join algorithm on two sensor networks. We also pro-
pose two optimization schemes for performance improve-
ment of the algorithm. They are a Grid-based Rectan-
gle tree (GR-tree) and a grid-based approximation func-
tion which can reduce the number of wireless transmissions.
We conducted extensive experiments on the proposed algo-
rithm. The experimental results show that the proposed al-
gorithm is effective and available in comparison with exist-
ing algorithms.

The remainder of this paper is organized as follows: In
Sect. 2, we survey researches related to spatial search and
spatial join methods that have been announced in conven-
tional spatial databases and sensor networks. In Sect. 3, we
propose a distributed spatial join algorithm and we also pro-
pose the GR-tree and a grid-based approximation function.
In Sect. 4, we present the experimental results of our algo-
rithm. In Sect. 5, we discuss the scalability of our algorithm
and finally, we present our conclusions in Sect. 6.

2. Related Work

Lots of distributed spatial join algorithms have been pro-
posed on conventional spatial database management sys-
tems (SDBMS). Abel et al. [14] proposed a distributed spa-
tial join algorithm which is based on the spatial semijoin ap-
proach. Tan et al. [13] suggested a similar approach. Their
experimental study shows that the semijoin-based algorithm
provides useful reductions in the total processing time of
a spatial join operation. However, the algorithms [13], [14]
are not directly related with our problem which focuses on
reducing energy consumption of sensor nodes.

Several in-network join methods in sensor networks
have been presented. Abadi et al. [10] presented REED,
a system for Robust and Efficient Event Detection in sen-
sor networks. The key idea behind REED is to form a con-
dition table for event detection, and then to distribute the
table throughout the sensor network. Once the table has
been disseminated, each node performs in-network joins be-
tween the table and its sensor readings. Here, if the table is
too large to reside in any node’s memory, REED distributes
fragments of the table into a sensor group which is com-
posed of several nodes. The in-network join is cooperatively
performed within the sensor group. REED shows signifi-
cant energy savings through the in-network join, but it does
not work well when the table is too large or the density of
a sensor network is not sufficiently high. For an extension
of REED, Jeon et al. [24] proposed HIPaG, called the Hy-
brid In-network join with join Paths and join Groups. Here,
a join group is the same as a sensor group in REED. A join
path is a sequence of nodes in a routing tree such that every
two nodes of the sequence have a parent-child relationship
and the union of fragments stored at all the nodes consists
of the condition table. HIPaG also performs the in-network
join between sensor readings and fragments of the condition

table in such a way that it utilizes join groups in high den-
sity region and join paths in low density region of a sensor
network. Gil et al. [23] proposed Scoop, a system for adap-
tive indexing and querying stored data in sensor networks.
In Scoop, a base station dynamically builds a storage index
using historical statistics about a rate of queries and distribu-
tion of sensor readings. A storage index maps sensor read-
ing to node ID. After generating a storage index, a base sta-
tion disseminates the index to all nodes and each node stores
specific sensor readings according to the index. Using this
index, queries can be answered from specific nodes, without
flooding the queries throughout the network. Zhu et al. [16]
proposed an algorithm for join processing of multiple sensor
readings in a sensor network. They insist that their perpen-
dicular approach should be load-balanced, communication-
efficient, and should incur near-optimal transmission cost
for the special case of binary joins in grid networks. Al-
though these algorithms [10], [16], [23], [24] show good per-
formance through the in-network join, they cannot be di-
rectly applied to our problem in the following reasons. First,
the algorithms do not present a solution for spatial join pro-
cessing. In other words, the algorithms never consider im-
portant features of SDBMS such as spatial filtering and dis-
tributed spatial indexing. Second, the algorithms do not sup-
port a geographical routing, which influences on the perfor-
mance of spatial filtering. They assume that a certain routing
protocol exists.

Recently, there have been several works for spatial
search or join processing in sensor networks. Soheili
et al. [12] proposed SPIX over a sensor network by con-
structing the spatial index of the R-tree [18] and its vari-
ant [19]. They also presented a distributed way of opti-
mizing the SPIX to reduce energy consumption of sensor
nodes during spatial search operation. The SPIX forms a ge-
ographical routing tree with distribution on sensor nodes.
Their experimental study shows that the SPIX is efficient
and scalable in processing spatial search. However, it is
likely to incur much overlap among MBRs of intermediate
sensor nodes when applying construction strategies of the
R-tree to a sensor network as it is. Meka et al. [25] pro-
posed a distributed spatio-temporal index structure for sen-
sor networks called DIST to trace a moving object. In DIST,
a sensor network is hierarchically decomposed into levels
and there is a quad-tree like partitioning at each level. Each
partitioning (called cell) has a leader and the leader is con-
nected to its four quadrant leaders. Index updates and range
query executions are executed by the leader. The leader dy-
namically updates time interval information about a moving
object and propagates the information to its parent. DIST
is efficient in a spatio-temporal range query for a moving
object. However, it cannot be directly applied to our prob-
lem in several reasons. First, DIST’s assumption that each
leader is connected to its quadrant leaders is not realistic for
a large-scale sensor network. Second, DIST uses the ex-
isting greedy perimeter stateless routing (GPSR) algorithm,
without presenting a geographical routing tree. Third, tem-
poral index is dynamically optimized for a moving object,
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but spatial index is fixed to the quad-tree. Yiu et al. [15]
proposed an energy-efficient approach for in-network com-
putation of a spatial join predicate in a single sensor net-
work. This approach shows good performance for low-
selectivity join queries having a short distance constraint
less than a transmission distance of a sensor node. However,
it is not directly related with our problem which handles dis-
tributed join among heterogeneous networks.

There have been many works on efficient in-network
join or spatial query processing in a single sensor network.
However the spatial join query between heterogeneous net-
works, which considers both distributed spatial index and
a geographical routing, has not been much discussed.

3. Distributed Spatial Join Processing

A straightforward approach to perform a distributed spatial
join between two sensor networks is to process selection
predicates and a spatial join predicate at a server after ac-
quiring all sensor readings. This approach called central-
ized approach, though simple, incurs high transmission cost
in accessing all sensor nodes.

A simple optimization scheme for the centralized ap-
proach is to process a selection predicate in a network. This
scheme pushes down a selection predicate to a sensor net-
work like ACQP (ACquisitional Query Processor) [17] and
the filtered sensor readings which satisfy the predicate are
acquired to a server. Then, the server performs a spatial join
predicate. Although this may reduce transmission cost spent
in acquiring sensor readings through in-network processing
of the selection predicate, it still spends high transmission
cost in pushing down the predicate to nodes.

The second optimization scheme is to process a spatial
join predicate as well as selection predicates in sensor net-
works. This scheme pushes down a spatial join predicate as
well as selection predicates and the filtered sensor readings
from spatially filtered nodes are acquired. In this scheme,
we can find two research challenges.

• The first challenge is to find out an efficient in-network
spatial search method which can filter out sensor nodes
which never participate in the spatial join processing.
• In order for an in-network processing of the spatial

join predicate, the spatial objects of one sensor network
should be sent to the other network. However, this in-
curs high transmission cost. The second challenge is
to find out an efficient method which can reduce the
volume of the spatial objects.

In this section, we propose a distributed spatial join algo-
rithm based on the second optimization scheme. We also
propose the GR-tree and a grid-based approximation func-
tion for the two research challenges.

3.1 Distributed Spatial Join Algorithm

A distributed spatial join query between two sensor net-
works is defined as follows:

Definition 1: Distributed Spatial Join Query (DQ). Let
S N1 and S N2 be two sensor networks. There is one tuple
for a sensor node ni (ni ∈ S Ni), where the tuple schema con-
sists of an attribute for a sensor location and one or more
attributes for senor readings (i.e., temperature, humidity,
CO2, CO, etc.). We will use ni to denote a tuple for a sen-
sor node of a sensor network S Ni if there is no ambiguity.
A distributed spatial join query for S N1 and S N2 is defined
by DQ = {<n1, n2> | n1 ∈ S N1, n2 ∈ S N2 such that f1(n1),
f2(n2) and g(n1, n2) are true.}. Here, f1 and f2 are selection
predicates for sensor readings and g is a spatial join pred-
icate for sensor locations. For instance, in the query Q1
described in Sect. 1, h ≥ 60% is f1, c ≥ 8 ppm is f2 and
distance (n1, n2) ≤ 30 m is g.

Our proposed distributed spatial join algorithm which
uses a spatial semijoin [14] concept is as follows:

Algorithm 1: Distributed Spatial Join Algorithm Using
Spatial Semijoin
Input: Two sensor networks S N1 and S N2 with sensor lo-
cations L1 and L2, respectively.
Output: A set of <n1, n2> that satisfies selection predi-
cates f1 and f2 and a spatial join predicate g.

Step 1: First, a server acquires all sensor tuples R
from S N1, which satisfy a selection predicate f1. R =
{n1 | n1 ∈ S N1 such that f1(n1) is true.}.
Step 2: Then R is projected on a spatial attribute L1 at
a server and a result set R′ is created. R′ = {r.L1 | r ∈ R}.
Step 3: Each record r.L1 is mapped into a two-
dimensional object in order to apply a spatial join pred-
icate g. RT = {T (r′) | r′ ∈ R′}. T is a one-to-one map-
ping function such that each record of R′ is mapped into
a record in RT .
Step 4: Then records of RT are mapped into a spa-
tially approximated object for spatial semijoin process-
ing. RP = {P(rT ) | rT ∈ RT }. P is a many-to-one spatial
approximation function such that one or several records
of RT are mapped into a spatial query object of RP.
Step 5: A server pushes down RP and f2 to S N2 and
then acquires sensor tuples S from S N2, which satisfy
a selection predicate f2 and a spatial semijon predicate.
S = {n2 ∈ S N2 | rP ∈ RP such that g(rP, n2) and f2(n2) are
true.}.
Step 6: A server performs a refinement phase of a spatial
join predicate g between R and S and a final result F is
created. F = {<r, s> | r ∈ R, s ∈ S such that g(r, s) is
true.}

Figure 1 shows a processing sequence of this algorithm
when processing the query Q1.

In Step 3, for example, each record l1 in the query Q1
having a spatial join predicate of distance (n1, n2) ≤ 30 m is
mapped into a circle object whose center is l1 and radius is
30 m. In Step 4, a representative spatial approximation is
MBR-based approximation which maps high complexity of
spatial objects into MBR (Minimum Bounding Rectangle)
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Fig. 1 Processing sequence of the distributed spatial join algorithm:
(a) a server acquires R = {4, 5, 7} from S N1, which satisfies f1, (b) a server
makes a spatially approximated objects RP = {α, β, γ} and then pushes
down RP and f2 to S N2, (c) a server acquires S = {a, b, d, h, j} from S N2,
which satisfies f2 and a spatial semijoin predicate, and (d) a server performs
a refinement phase of a spatial join predicate g between R and S and gives
a final result set F = {<4, j>, <5, d>, <7, a>, <7, b>}. Here, an element h
of S is filtered out in the final result.

like Fig. 1 (b). In Step 5, in-network spatial searches by the
approximated objects rP should satisfy the spatial semijoin
predicate g(rP, n2) like Fig. 1 (c). The spatial approximation
in Step 4 and the spatial searches in Step 5 are important
for the performance of our algorithm. In the following sec-
tions, we propose the GR-tree for Step 5 and a grid-based
approximation function for Step 4.

3.2 Proposed Distributed Spatial Index

In this section, we propose the GR-tree for the optimization
of the in-network spatial search in Step 5. In a sensor net-
work, all routing paths converge into a base station. Such
the convergence of the routing paths is likely to incur much
overlap among MBRs of intermediate sensor nodes when
a geographical routing tree such as SPIX is used. The closer
the routing paths reach a base station, the more overlap hap-
pens. Therefore, the main design policy of the GR-tree is
to minimize the overlap among such MBRs with maintain-
ing the tree depth minimized at the same time. The min-
imization of the overlap and the tree depth may decrease
the number of geographical routing to be traversed in the
in-network spatial search. Unfortunately, the overlap mini-
mization technique of the R*-tree cannot be applied to a sen-
sor network since it never considers a geographical routing
topology. Therefore, we propose a new minimization tech-
nique for the GR-tree.

3.2.1 The GR-Tree Index Structure

The GR-tree is a distributed spatial index structure built with
distribution on sensor nodes. The GR-tree essentially forms

Fig. 2 A GR-tree index structure and spatial search process: (a) sensor
nodes and their fixed grid addresses, (b) GR-tree index structure and spatial
query objects (spatially approximated objects) RP = {α, β, γ}, and (c) spa-
tial search process using the GR-tree.

a geographical routing tree in a sensor network. Using the
geographical routing tree, a spatial query is selectively trans-
mitted from a base station to sensor nodes and its result
is returned. Figure 2 illustrates a GR-tree index structure
and spatial search process using the GR-tree. Similar to the
R-tree [18], each sensor node in the GR-tree structure main-
tains entries information as many as the number of child
nodes below it. Each entry consists of a child’s node ID, grid
address, tree depth, and MBR, where the MBR bounds loca-
tion of the child node and MBRs of grandchildren. The en-
try is used when a sensor node determines whether a query
needs to be applied locally and pushed down to its children.
As shown in Fig. 2, an entry EA of a base station has a node
ID A, a grid address 6, a tree depth 1, and an MBR that
minimally bounds MBRs of EB and EE and location of the
child A.

3.2.2 Spatial Searching Using the GR-Tree

The spatial search algorithm starts from a base station in
a manner similar to the R-tree [18] except that it is per-
formed with distribution among sensor nodes.

Algorithm 2: Spatial Search
Input: Spatial query object s, a GR-tree, a sensor node n
Output: Sensor nodes which are intersected with s

Step 1: Searching intermediate sensor nodes
If n is an intermediate sensor node, check each entry E to
determine whether each entry’s MBR intersects with s. If
so, the spatial search is forwarded to child sensor nodes
pointed by all intersected entries. Also, the spatial search
checks whether the n’s location intersects with s. If so,
the n’s location and ID are returned to its parent sensor
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node. Here, the parent has to wait until its child nodes
return their result, before it returns its result.
Step 2: Searching leaf sensor nodes
If n is a leaf sensor node in the GR-tree, check the n to
determine whether the n’s location intersects with s. If
so, the n’s location and ID are returned to its parent node.

As shown in Fig. 2 (b) and 2 (c), spatial searches with
the query objects {α, β, γ} can be performed using the Algo-
rithm 2. A base station checks that MBRs of EA, EG, EK

intersect with α, β, and γ. Then, α and β are forwarded to
sensor node A through the GR-tree. As the same way, α and
β are forwarded to sensor node B and E, respectively. Fi-
nally, the base station receives a result {B,F}. Here, we can
observe that our spatial searches reduce the wireless trans-
missions by visiting only {A,B,E,F} instead of all sensor
nodes.

3.2.3 Building the GR-Tree

In construction of the GR-tree, we assume that sensor nodes
are stationary and location-aware. We also assume all sen-
sor nodes are deployed at a fixed area which is divided into
equal-sized fixed grids. The GR-tree is built in a different
manner compared with the R-tree because of the following
properties.

• Base station doesn’t know locations of all sensor nodes.
Each sensor node only knows its own location.
• GR-tree is built with considering geographical routing

topology as well as spatial proximity among nodes.
• GR-tree index is stored with distribution on nodes.

The GR-tree is built using an advertisement and a parent
selection phase. In the advertisement phase, each sensor
node broadcasts an advertisement message to other sensor
nodes in order to find its candidate parents and candidate
children. The advertisement message M includes a node ID
(nid), a tree depth (d), and location (la) of the advertiser
and location (lb) of the base station. In the parent selection
phase, each sensor node selects its parent node among the
candidate parents, which best fits both the spatial proximity
and the geographical routing.

Advertisement phase starts from a base station. The
base station broadcasts an advertisement message to sensor
nodes in its transmission range. After receiving the mes-
sage, the sensor nodes advertise themselves to other sensor
nodes. This advertisement phase continues until all sensor
nodes receive advertisement messages. In this phase, each
sensor node performs the following works:

Algorithm 3: Advertisement
Input: Two sensor nodes n1, n2 and n1’s advertisement mes-
sage M = <nid, d, la, lb>
Output: n1’s candidate children and n2’s candidate parents

Step 1: A sensor node n2 receives an advertisement mes-
sage M from a sensor node n1. n2 reviews if there is an
equal sensor node ID in its candidate child list for a given

nid. If there exist, n2 completes this phase.
Step 2: Otherwise, n2 computes its grid address and tree
depth. The grid address is easily computed using n2’s
location, the fixed grid size and the overall area size. The
tree depth is computed by adding one to d.
Step 3: Then, n2 adds M to its candidate parent list and
returns an acknowledgement including its node ID to n1.
Step 4: n1 adds n2’s node ID to its candidate child list.

In Step 1, n2’s review process is performed in order to
avoid cross advertisements between n1 and n2. It prevents
a cycle in the GR-tree. In Step 2, we assume that each sen-
sor node already knows the overall area size and a fixed grid
size. Here, we set a transmission distance of a node to be
a fixed grid size through experimental experiences. After the
Step 3 and 4 is completed, n1 and n2 are going to have a can-
didate child list and a candidate parent list, respectively.

Parent selection phase starts from leaf sensor nodes that
have no candidate children. If a node has candidate children,
it waits until its children determine their parent. This parent
selection continues until all sensor nodes select their parent.
The base station is selected as the last parent. In this phase,
a sensor node performs the following works:

Algorithm 4: Parent Selection
Input: A sensor node n having a candidate parent list
Output: GR-tree index structure

Step 1: n finds sensor nodes S from its candidate parent
list, whose locations are within n’s grid and tree depths
are both less than n’s tree depth and a minimum among S.
Here, n’s grid is a fixed grid including n.
Step 2: After completing Step 1, if there is only one sen-
sor node in S. n selects the sensor node as its parent. If
there are two or more sensor nodes in S, n determines
a sensor node as its parent, which has minimum distance
to a base station. If S is empty, Step 1 and Step 2 are
repeated using n’s neighboring grids instead of n’s grid.
Step 3: n stores the parent and removes the candidate
parent list. Then, n sends its entry to the parent.
Step 4: The parent adds n’s entry information to its child
list and updates its MBR in order to include n’s MBR.

In Step 1, we should note that the sensor node n first
finds its parent in the grid including n. It enables the
GR-tree to preserve spatial proximity among sensor nodes
when building a geographical routing tree. In Step 2, when
S is empty, the algorithm finds a parent from sensor nodes
which are within n’s neighboring grids. As shown in Fig. 3,
a grid has at most eight neighboring grids and the search or-
der for the eight grids makes a great influence on a GR-tree
index. For the search order, we basically give higher priority
to a grid which is near to a base station in order to reduce
a depth of the GR-tree as shown in Fig. 3 (a). However, as
shown in Fig. 3 (b) and 3 (c), we adapt a new parent selection
criterion in the GR-tree. The new criterion gives higher pri-
ority to a grid which is adjacent to a straight line rather than
a grid which is near to a base station. We adapt this criterion
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Fig. 3 Search order for the neighboring grids, where x and y is an ordinal
number for x-axis and y-axis grids, respectively: (a) when a sensor node is
located at a diagonal-line, i.e., x = y, (b) when x > y, and (c) when x < y.

Fig. 4 Hierarchical GR-tree index structure that has no overlapped area
among MBRs: (a) an entry set of A = {a, b, c}, (b) an entry set of B =
{d, e, f } and e’s MBR area minimally bounds MBRs of a, b, and c, and
(c) an entry set of C = {g, h, i} and h’s MBR area bounds MBRs of d, e, f .

in order to minimize the overlap among MBRs of intermedi-
ate sensor nodes in a GR-tree index structure. For example,
Fig. 4 illustrates an ideal GR-tree index structure using our
new criterion, which has no overlap among MBRs. Here,
we assume the MBRs coincide with the borderlines of fixed
grids as an ideal case of the GR-tree. In Fig. 4 (a), a node
in a grid 5 originally should find its parent from the grid 10.
However, our criterion finds a parent in the grid 6, according
to the search order as shown in Fig. 3 (c). Then this criterion
creates an MBR e in a parent level of the node, which in-
cludes MBR a, b, and c. The MBR e never overlaps with
MBR d and f which are also created by the new criterion.
After the parent selection is repeated to the base station, it
comes to maintain children having MBR h, g, and i which
have no overlap, as shown in Fig. 4 (c).

In the performance study, we will show you how the
GR-tree contributes to reducing the wireless transmissions.

3.2.4 Maintaining the GR-Tree

Although we assume sensor nodes are stationary, sometimes
a sensor node may fail to respond or a new sensor node
may be added to a sensor network. In this case, the GR-tree
should be updated through an insertion and a deletion phase.
Our insertion algorithm can be easily performed using the
advertisement and the parent selection algorithm as follows:

Algorithm 5: Insertion
Input: A new sensor node n and a GR-tree index structure
Output: GR-tree index structure including a sensor node n

Step 1: A sensor node n broadcasts a message to its vicin-
ity nodes and requests for advertisement.

Step 2: Sensor nodes that hear the request sends their
advertisement message M to n. n adds the messages Ms
to its candidate parent list and computes its grid address
and tree depth like the advertisement algorithm.
Step 3: For n’s candidate parent list, the parent selection
algorithm is invoked and its parent is determined.
Step 4: If the MBR of n’s parent have been updated in
Step 3, MBR updating is propagated from the parent to
the base station until the updating doesn’t happen.

However, a deletion is not simple like the insertion.
First, a sensor node failure should be found. In this pa-
per, we find a sensor node failure using a technique which
is used in the SPIX [12]. In brief, we set a timeout period
on sensor nodes. When the timeout period expires, the sen-
sor nodes verify parent-child relationships. If a parent node
finds a child node that doesn’t respond to the verification,
the parent determines that the child has failed. On the con-
trary, if a child finds a parent that doesn’t respond to the
verification, the child determines that the parent has failed.
Second, if a sensor node failure happens, a deletion algo-
rithm is performed as follows:

Algorithm 6: Deletion
Input: A sensor node n1 and its child node n2

Output: A GR-tree index structure excluding a failed node
Step 1: If n2 fails to respond, n1 updates its MBR in order
to exclude n2’s MBR. Then, if n1’s MBR is changed,
MBR updating is propagated to the base station.
Step 2: If n1 fails to respond, n2 performs the insertion
algorithm. If n2’s new parent is determined from the in-
sertion, n2 completes the deletion algorithm.
Step 3: Otherwise, n2 propagates an insertion message
to its vicinity nodes nvs and receives acknowledgements
including nvs’s IDs. Here, nvs adds n2 to its candidate
child list and n2 adds nvs’s IDs to its candidate parent list.
Step 4: Each node of nvs performs the insertion al-
gorithm. If each node of nvs finds its parent, it
sends <ID, true> message to n2. Otherwise, it sends
<ID, false> message to n2 and hierarchically propagates
an insertion message to its vicinity nodes until its parent
is found.
Step 5: If n2 receives <ID, false>, n2 removes a node
having the ID from its candidate parent list. If n2 receives
<ID, true>, n2 keeps its candidate parent list. After re-
ceiving all messages for n2’s candidate parent list, n2 per-
forms the parent selection algorithm.

When a child node n2 fails, n2’s deletion can be simply
performed as shown in Step 1. When a parent node n1 fails,
there is no overhead if n2’s new parent is directly determined
as shown in Step 2. However, if an insertion message is hier-
archically propagated to n2’s vicinity nodes in order to find
a new parent, the deletion algorithm is likely to spend too
much transmission cost in Step 3–5. Therefore, we should
note that frequent node failures may spend much transmis-
sion cost in maintaining the GR-tree.
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Fig. 5 Spatial approximation examples: (a) when a set S is skewed:
SM has sixteen MBRs, while SG has grid addresses of {1, 2, 5, 6} and
(b) when S is randomly distributed: SM has thirteen MBRs, while SG has
grid addresses of {1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 14, 15}.

3.3 Proposed Spatial Approximation Function

We use a grid-based approximation function for the opti-
mization of Step 4. The grid-based approximation function
is used to map two dimensional query objects into a small
volume of fixed grid addresses. Figure 5 shows an example
of the grid-based approximation compared with the conven-
tional MBR-based approximation. In Fig. 5, the left side
shows raw spatial query objects S, the middle shows a result
set SM of the MBR-based approximation, and the right side
shows a result set SG of the grid-based approximation.

As shown in Fig. 5 (a), under skewed distribution of the
S, we can see that the grid-based approximation is more ef-
ficient than the MBR-based approximation. When we as-
sume that a numeric value needs 4 bytes, the former forms
only 16 bytes (4 grid addresses × 4 bytes) while the latter
forms 256 bytes (16 MBR × 4 coordinates × 4 bytes). How-
ever, if the S is randomly distributed as shown in Fig. 5 (b),
we can see the grid-based approximation may incur high
transmission cost, since the search area occupied by SG is
significantly increased. In the performance study, we will
show you how the proposed approximation function can
contribute to reducing the wireless transmissions.

4. Performance Study

We executed a performance study on the distributed spatial
join algorithm to answer the following questions:

• Is the proposed algorithm effective in comparison with
naı̈ve and conventional algorithms?
• Is the proposed algorithm available for wireless sensor

networks?

4.1 Experimental Setup

In the experiments, we performed the query Q1 having
proximity relationship between two sensor networks S N1

and S N2. The performance was compared on the number of
transmission messages. The transmission messages include
messages for sending f1 to S N1, messages for receiving a re-
sult R from S N1, messages for sending f2 and RP to S N2,
and messages for receiving a result S from S N2. Thus, the
total transmission messages are computed, as follows:

Ntotal = N1, total + N2, total

N1, total = N1, sending + N1, receiving

N2, total = N2, sending + N2, receiving,

where Ni, sending and Ni, receiving represent the number of mes-
sages spent in sending and receiving, respectively (i = 1, 2).
In the experiments, we measure only N2, total as our per-
formance metric, since all join algorithms spend the same
N1, total in visiting all sensor nodes of S N1.

In order for a performance study, we compared our al-
gorithm with the following algorithms.

• DJ-GT-M: This is the proposed join algorithm that uses
the GR-tree and the MBR-based approximation.
• DJ-GT-G: This is the proposed join algorithm that uses

the GR-tree and the grid-based approximation.
• DJ-CA (Centralized Approach): This is the most naive

algorithm which performs a distributed spatial join
query at a server. This algorithm has to visit all sensor
nodes of two sensor networks. If this algorithm runs
without a distributed index, its transmission cost will
be increased exponentially due to the flooding of the
transmission messages. So, we assume this algorithm
runs on the GR-tree.
• DJ-SP-A (Area)/DJ-SP-P (Perimeter): This is an algo-

rithm that uses the existing SPIX and the MBR-based
approximation. In [12], SP-A means the SPIX that uses
the least MBR area enlargement and SP-P means the
SPIX that uses the least MBR perimeter enlargement
as a parent selection criterion.
• DJ-CPS (Closest Parent Selection): This is an algo-

rithm that uses the distributed spatial index that focuses
on reducing an average tree depth. In this index, a node
chooses a candidate as its parent, which has the mini-
mum distance to a base station among candidates.

Figure 6 illustrates several distributed spatial indexes that
are used in the above algorithms for the same sensor nodes.

In the experiments, we intentionally created various
spatial query objects (results of S N1) which are pushed
down to S N2. The spatial query objects were created by
reflecting the following experimental constraints: number
of sensor nodes, distribution of spatial query objects, size
of spatial query objects, number of spatial query objects,
packet size, and transmission distance of a sensor node. De-
tail descriptions about the constraints are summarized in Ta-
ble 1. We also created a simulated sensor network for S N2.
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Fig. 6 Distributed spatial indexes for a sensor network: (a) the GR-tree,
(b) the CPS, (c) the SPIX based on MBR area enlargement, (d) the SPIX
based on MBR perimeter enlargement.

Table 1 Experimental constraints.

Fig. 7 Comparisons of distributed spatial join algorithms with varying
number of sensor nodes of S N2: (a) random distribution and (b) skewed
distribution of RP.

In S N2, sensor nodes are randomly placed in a whole area
of 2,000 × 2,000 meters.

4.2 Experimental Results for Effectiveness of the Pro-
posed Algorithm

To study the effectiveness of the proposed algorithms, we
conducted four experiments using the following constraints:
number of sensor nodes, distribution of spatial query ob-
jects, size of spatial query objects, and number of spatial
query objects.

The first experiment was performed in order to show
that the proposed algorithms are effective in terms of the
scalability on the number of sensor nodes. We measured
N2, total with random and skewed distribution when the num-
ber of sensor nodes are 1,000, 5,000, and 10,000. The re-
sults are summarized in Fig. 7, where the lower and upper
bars represent N2, sending and N2, receiving, respectively.

As shown in Fig. 7, the proposed DJ-GT-M and
DJ-GT-G perform best in most cases. We can also ob-
serve that the performance gap between the proposed al-
gorithms and the others is sharply increased when no2 is
increased. This is because the GR-tree can support effi-
cient spatial search by minimizing overlap between MBRs
of sensor nodes, while the other algorithms degrades perfor-
mance of spatial search in proportion to no2. In Fig. 7 (a),
we can observe that DJ-CA tends to be more efficient than
DJ-GT-M and DJ-GT-G, when no2 is 1,000. This is because
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Fig. 8 Comparisons of distributed spatial join algorithms with varying
distributions of RP.

performance loss caused by multiple packets transmission
overwhelms performance gain obtained by spatial searches
of the GR-tree. DJ-CA transmits only a packet (composed
of 128 bytes) which includes a selection predicate f2, while
the others transmit at least thirteen packets which include
not only f2, but also RP composed of 100 rectangle objects
(100 × 4 coordinates × 4 bytes). In Fig. 7 (b), we can ob-
serve that DJ-GT-G outperforms the others. Note that the
grid-based approximation is more efficient than the MBR-
based approximation in skewed distribution. From this ex-
periment, we can find that DJ-GT-M and DJ-GT-G has better
scalability to the number of sensor nodes.

To study the effect of the distribution of query objects,
we conducted the second experiment with varying the dis-
tribution from 1/256 to 1. Figure 8 shows the result.

As shown in Fig. 8, DJ-CA shows the same perfor-
mance. This is because DJ-CA always has to visit all sensor
nodes, irrespective of varying distributions of RP. We can
also observe that DJ-GT-M and DJ-GT-G shows good per-
formance compared with the others. Here, the size and the
number of spatial query objects were set to 50 m and 100,
respectively. It means that the small size and small number
of spatial query objects compared with the whole area of
2,000 × 2,000 meters will not have a bad effect on the per-
formance of DJ-GT-M and DJ-GT-G, although the query ob-
jects are widely distributed throughout the whole area. This
is because the GR-tree can support outstanding spatial filter-
ing by minimizing overlap between MBRs of sensor nodes,
unless the query objects occupy too much area. If the area
occupied by the query objects is getting close to the whole
area, we think DJ-GT-M and DJ-GT-G performs worse than
DJ-CA. In the next experiments, we will show you what is
going on this issue.

To study the effect of the increase of the area occupied
by the query objects, we conducted two experiments with
varying the size of the query objects from 25 to 100 meters
and with varying the number of the query objects from 50
to 500. Figure 9 and Fig. 10 show the results.

From Fig. 9 and Fig. 10, we can observe that two results
have a somewhat similar pattern. In random distribution, the
performance of all algorithms is getting worse than DJ-CA,
when the total area occupied by the query objects is greatly

Fig. 9 Comparisons of distributed spatial join algorithms with varying
size of spatial query objects: (a) random distribution and (b) skewed distri-
bution of RP.

Fig. 10 Comparisons of distributed spatial join algorithms with varying
number of spatial query objects: (a) random distribution and (b) skewed
distribution of RP.

increased. Even DJ-GT-M and DJ-GT-G is getting worse
than the DJ-CA. This is because a spatial query on wide
area cannot obtain performance gain from spatial filtering,
no matter how the GR-tree supports outstanding spatial fil-
tering as R*-tree in SDBMS does. In skewed distribution,
however, DJ-GT-M and DJ-GT-G generally performs better
than DJ-CA. Also, we can observe that DJ-GT-G outper-
forms the others. This is because the total query area can
be maximally increased up to only 1/16 to the whole area in
skewed distribution, as it was defined in Table 1. Moreover,
DJ-GT-G consumes lower cost in N2, sending than DJ-GT-M.
Note that the grid-based approximation is more efficient
than the MBR-based approximation in skewed distribution.

From the four experiments, we can find that DJ-GT-M
and DJ-GT-G largely outperform the others. We can also
find that DJ-GT-G performs best in skewed distribution.
When considering practical situations such as military or
environmental applications where lots of sensor nodes are
widely deployed, selectivity for a spatial query is low and
spatial query objects are in skewed distribution, we should
note that DJ-GT-M and DJ-GT-G perform better than the
others. On the contrary, in case of less sensor nodes deploy-
ment at a small region, high selectivity of a spatial query
and wide distribution of spatial query objects, we should
note that DJ-CA may perform better than DJ-GT-M and
DJ-GT-G. Healthcare application for defined patients can
be an example for this case.



1456
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

Fig. 11 Comparisons of distributed spatial join algorithms with varying
packet sizes: (a) random distribution and (b) skewed distribution of RP.

4.3 Experimental Results for Availability of the Proposed
Algorithm

To study the availability for a sensor network of the pro-
posed algorithms, we conducted two more experiments
using the following constraints: packet size and transmis-
sion distance of a sensor node.

We performed the fifth experiment to show that our al-
gorithm is available for change of a packet size. In this ex-
periment, we measured N2, total with varying the packet size
from 32 to 2,048 bytes. Figure 11 shows the results.

From Fig. 11, we can see two interesting observations.
First, all algorithms which build a distributed spatial index
gradually perform better than DJ-CA, as the packet size
is getting increased. This is because a large-sized packet
which can contain many spatial query objects can reduce
N2, sending. In practical situations, the packet size, however,
cannot be infinitely increased, since its error rate will be
exponentially increased. For example, the error rate of
a packet in wireless networking is 1−(1− p)n, where p is the
error rate of a bit and n denotes the number of bits compos-
ing a packet. As defined in Table 1, a packet of 128 bytes
is generally used. Second, we can observe that DJ-GT-M
and DJ-GT-G always perform better than the others. This
is because the performance gain obtained by the GR-tree
overwhelms the performance loss caused by multiple pack-
ets transmission, when default values for other constraints
are applied. Note that the small size and small number of
spatial query objects will not have an effect on the degrada-
tion of the performance.

To study the availability of our algorithm when trans-
mission distance of a sensor node is changed, we conducted
this experiment. The increase of the transmission distance is
likely to incur reduction of a depth of the GR-tree and such
reduction may improve performance of a spatial search. On
the other hand, the increase may destroy spatial proximity
of the GR-tree index structure and such destruction may
degrade performance of a spatial search. Therefore, con-
cerned with the transmission distance, we can find that there
is a tradeoff between the tree depth and the spatial proximity.
In other words, we cannot predict N2, total for the changes of
the transmission distance. Figure 12 shows the results of this

Fig. 12 Comparisons of distributed spatial join algorithms with vary-
ing transmission distance of a sensor node: (a) random distribution and
(b) skewed distribution of RP.

experiment with varying the transmission distance from 50
to 275 meters.

As shown in Fig. 12, DJ-GT-M and DJ-GT-G performs
best in most cases fortunately, although there is a tradeoff
between the tree depth and the spatial proximity. However,
we can observe that DJ-CA tends to be more efficient than
DJ-GT-M and DJ-GT-G when the distance is too short (be-
low about 50 meters). This is because the short transmis-
sion distance prevents building an optimized GR-tree index
structure. In other words, it means that a node cannot select
a parent which optimizes the GR-tree index, since the node
has few candidate parents. Here, the GR-tree is likely to
form a general routing tree rather than a geographical rout-
ing tree.

From the two experiments, we can find that DJ-GT-M
and DJ-GT-G are generally efficient than the others. Espe-
cially, when we consider practical situations of the packet
size of 128 bytes and the transmission distance of 100 me-
ters, we can observe that DJ-GT-M and DJ-GT-G can be
directly applied to specific applications which deploy many
sensor nodes. Here, we refer to a standard such as IEEE
802.15.4 specification for the practical situations. However,
in case the transmission distance becomes too short in ran-
dom distribution of spatial query objects, DJ-CA is more
applicable to applications. This is because the parent se-
lection for GR-tree optimization is closely related with the
transmission distance.

5. Discussion

Until now we showed that our algorithms can be used at
a distributed spatial join processing between two sensor net-
works. In addition, the algorithms can be applied to a dis-
tributed spatial join processing between a network and a spa-
tial database. The example query is as follows:

(Q2) Consider a sensor network and a spatial database,
where the network consists of sensor nodes for CO density
monitoring and the database consists of a cadastral map hav-
ing factories information. We want to collect a set of tu-
ples of the form <c, l, id1, f , g> (which indicates CO den-
sity c of sensor node id1 in location l and factory geometry g
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of factory name f ) that satisfies the following conditions:
c ≥ 8 ppm and within (g, l). Here, within (g, l) means that
the node location l is contained in the factory geometry g.
Informally speaking, this query finds a set of factories with
their CO density where CO density exceeds certain thresh-
old value.

This query can be computed by replacing S N1 with
a spatial database in Step 1 and by omitting Step 3 in the
Algorithm 1. In the query Q2, we should note that the spa-
tial approximation function of Step 4 plays more important
role in processing a join query, since the factory information
has more complex type of spatial objects.

6. Conclusion

In this paper, we presented the distributed spatial join algo-
rithm using a spatial semijoin concept. In order to optimize
the algorithm, we also proposed the GR-tree and the grid-
based approximation function. The GR-tree can determine
whether any of the sensor nodes have to participate in the
in-network spatial join. The grid-based approximation can
reduce the volume of spatial query objects which are pushed
down to a sensor network.

Our experimental results showed that DJ-GT-M and
DJ-GT-G generally outperform the others in situations
where many sensor nodes are widely distributed, the se-
lectivity for a spatial query is low, and the packet size and
the transmission distance of a node is not too small. There-
fore, we can apply the proposed algorithms to environmen-
tal and military applications which require wide deployment
of many sensor nodes. However, our proposed algorithms
cannot be applied to applications which incur the following
situations:

• Too small number of nodes are sparsely deployed,
• Many packets transmissions are required owing to too

small packet size,
• Too many results are selected owing to large-sized and

large number of spatial query objects,
• Frequent sensor nodes failures happen in a network.

We plan to extend this work in two directions. First, we
would like to extend our algorithms to continuous spatial
join processing. We expect that a dynamic update scheme
which is related to the GR-tree will be needed for the contin-
uous join processing. Second, we will modify the GR-tree
algorithm to support mobility of sensor nodes. We think that
a new method that can preserve the GR-tree consistently on
mobile nodes at low cost will be needed.
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