
1644
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

LETTER

A Buffer Management Issue in Designing SSDs for LFSs∗

Jaegeuk KIM†a), Member, Jinho SEOL†, and Seungryoul MAENG†, Nonmembers

SUMMARY This letter introduces a buffer management issue in de-
signing SSDs for log-structured file systems (LFSs). We implemented a
novel trace-driven SSD simulator in SystemC language, and simulated sev-
eral SSD architectures with the NILFS2 trace. From the results, we give
two major considerations related to the buffer management as follows. (1)
The write buffer is used as a buffer not a cache, since all write requests
are sequential in NILFS2. (2) For better performance, the main architec-
tural factor is the bus bandwidth, but 332 MHz is enough. Instead, the read
buffer makes a key role in performance improvement while caching data.
To enhance SSDs, accordingly, it is an effective way to make efficient read
buffer management policies, and one of the examples is tracking the valid
data zone in NILFS2, which can increase the data hit ratio in read buffers
significantly.
key words: NAND flash memory, solid state disk, log-structured file system,
storage device

1. Introduction

A Solid State Disk (SSD) has been one of the most attractive
storage devices. With recent technology development of ca-
pacities as well as lower prices, consumers are now starting
to consider the possibility of using SSDs as their primary
storage devices in their computers. This is also becoming
a tempting option in many laptops where size, weight, and
power consumption are all the concerns.

SSDs generally provide better performance than tradi-
tional magnetic disks by eliminating mechanical overheads
such as large seek time, spin-up delay, and rotational de-
lay in magnetic disks. On a detailed performance point of
view, however, while read speeds of SSDs are much faster
than traditional disks, write speeds, especially random write
speeds, may not guarantee such a huge performance im-
provement. Because SSDs employ multiple flash chips,
which have several operational characteristics that need to
be taken into account. For example, a flash chip does not
allow in-place updates, which means that the previous data
cannot be overwritten at the same location without being
erased first. Also, the erase unit is relatively larger than a
flash page that is the unit of read and write operations. These
differences limit the blind adoption of the existing file sys-
tems.

Manuscript received November 9, 2009.
Manuscript revised December 21, 2009.
†The authors are with the Computer Science Department,

KAIST, Korea.
∗This work was supported by the IT R&D Program of

MKE/KEIT. [2010-KI002090, Development of Technology Base
for Trustworthy Computing]

a) E-mail: jgkim@camars.kaist.ac.kr
DOI: 10.1587/transinf.E93.D.1644

Many file systems have been designed to hide the dis-
advantages of SSDs [1]. The most common approach is im-
plementing a log-structured file system (LFS) [2]. Initially
proposed LFS treats storage as a big circular log and write
all updated data to the head of the log continuously. Since
SSDs are particularly poor at random writes, this approach
have been able to make write operations almost be sequen-
tial.

Recently, NILFS2 [3] has been designed and imple-
mented as a log-structured file system, especially on Linux
kernel basis. NILFS2 enhances the write mechanism of
original log-structured file systems by applying modern file
system technology, a B-tree structure. With this writing
method, it achieves fast recovery time and high write perfor-
mance. As the coverage of SSDs in use is extended rapidly,
several benchmark tests have been conducted to ensure the
benefit of adopting NILFS2 to SSDs, and the results have
been shown that NILFS2 has better performance than other
file systems in most of cases [4].

In this letter, we give an insight in designing the essen-
tial parts of an SSD, particularly when adopting NILFS2 as
a file system. In order to accomplish the goal, (1) we intro-
duce a new trace-driven SSD simulator that enables repre-
senting more in details of the SSD architecture than other
simulators, and (2) analyze the IO trace of NILFS2 obtained
from a benchmark test, then (3) explore several SSD archi-
tectures through various configurations.

2. A Trace-Driven SSD Simulator

We implemented a trace-driven SSD simulator in SystemC
language [5], a C++-based language that models both hard-
ware and software together. For exploring various SSD ar-
chitectures in a short time, we designed our simulator ab-
stractly in which an elapsed time is traced to the end just by
summing the latencies virtually.

Figure 1 shows the overall architecture of our SSD
simulator. The embedded processor with SRAM executes
firmware such as the buffer manager and the FTL. The host
interface is a device-side storage protocol such as SATA and
PATA, which handles all read and write requests from the
host machine. SDRAM and flash controllers translate user-
level operations into a series of hardware operations. To re-
duce bus contention between the hardware components, we
implemented two buses separately: control and data buses.
While the control signals such as address and enabling sig-
nals are transferred through the control bus, only user-made

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

LETTER
1645

Fig. 1 Our SSD simulator architecture.

Table 1 Two types of NAND technology.

SLC NAND [6] MLC NAND [7]

Page Size (Bytes) 2048 4096

of pages in an FEB 64 128

Spare Area Size (Bytes) 64 128

Read latency (µs) 25 60

Write latency (µs) 200 800

Erase latency (µs) 1500 1500

data are transferred through the data bus.

2.1 NAND Flash Memory

A NAND flash memory consists of a set of blocks called
FEBs, and each FEB contains a number of pages. A page
is a unit of read and write operations, and one FEB is a
unit of erase operation. Additionally, each page keeps spare
area, which is typically used for storage of an error correc-
tion code (ECC), and the remaining space may used to store
metadata bytes.

Currently, there are two types of widely used NAND
flash memory, such as SLC (Single-Level Cell) and MLC
(Multi-Level Cell). Table 1 describes the general specifica-
tion of the two NAND types. In the spare area of a SLC
NAND chip, a few bytes (typically 12 ∼ 16 bytes) must be
used for the ECC. In a MLC NAND chip, the spare area
should be used most of bytes for the ECC due to the high bit
error rate (BER) of the memory cells.

2.2 Multi-Chip Architecture

As the demand for larger capacity and higher performance
is growing, SSDs have usually adopted a multi-chip archi-
tecture [8]. According to the bus configuration, the architec-
ture are broadly classified into two categories: shared con-
trol and shared bus architectures [9]. In the shared control
architecture, all flash chips have their own data path with a
shared control path. In the shared bus architecture, several
flash chips share a data bus and separates the control path.

A shared control architecture shows better performance
than a shared bus architecture since it transfers multiple data
in parallel. In the shared control architecture, however, the
data path is implemented as a number of hardware wires,
resulting in high implementation cost. In the shared bus ar-
chitecture, the number of chips sharing one data bus should

be determined carefully due to the bus contention overhead.
In order to enhance the multi-chip architecture in per-

formance, another design, multi-channel architecture, has
been adopted. A channel consists of a set of flash chips
with one data bus, and general SSDs employ multiple chan-
nels to transfer data concurrently without the bus contention.
Therefore, we design an SSD simulator on a basis of the
multi-chip architecture in which adopts shared bus and
multi-channel architectures.

2.3 Flash Translation Layer (FTL)

In order to emulate a block device interface, SSD has spe-
cial management layer to hide the characteristics of NAND
flash memory. Flash Translation Layer (FTL), a software
layer of a storage device, is in charge of the management
with two main functions: (1) address translation with map-
ping table between the storage space visible to the host and
physical locations of NAND flash memory and (2) garbage
collection that reclaims invalid pages by moving valid pages
to another FEB and erasing the obsolete FEBs.

According to the mapping granularity, previous FTL
schemes can be categorized as two-fold: page and block
mapping schemes. A page mapping scheme, a fine-grained
one, writes all logical pages to anywhere in NAND flash
memory [10], which is profitable for many random writes
that make small fragmentations. However, it consumes large
memory resources to manage the whole page-level mapping
information.

To reduce the memory limitation, a block mapping
scheme, a coarse-grained one, has been proposed [11]. In
this scheme, the mapping table is managed in a unit of
FEBs, and each data is written to the fixed position in an
FEB determined by its address. It is profitable for sequen-
tial writes since an FEB that has sequentially written pages
can be switched without migrating valid pages. For random
writes, further researches have been worked [12]. The trend
is adopting a hybrid mapping scheme that a block mapping
scheme is a primary basis applying a page mapping scheme
appropriately.

2.4 Buffer Manager

In order to improve performance, SSDs generally adopt a
buffer implemented by a small-sized DRAM that is rela-
tively faster than NAND flash memory. By buffering data
from a host and flushing the data to NAND flash memory
later, the buffer can process a number of data requests con-
currently during the flash operations. Furthermore, it can
play a role of absorbing frequently accessed data as a buffer
cache.

The buffer cache is controlled by a buffer manager op-
erated as firmware. Especially, the policies of managing the
buffer cache, such as how to select and replace victims, have
a great impact on the FTL performance directly. The poli-
cies in most researches on SSDs [13]–[15] are focused on a
write buffer except a read buffer since writing cost is much

1646
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

more expensive than reading cost in NAND flash memory.
For example, BPLRU [15] is focused on enhancing the ran-
dom write performance particularly by filling a victim FEB
with valid pages when flushing the FEB.

3. NILFS2 Workload

To analyze the behavior of NILFS2, we collected its IO trace
that has the address space ranges from 0 to 1 GB. We used
Postmark [16] benchmark as an user-level workload to make
a random access pattern that is weak for SSDs. Postmark is
one of benchmarks that perform intensive metadata opera-
tions. It consists of three phases. In our experiment, Post-
mark initially builds 2 subdirectories in the root directory.
In the first create phase, it creates 30000 files with 9 KB ∼
15 KB of data in a randomly chosen subdirectory. In the
second mixed phase, 100000 mixed operations that consist
of create/delete and read/append operations are performed
randomly. Finally, in the delete phase, all the remaining
files are deleted.

In NILFS2, there are two modules: a system module
and a cleaner. The system module processes all read/write
operations from applications by appending logs continu-
ously. On the other hand, the cleaner, a user-level thread,
reclaims the obsolete old data periodically. Therefore, a
cleaning interval should be determined carefully to balance
the speed gap between appending and reclaiming data. In

Fig. 2 The IO trace of NILFS2.

(a) Write Buffer Effect (b) Read Buffer (MB), Bus Bandwidth (MHz), and Buffer Replacement Policies

Fig. 3 SSD simulation results.

our test, we set five seconds to the interval that is relatively
short since the workload consists of IO-intensive operations.

Figure 2 shows apparently the characteristic of a log-
structured file system. In the figure, all write requests are
sequential, and a number of random read operations are re-
flected. Particularly, many write requests are induced by
the cleaner. This tendency of the NILFS2 behavior is well-
suited to SSDs that show high sequential write performance,
and thus a trend adopting log-structured file systems for
SSDs is highly recommended in the market place.

In such a trend, we need to consider differently all
the directions of previous studies on SSDs. Concretely, we
should rethink the policies to enhance performance for ran-
dom writes since LFS makes sequential writes only. For
this, we set our simulator as follows, basically optimized to
the sequential write characteristic.

(1) To maximize the chip parallelism, the simulator
adopts the multi-chip architecture that consists of 16 flash
chips. Also, it adopts the multi-channel architecture, thus
having 4 channels each of which has 4 flash chips equally.

(2) Among several FTL schemes, it adopts a simple
block mapping scheme for the small-sized DRAM. Because
the other mapping schemes are focused on random write
performance intensively.

(3) For the intuitive buffer manager, we separate read
and write buffers. The write buffers store the requested data
intermediately in a First-In First-Out (FIFO) order, since
most of the data face cold misses and further optimization
policies for random writes are unnecessary.

4. Simulation Results

Our simulator measures total elapsed time by summing up
the bus, channel, and chip latencies internally, but the pro-
cessor time is ignored since the firmware can be optimized
by various styles. The chip latencies are based on the speci-
fication of MLC NAND type as described in Tabl 1. We ob-
serve the performance gaps according to the sizes of buffers,
the bus bandwidth, and buffer replacement policies.

Figure 3 (a) shows the write buffer effect in size while
the read buffer size is fixed to 8 MB. Note that the bus band-

LETTER
1647

width is set to 166 MHz, and the channel bandwidth is set
to 40 MHz. In the figure, the SSD bandwidth is nearly un-
changed since all write requests are sequential.

Instead, to enhance the performance, random read re-
quests should be handled efficiently. For this, we measured
the performance according to the bus bandwidth, the read
buffer size, and buffer replacement policies while the write
buffer size is fixed to 8 MB. Note that the channel band-
width is always set to the 1/4 bus bandwidth. We adopted
three buffer replacement policies such as FIFO (First In First
Out), LRU (Least Recently Used), and SOF (Smallest Offset
First). In the SOF policy, a victim buffer is selected by its
disk offset, and a buffer haing the smallest offset is flushed
at first.

Figure 3 (b) shows the results in which x axis repre-
sents the bus bandwidth in MHz and bars indicate from 8
to 128 MB of read buffer sizes. As shown in the figure, the
SSD bandwidth is mostly improved as the bus bandwidth
increases, but it is saturated when the bus bandwidth ex-
ceeds 332 MHz. While FIFO and LRU policies show sim-
ilar patterns, SOF shows much higher performance, since
it takes into consideration the characteristic of existing the
valid data zone that is starting from the last garbage col-
lected disk offset to the current logging offset in NILFS2.
Furthermore, the effect of SOF becomes large as the read
buffer size increases.

5. Conclusion

Recently, SSDs are widely used in the world, and much ef-
fort to develop high performance SSDs have been conducted
from architecture to operating system levels. In the mean
time, many studies show that LFS is well-suited to SSDs,
and thus, this letter gives a brief insight, particularly related
to the buffer management, of SSD architectures especially
for LFSs. From the simulation results, we conclude that the
read buffer management is an important factor to improve
the performance. In the concrete, although higher bus band-
width improves the performance significantly, 332 MHz is
enough. For better performance, therefore, it needs fur-

ther researches to track the valid data zone in NILFS2 for
caching data efficiently.

References

[1] A.I.A. Wang, G.H. Kuenning, P.L. Reiher, and G.J. Popek, “The
Conquest file system: Better performance through a disk/persistent-
RAM hybrid design,” TOS, vol.2, no.3, pp.309–348, 2006.

[2] M. Rosenblum and J.K. Ousterhout, “The design and implementa-
tion of a log-structured file system,” ACM Trans. Comput. Syst.,
vol.10, no.1, pp.26–52, 1992.

[3] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai,
“The Linux implementation of a log-structured file system,” Operat-
ing Systems Review, vol.40, no.3, pp.102–107, 2006.

[4] D. Shin, “About SSD,” USENIX Linux Storage & Filesystem Work-
shop (LSF’08), 2008.

[5] SystemC Initiative, 2007.
[6] Samsung Electronics a., “2Gx8 bit NAND flash memory (K9WAG-

08U1A),” 2006.
[7] Samsung Electronics b., “2Gx8 bit NAND flash memory (K9GAG-

08U0M),” 2006.
[8] J.U. Kang, J. Kim, C. Park, H. Park, and J. Lee, “A multi-channel

architecture for high-performance nand flash-based storage system,”
J. Syst. Archit., vol.53, no.9, pp.644–658, 2007.

[9] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M.S. Man-
asse, and R. Panigrahy, “Design tradeoffs for SSD performance,”
USENIX Annual Technical Conference, pp.57–70, 2008.

[10] M.L. Chiang, P.C.H. Lee, and R.C. Chang, “Using data clustering
to improve cleaning performance for plash memory,” Softw. Pract.
Exper., vol.29, no.3, pp.267–290, 1999.

[11] J. Kim, J. Kim, S. Noh, S. Min, and Y. Cho, “A space efficient flash
translation layer for compactflash systems,” IEEE Trans. Consum.
Electron., vol.48, no.2, pp.366–375, 2002.

[12] S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S. Park, and H.J. Song,
“A log buffer-based flash translation layer using fully-associative
sector translation,” ACM Trans. Embed. Comput. Syst., vol.6, no.3,
article 18, 2007.

[13] S.Y. Park, D. Jung, J.U. Kang, J. Kim, and J. Lee, “CFLRU: A re-
placement algorithm for flash memory,” CASES, pp.234–241, 2006.

[14] H. Jo, J.U. Kang, S.Y. Park, J.S. Kim, and J. Lee, “FAB: Flash-aware
buffer management policy for portable media players,” IEEE Trans.
Consum. Electron., vol.52, no.2, pp.485–493, 2006.

[15] H. Kim and S. Ahn, “BPLRU: A buffer management scheme for im-
proving random writes in flash storage,” FAST, pp.239–252, 2008.

[16] J. Katcher, “Postmark: A new file system benchmark,” Report of
Network Appliance Tech TR3022, 1997.

