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Fourier Magnitude-Based Privacy-Preserving Clustering on
Time-Series Data∗

Hea-Suk KIM†, Nonmember and Yang-Sae MOON†a), Member

SUMMARY Privacy-preserving clustering (PPC in short) is important
in publishing sensitive time-series data. Previous PPC solutions, how-
ever, have a problem of not preserving distance orders or incurring pri-
vacy breach. To solve this problem, we propose a new PPC approach that
exploits Fourier magnitudes of time-series. Our magnitude-based method
does not cause privacy breach even though its techniques or related param-
eters are publicly revealed. Using magnitudes only, however, incurs the
distance order problem, and we thus present magnitude selection strategies
to preserve as many Euclidean distance orders as possible. Through ex-
tensive experiments, we showcase the superiority of our magnitude-based
approach.
key words: time-series data, clustering, privacy-preserving, Fourier mag-
nitude, distance order

1. Introduction

The aim of privacy-preserving data mining (PPDM) [1] al-
gorithms is to extract relevant knowledge from a large
amount of data while protecting at the same time sensi-
tive information. In this paper we address the problem of
privacy-preserving clustering (PPC in short) on sensitive
time-series data [5], [6]. Typical examples are as follows:
(1) drivers do not wish to disclose their exact speed recorded
in the vehicle monitoring system, but they still allow cluster-
ing of driving patterns [8]; (2) patients with heart disease do
not want to disclose their private electrocardiogram (ECG)
data, but they still allow clustering of patient ECG data.

PPC solutions can be classified into (1) secure
multiparty computation(SMC)-based solutions [3] and (2)
distortion-based solutions [1], [6], [7]. In this paper we fo-
cus on the distortion-based approach, in which the data
providers distort original time-series and publish the dis-
torted time-series to third parties. A simple distortion-based
solution is random data perturbation [1], [8], but it does not
preserve distance orders and shows bad clustering accu-
racy [6]. Other distortion methods [6], [7] were proposed to
overcome this problem, but they may cause privacy breach
if their distorting techniques or parameters are publicly re-
vealed.

To solve the privacy breach problem, we propose a
new PPC approach that exploits Fourier magnitudes of time-
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series. In this magnitude-based approach, the data providers
publish a few Fourier magnitudes of a time-series to third
parties, and the third parties perform clustering by using
those magnitudes only. Without the corresponding phase
information, attackers cannot reconstruct the original time-
series from the Fourier magnitudes. Thus, our magnitude-
based method does not cause privacy breach even though
its distorting techniques or related parameters are publicly
revealed. However, it incurs the distance order problem
since it uses Fourier magnitudes only instead of Fourier
coefficients. To discuss this problem, we present a notion
of distance-order preservation, which represents how many
time-series preserve their relative Euclidean distance orders
before and after the distortion.

To preserve as many Euclidean distance orders as pos-
sible, we present magnitude selection strategies. The first
strategy, called sequential selection, is simply choosing the
first few magnitudes as in the coefficient-based method [6].
We then propose two greedy strategies that select mag-
nitudes based on the given sample time-series. The first
greedy strategy is local selection, which first computes the
degree of distance-order preservation for each individual
magnitude and then greedily selects the magnitudes having
larger degrees. The second greedy strategy is global selec-
tion, which first selects the first magnitude using the local
selection and then repeatedly selects the next one by inves-
tigating which one is the best in preserving distance orders
if it is combined with the previously selected magnitudes.

Experimental results show that our magnitude-based
method is comparable to the coefficient-based method both
in distance-order preservation and clustering accuracy, and
the global selection is superior to the local selection as well
as the sequential selection.

2. Related Work

PPC solutions can be categorized into (1) SMC-based and
(2) distortion-based solutions. SMC-based solutions [3] pro-
vide secure mining algorithms for the distributed environ-
ment, and they are orthogonal to our PPC problem. On the
other hand, distortion-based solutions [1], [6]–[8] are gen-
erally used for the centralized environment that consists of
multiple data providers and one or more third parties. A sim-
ple distortion-based solution is using random data pertur-
bation [1], [8], but it may incur bad clustering accuracy [6].
Geometric transformation and rotation perturbation [7] can
be used for distorting a set of time-series, but these solutions
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Fig. 1 Reconstructed time-series from Fourier coefficients.

may cause privacy breach at the worse case when their trans-
forming or perturbing parameters are disclosed to attackers.

Recently, Mukherjee and Chen [6] proposed the
coefficient-based method that exploited a few Fourier co-
efficients instead of a whole time-series. This method, how-
ever, may cause privacy breach if coefficient positions are
revealed. Figure 1 shows an example of reconstructing the
original time-series, which is a Chlorine time-series [5] of
length 128. As shown in the figure, the reconstructed time-
series from 8 or 16 coefficients are very similar to the origi-
nal time-series.

3. Fourier Magnitude-Based Approach

Discrete Fourier transform (DFT) converts a time-series
to a sequence of frequencies, each of which is a func-
tion of magnitude and phase [6]. For a given time-
series X(= {x0, . . . , xn−1}), we can obtain its coefficient se-
quence Xc(= {xc

0, . . . , x
c
n−1}) and magnitude sequence Xm(=

{xm
0 , . . . , x

m
n−1}) as xc

k =
1
n

∑n−1
i=0 xie

−2πik
n · j and xm

k = ‖xc
k‖,where

k = 0, . . . , n − 1.
Our magnitude-based method exploits Fourier magni-

tudes xm
k ’s. That is, it selects a few magnitudes from a time-

series and publishes those magnitudes to third parties. If
magnitudes and phases are given, we can get their coeffi-
cients, and vice versa. Without phases, however, the exact
coefficients cannot be obtained from the given magnitudes.
It means that we cannot recover the time-series without the
phase information. Thus, the magnitude-based method does
not incur the privacy breach problem.

Figure 2 shows an original time-series and its example
time-series reconstructed from Fourier magnitudes for the
same Chlorine time-series of Fig. 1. As shown in the figure,
many different time-series can be reconstructed due to miss-
ing phases, and attackers cannot choose a specific one since
they do not know the exact phases. This explains why our
magnitude-based method does not cause privacy breach.

Distance orders represent the relative orders among
distances between time-series. As the distance measure, we
use the Euclidean distance since it is one of the most widely
used distance functions [6]–[8]. In general, preserving both
the absolute distances between time-series and their privacy
is difficult. However, preserving the relative orders among
distances is enough for providing higher accuracy in many
mining algorithms [4]. Based on this observation, we use the
notion of distance order preservation for assuring clustering
accuracy.

Definition 1: Suppose time-series O, A, and B form a

Fig. 2 Reconstructed time-series from Fourier magnitudes.

record [O, (A, B)], and they are distorted to time-series
Od, Ad, and Bd, respectively. We say that the dis-
tance order of (A, B) with respect to O is preserved, or
simply the distance order of [O, (A, B)] is preserved, if
D(O, A) ≤ D(O, B) ⇒ D(Od, Ad) ≤ D(Od, Bd) or D(O, A) ≥
D(O, B) ⇒ D(Od, Ad) ≥ D(Od, Bd) holds, where D(·, ·) is
the Euclidean distance function.

In Definition 1, the distance order of [O, (A, B)] is the same
as that of [O, (B, A)], and we thus use the notation [O, (A, B)]
only in the paper. The reason why we use the form of
[O, (A, B)] is that many clustering algorithms use the oper-
ation of comparing one point with other points. For exam-
ple, the k-means algorithm compares a representative point
of each cluster with other points; and the hierarchical al-
gorithm compares a leaf point (or a group of points) with
other neighbor points (or groups of points). Thus, preserv-
ing distance orders of [O, (A, B)]’s is important in preserving
clustering accuracy in many algorithms. To exploit the dis-
tance order preservation as a metric of preserving clustering
accuracy, we now quantify its measure as follows:

Definition 2: Suppose S is a set of [O, (A, B)]’s of time-
series. We define the degree of distance order preser-
vation of S, simply denoted by ddop of S, as the ratio
of the number of distance order preserved [O, (A, B)]’s to
the number of all [O, (A, B)]’s in S. That is, ddop =
the number of distance order preserved [O, (A, B)]’s in S

the number of all [O, (A, B)]’s in S .

To preserve as many distance orders as possible, we use the
ddop in selecting Fourier magnitudes.

4. Magnitude Selection Strategies

In this section we propose selection strategies that choose
f magnitudes among n (� f ) magnitudes obtained from a
time-series of length n.

The simplest strategy is to select the first f magni-
tudes from total n magnitudes. We call it the sequential
selection. The sequential selection, however, has a prob-
lem of not considering ddop in selecting magnitudes. It
just assumes that most energy is concentrated on the first
few coefficients, but this assumption is not true for many
types of time-series. According to the experiment [6], en-
ergy concentration varies depending on types of time-series.
To solve this problem, we need to investigate which magni-
tudes closely preserve distance orders.

We next propose two greedy selection strategies: local
selection and global selection. The local selection first com-
putes ddop of each individual magnitude and then greedily
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selects the magnitudes having larger degrees. Algorithm 1
shows the local selection. In the procedure LocalIndex (), we
first randomly choose sample [O, (A, B)]’s from the given
database (Line 1). We then compute ddop for each mag-
nitude (Line 2). We finally store indexes of f magnitudes
having large ddop (Line 3). Those stored f indexes are used
in the main algorithm to extract f magnitudes from a time-
series.

Algorithm 2 shows the global selection that selects the
first magnitude using the local selection and then repeatedly
selects the next one by considering the previously selected
magnitudes. In the procedure GlobalIndex (), we first ran-
domly choose sample [O, (A, B)]’s (Line 1). We then repeat-
edly select the next j-th magnitude based on the previously
selected 1-st to ( j−1)-th magnitudes (Lines 2-8). Like in the
local selection, those stored f indexes are used in the main
algorithm to extract f magnitudes. The global selection is a
little bit complex, but it will be better than the local selection
in preserving distance orders since it uses a global approach
instead of a local approach.

We now analyze the number of records [O, (A, B)]’s in
two greedy strategies. If we let the number of time-series
be m, the number of cases of selecting O becomes m. Af-
ter then, for each O we need to consider

(
m−1

2

)
cases, i.e.,

(m−1)(m−2)
2 cases, since we select two time-series for A and B

from the rest (m−1) time-series. As a result, for the given m
time-series, we can generate total m(m−1)(m−2)

2 records. This
large number makes it difficult to use all the [O, (A, B)]’s in
the strategies, and we thus reduce the number of [O, (A, B)]’s
through the random sampling. To determine the sample size
s, we use Eq. (1) developed by Cochran [2]. In Eq. (1), Z, D,
and N are the upper 100 · (a/2) percentile point of standard

Algorithm 1 LocalSelection (S = {s0, . . . , sn−1}, f )
1: if LocalIndex () is not called yet then LocalIndex ();
2: Extract n Fourier magnitudes from S through DFT;
3: Select f magnitudes from n ones by the order of Lidx[ j];

Procedure LocalIndex ()

1: Randomly choose a set S of sample [O, (A, B)]’s from the database;
2: for i := 1 to n do Compute ddop[i] from S using ith mag.;
3: for j := 1 to f do Lidx[ j] := the index of jth largest ddop[i];

Algorithm 2 GlobalSelection (S = {s0, . . . , sn−1}, f )
1: if GlobalIndex () is not called yet then GlobalIndex ();
2: Extract n Fourier magnitudes from S through DFT;
3: Select f magnitudes from n ones by the order of Gidx[ j];

Procedure GlobalIndex ()

1: Randomly choose a set S of sample [O, (A, B)]’s from the database;
2: for j := 1 to f do
3: for i := 1 to n do
4: if i is already in Gidx[1..( j − 1)] then ddop[i] := −1;
5: else compute ddop[i] from S using Gidx[1..( j − 1)]ths

and ith magnitudes;
6: end-for
7: Gidx[ j] := the index of the largest ddop[i];
8: end-for

normal distribution for desired confidence level (1 − a), the
desired level of precision, and the population size, respec-
tively.

s =
s0

1 + (s0−1)
N

, where s0 =
Z2 · 0.52

D2
. (1)

Cochran’s Eq. (1) is widely used in survey research to obtain
the sample size for a large population. In our case, the num-
ber of possible [O, (A, B)]’s is very large, and we thus Eq. (1)
to calculate the sample size with the given confidence level
and interval. In the experiment we use 95% of confidence
level and ±1.0% of confidence interval.

We also briefly analyze the computation overhead of
greedy strategies. We only focus on the time complexity re-
quired to select magnitudes since performing DFT is com-
monly required in all strategies. First, LocalIndex () of the
local selection computes O(n) ddop’s for each [O, (A, B)],
and its time complexity is O(nk) if k is the number of
[O, (A, B)]’s (see Line 2 of Algorithm 1). Second, Glob-
alIndex () of the global selection computes O(nk) ddop’s for
each magnitude, and its complexity is O(n f k) since we se-
lect f magnitudes (see Line 5 in Algorithm 2). In summary,
for the given k sample [O, (A, B)]’s, LocalIndex () and Glob-
alIndex () incur O(nk) and O(n f k) additional computation
overhead compared with the sequential selection.

5. Experimental Evaluation

We used UCR time-series data sets [5]. For each data
set, we measured the ddop and the actual clustering accu-
racy. We experimented four privacy-preserving methods:
the coefficient-based method [6], the sequential selection,
the local selection, and the global selection. For simplicity,
we denoted these methods by CB, SS, LS and GS, respec-
tively.

To evaluate ddop, we first choose 4,858 to 9,604 sam-
ples of [O, (A, B)] for each data set since the data sets con-
sist of 28 to 6,136 time-series. We then obtain ddop for
each privacy-preserving method. Figure 3 shows the rela-
tive trend of ddop’s that compare our methods with the pre-
vious CB [6] on different data sets. As shown in the figure,
our SS, LS, and GS are generally worse than CB in preserv-
ing distance orders. This is an obvious result because our
approach uses only magnitudes without the phase informa-
tion. However, we note that the difference between CB and
GS is very small, i.e., merely 14% on the average. It means
that the clustering accuracy is not much worse even though
we use magnitudes only. We also note that the results of GS
are better than those of LS and SS.

We next discuss the actual accuracy preservation. As
the accuracy measure, we use F-measure [6]. In general,
the higher F-measure means the more accurate results. Af-
ter executing the k-means algorithm for each of CB, SS,
LS, and GS, we obtain their F-measures, respectively. Fig-
ure 4 shows the relative trend of F-measures on different
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Fig. 3 Relative ddop’s on different time-series data sets.

Fig. 4 Relative F-measures on different time-series data sets.

Fig. 5 The elapsed times of LocalIndex () and GlobalIndex ().

data sets†. As shown in the figure, the relative F-measures
are below 0.5 in FISH, SwedishLeaf, and Trace; in contrast,
for many data sets including Adiac and CBF, the relative
F-measures are above 0.8. It means that our methods pro-
vide a good result for many data sets, but does not for some
data sets. Showing the F-measure difference by the char-
acteristics of data sets is an interesting issue, and we leave
it as the future work. In Fig. 4, the relative F-measures are
in between 1.27 (Adiac) and 0.23 (SwedishLeaf), and their
average is 0.75. That is, the F-measure difference between

†Different clustering methods provide different clustering re-
sults, and their accuracy is subjective. However, we use the same
clustering method for the both original and distorted data sets.
Thus, in our case, the smaller difference in clustering results of two
data sets, the higher accuracy. This is why we use the F-measure
to compare the clustering results of the original and distorted data
sets.

CB and our methods is 25% on the average. Also, GS is still
superior to SS and LS.

To investigate the computation overhead of LocalIn-
dex () and GlobalIndex (), we show their elapsed times in
Fig. 5 by varying the number k of sample [O, (A, B)]’s. We
use ECG200 and FaceFour data sets [5]. We note that their
elapsed times linearly increase as the number of samples in-
creases. This is because their time complexities are O(nk)
and O(n f k), respectively, as we discussed in Sect. 4. This
index selection process, however, can be seen as preprocess-
ing steps, and we can ignore this overhead when we consider
the whole process of publishing time-series.

6. Conclusions

In this paper we proposed the Fourier magnitude-based PPC
on time-series data, which did not cause the privacy breach
problem. We also presented a notion of distance order
preservation and proposed magnitude selection strategies.
We empirically showed that our magnitude-based approach
could be comparable to the previous coefficient-based ap-
proach in clustering accuracy. These results indicate that our
approach provides a higher degree of privacy-preservation
as well as a comparable clustering accuracy.
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