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Random Generation and Enumeration of Proper Interval Graphs∗

Toshiki SAITOH†a), Nonmember, Katsuhisa YAMANAKA††, Member, Masashi KIYOMI†, Nonmember,
and Ryuhei UEHARA†, Member

SUMMARY We investigate connected proper interval graphs without
vertex labels. We first give the number of connected proper interval graphs
of n vertices. Using this result, a simple algorithm that generates a con-
nected proper interval graph uniformly at random up to isomorphism is
presented. Finally an enumeration algorithm of connected proper interval
graphs is proposed. The algorithm is based on reverse search, and it outputs
each connected proper interval graph in O(1) time.
key words: counting, enumeration, proper interval graphs, random gener-
ation, unit interval graphs

1. Introduction

Recently there has arisen need to process huge amounts of
data in the areas of data mining, bioinformatics, etc. In order
to find and classify knowledge automatically from the data,
we assume that the data have a certain structure. We have to
attain three efficiencies to deal with the complex structures:
the structure has to be represented efficiently; essentially
different instances have to be enumerated efficiently; and the
properties of the structure have to be checked efficiently. In
the area of graph drawing, there are several papers [5], [16],
[23], [29]. From the viewpoint of graph classes, the previ-
ously studied structures are relatively primitive, and there
are many unsolved problems for more complex structures:
Trees are widely investigated as a model of such structured
data [10], [20], [26]–[28], and recently, distance-hereditary
graphs are studied [30].

A variety of graph classes have been proposed and
studied [6]. Among them, interval graphs have been widely
investigated since they were introduced in the 1950s by a
mathematician, Hajös, and by a molecular biologist, Ben-
zer, independently [11, Chapter 8]. A graph is called an in-
terval graph if it represents intersecting intervals on a line.
In this paper, we study a subclass of interval graphs. An
interval graph is called a unit interval graph if it has a unit
length interval representation. An interval representation is
called proper if no interval properly contains another one
on the representation. An interval graph is called a proper
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interval graph if it has a proper interval representation. In-
terestingly, unit interval graphs coincide with proper interval
graphs; those notions define the same class [4], [34].

In addition to the fact that proper interval graphs form
a basic graph class, they have been of interest from a view-
point of graph algorithms. There are many problems that
can be solved efficiently on proper interval graphs [3], [8],
[9], [14], [15], [32]. It is also known that proper interval
graphs are strongly related to the classic NP-hard problem,
bandwidth problem [17]. The bandwidth problem is find-
ing a layout of vertices; the objective is to minimize the
maximum difference of two adjacent vertices on the layout.
The bandwidth problem is NP-hard even on trees [25], [33].
The bandwidth problem has been studied since the 1950s; it
has many applications including sparse matrix computations
(see [7], [22] for survey). For any given graph G = (V, E),
finding a best layout of vertices is equivalent to finding a
proper interval graph G′ = (V, E′) with E ⊆ E′ whose max-
imum clique size is the minimum among all such proper in-
terval graphs [17]. The proper interval completion problem
is also motivated by molecular biology, and hence it attracts
much attention (see, e.g., [18]).

In this paper, we investigate counting, random genera-
tion, and enumeration of proper interval graphs. More pre-
cisely, we aim to count, generate, and enumerate unlabeled
connected proper interval graphs. We note that the graphs
we deal with are unlabeled. This is reasonable to avoid re-
dundancy from a practical point of view.

Unlabeled proper interval graphs can be naturally rep-
resented by a language over an alphabet Σ = {‘[’, ‘]’}. The
number of strings representing proper interval graphs is
strongly related to a well known notion called Dyck path,
which is a staircase walk from (0, 0) to (n, n) that lies strictly
below (but may touch) the diagonal x = y. The number of
Dyck paths of length n is equal to Catalan number C(n).
Thus, our results for counting and random generation of
proper interval graphs with n vertices are strongly related
to C(n). The main difference is that we have to consider
isomorphism and symmetry in the case of proper interval
graphs. For example, to generate an unlabeled connected
proper interval graph uniformly at random, we have to con-
sider the number of valid representations of each graph since
it depends on the symmetry of the graph. We show in Sect. 3
that the number of connected proper interval graphs of n+ 1
vertices is 1

2 (C(n) +
(

n
�n/2�
)
). Extending the result, we give

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



SAITOH et al.: RANDOM GENERATION AND ENUMERATION OF PROPER INTERVAL GRAPHS
1817

an O(n3) time and a linear space algorithm that generates a
connected proper interval graph with n vertices uniformly at
random.

Our enumeration algorithm is based on the reverse
search developed by Avis and Fukuda [2]. We design a good
parent-child relation among the string representations of the
proper interval graphs in order to perform the reverse search
efficiently. The relation allows us to perform each step of
the reverse search in O(1) time, and hence we have an effi-
cient algorithm that enumerates every unlabeled connected
proper interval graph with n vertices in O(1) time and O(n)
space. (Each graph G is output in the form of the differ-
ence of edges between G and the previous one so that the
algorithm can output it in O(1) time.) Here we notice that
there are some similar known algorithms that enumerate ev-
ery string of ‘[’ and ‘]’ in constant time [20]. However, it is
not always possible to obtain a constant delay algorithm for
enumerating proper interval graphs from such constant de-
lay string enumeration algorithms. For example, consider a
string ‘[[. . . []]. . . ]’ of length 2n. This represents a complete
graph of size n, and the number of edges of it is n(n−1)/2. If
we swap the 3rd ‘[’ and the first ‘]’, the number of edges of
the represented graph becomes (n−1)(n−2)/2+1 though the
size of differences in the two strings is O(1). That is, an effi-
cient enumeration algorithm for strings does not necessarily
provides an efficient enumeration algorithm for graphs. Our
efficient enumeration algorithm for strings also produces an
efficient enumeration algorithm for graphs in a straightfor-
ward way.

We note that all the results above can be extended from
“n vertices” to “at most n vertices”. This will be discussed
in the concluding remarks.

2. Preliminaries

A graph (V, E) with V = {v1, v2, . . . , vn} is an interval graph
if there is a finite set of closed intervals I = {Iv1 , Iv2 , . . . , Ivn }
on the real line such that {vi, v j} ∈ E iff Ivi ∩ Iv j � ∅ for
each i and j with 0 < i, j ≤ n. We call the interval set I
an interval representation of the graph. For each interval I,
we denote by L(I) and R(I) the left and right endpoints of
the interval, respectively (hence we have L(I) ≤ R(I) and
I = [L(I),R(I)]). For two intervals I and J, we write I ≺ J
if L(I) ≤ L(J) and R(I) ≤ R(J).

An interval representation is proper if no two distinct
intervals I and J exist such that I properly contains J or vice
versa. That is, either I ≺ J or J ≺ I holds for every pair
of intervals I and J. An interval graph is proper if it has a
proper interval representation. If an interval graph G has an
interval representation I such that every interval in I has the
same length, G is said to be a unit interval graph. Such in-
terval representation is called a unit interval representation.
It is well known that proper interval graphs coincide with
unit interval graphs [34]. That is, given a proper interval
representation, we can transform it to a unit interval repre-
sentation. A simple constructive way of the transformation
can be found in [4]. With perturbations if necessary, we

can assume without loss of generality that L(I) � L(J) (and
hence R(I) � R(J)), and R(I) � L(J) for any two distinct
intervals I and J in a unit interval representation I. And we
assume that the intervals in I are sorted by L(I) values.

We denote an alphabet {‘[’, ‘]’} by Σ throughout the pa-
per. We encode a unit interval representation I of a unit
interval graph G by a string s(I) in Σ∗ as follows; we sweep
the interval representation from left to right, and encode L(I)
by ‘[’ and encode R(I) by ‘]’ for each I ∈ I. We call the en-
coded string a string representation of G. We say that string
x in Σ∗ is balanced if the number of ‘[’s in x is equal to that
of ‘]’s. Clearly s(I) is a balanced string of 2n letters. Us-
ing the construction in [4], s(I) can be constructed from a
proper interval representation I in O(n) time and vice versa
since the ith ‘[’ and the ith ‘]’ give the left and right end-
points of the ith interval, respectively.

We define ‘[̄’ = ‘]’ and ‘]̄’ = ‘[’ respectively. For two
strings x = x1x2 · · · xn and y = y1y2 · · · ym in Σ∗, we say that
x is smaller than y if (1) n < m, or (2) n = m and there exists
an index i ∈ {1, . . . , n} such that xi′ = yi′ for all i′ < i and xi =

‘[’ and yi = ‘]’. If x is smaller than y, we denote x < y. We
note that the balanced string x = [[· · · []] · · · ] is the smallest
among those of the same length. For a string x = x1x2 · · · xn

we define the reverse x̄ of x by x̄ = x̄n x̄n−1 · · · x̄1. A string x
is reversible if x = x̄. Here we have the following lemma:

Lemma 1 (See, e.g., [9, Corollary 2.5]). Let G be a con-
nected proper interval graph, and I and I′ be any two unit
interval representations of G. Then either s(I) = s(I′) or
s(I) = s(I′) holds. That is, the unit interval representa-
tion and hence the string representation of a proper interval
graph is determined uniquely up to isomorphism.

A connected proper interval graph G is said to be re-
versible if its string representation is reversible. Note that
G is supposed to be connected in Lemma 1. If G is discon-
nected, we can obtain several distinct string representations
by arranging the connected components.

It is easier for our purpose (counting, random genera-
tion, and enumeration of unlabeled proper interval graphs)
to deal with the encoded strings in Σ∗ than to use inter-
val representations. Given an interval representation I of
a proper interval graph G, the smaller of the two string rep-
resentations s(I) and s(I) is called canonical. If s(I) is
reversible, s(I) is the canonical string representation. Here-
after we sometimes identify a connected proper interval
graph G with its canonical string representation.

For a string x = x1x2 · · · xn ∈ Σn of length n, we define
the height hx(i) (i ∈ {0, . . . , n}) as follows;

hx(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if i = 0,
hx(i − 1) + 1 if xi = ‘[’, and
hx(i − 1) − 1 if xi = ‘]’.

We say that a string x is nonnegative if mini{hx(i)} is equal
to 0 (we do not have mini{hx(i)} > 0 since hx(0) = 0). The
following observation is immediate:

Observation 1. Let x = x1x2 · · · x2n be a string in Σ2n. (1)
x is a string representation of a (not necessarily connected)
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proper interval graph if and only if x is balanced and non-
negative. (2) x is a string representation of a connected
proper interval graph if and only if x1 = ‘[’ and x2n = ‘]’,
and the string x2 · · · x2n−1 is balanced and nonnegative.

A balanced nonnegative string of length 2n corre-
sponds to a well-known notion called Dyck path, which is
a staircase walk from (0, 0) to (n, n) that lies strictly below
(but may touch) the diagonal x = y. The number of Dyck

paths of length n is equal to Catalan number C(n) = 1
n+1

(
2n
n

)
;

see [37, Corollary 6.2.3] for further details. We note that
Observation 1 does not care about isomorphism up to rever-
sal. We have to avoid the duplications of isomorphic graphs
for counting the number of mutually nonisomorphic graphs,
and for uniform random generation of them.

We define one of the generalized notions of Catalan
number: The number of nonnegative strings x = x1x2 · · · xn

of length n with hx(n) = h ≥ 0 is denoted by C(n, h).

3. Counting and Random Generation

In this section, we count the number of mutually nonisomor-
phic proper interval graphs. We also propose an algorithm
that efficiently generates a proper interval graph uniformly
at random.

The number of proper interval graphs has been given
by the recurrence equation in [13]. The closed equation of
the number of proper interval graphs has been mentioned
informally by Karttunen in 2002 [19]. We here give an ex-
plicit proof since we use some of its concepts for random
generation.

Theorem 1 (Karttunen 2002). For any positive integer n,
the number of connected proper interval graphs of n + 1
vertices is 1

2

(
C(n) +

(
n
�n/2�
))

.

Proof. We define three sets R(n), S (n), and T (n) of strings
in Σ2n of length 2n by

R(n) = {x | x is balanced, nonnegative, |x| = 2n, and x
is reversible},

S (n) = {x | x is balanced, nonnegative, |x| = 2n, and x
is not reversible}, and

T (n) = {x | x is balanced, nonnegative, and |x| = 2n}.
The number of connected proper interval graphs of n + 1
vertices is equal to |S (n)| /2+ |R(n)| = |T (n)| /2+ |R(n)| /2 =
1
2 (C(n)+ |R(n)|), by Observation 1. The number of elements
in R(n) is equal to that of nonnegative strings x′ of length n,
since each reversible string x is obtained by the concatena-
tion of strings x′ and x̄′.

Now the task is the evaluation of the number of non-
negative strings x of length n with hx(n) = h. Clearly we
have C(n, h) = 0 if h > n. The following equations hold for
each integers i and k with 0 ≤ i ≤ k.

(1) C(2k, 2i + 1) = 0, C(2k + 1, 2i) = 0,
(2) C(2k, 0) = C(k), C(k, k) = 1, and
(3) C(k, i) = C(k − 1, i − 1) + C(k − 1, i + 1).

Let T (k, h) be a set of nonnegative strings x′ = x1x2 · · · xk

of length k with hx(k) = h, and M(k + 1, h + 1) be {‘[’x |
x ∈ T (k, h)}. Note that M(k + 1, h + 1) is a set of m-Raney
sequences by letting m = 2, length k + 1, and total sum
h + 1 in [12, Sect. 7.5], where ‘[’ is 1 and ‘]’ is −1. Clearly,
|T (k, h)| = |M(k + 1, h + 1)|. Therefore,
C(k, h) = |T (k, h)| = h+1

k+1

(
k+1

(k−h)/2

)

by [12, Eq. (7.69), p.349].
It is necessary to show

∑n
i=0 C(n, i) =

(
n
�n/2�
)

to complete

the proof. This equation can be obtained from Eq. (5.18) in
[12]. �

Next we consider the uniform random generation of a
proper interval graph of n vertices.

Theorem 2. For any given positive integer n, a connected
proper interval graph with n vertices can be generated uni-
formly at random in O(n) space. The time complexity to
generate a string representation of proper interval graph
uniformly is O(n3). The time complexity to convert the string
representation to a graph representation is O(n + m) where
m is the number of edges of the created graph.

Proof. We denote by y = y1 · · · y2n the canonical string of a
connected proper interval graph G = (V, E) to be obtained.
We fix y1 = ‘[’ and y2n = ‘]’ and generate x = x1 · · · x2n′ with
y = [x], where n′ = n − 1 and x is a balanced nonnegative
string.

The idea is simple; just generate a balanced nonneg-
ative string x. However each non-reversible graph corre-
sponds to two balanced nonnegative strings, while each re-
versible graph corresponds to exactly one balanced nonneg-
ative (reversible) string. We use the equation |S (n′)| /2 +
|R(n′)| = |T (n′)| /2 + |R(n′)| /2 = 1

2 (C(n′) + |R(n′)|) in
Theorem 1 in order to adjust the generation probabili-
ties. The algorithm first selects which type of string to
generate: (1) a balanced nonnegative string (that can be
reversible) with probability |T (n′)| /(|T (n′)| + |R(n′)|) =
C(n′)/

(
C(n′) +

(
n′
�n′/2�
))

or (2) a balanced nonnegative re-

versible string with probability |R(n′)| /(|T (n′)| + |R(n′)|) =(
n′
�n′/2�
)
/
(
C(n′) +

(
n′
�n′/2�
))

. This probabilistic choice adjusts

the generation probabilities between reversible graphs and
non-reversible graphs.

In each case, the algorithm generates each string uni-
formly at random using the function C(n, h) introduced in
the proof of Theorem 1 as follows:

Case 1: Generation of a balanced nonnegative string of
length 2n′ uniformly at random. There is a known algo-
rithm for this purpose [1]. We simply generate sequence of
‘[’ and ‘]’ from left to right. Assume that the algorithm has
already generated a nonnegative string x1 · · · xk of length k
with k < 2n′. Next, we choose either ‘[’ or ‘]’ as xk+1. The
choice between alternative next states must be made on the
basis of the proportion of terminal strings reached through
the alternatives. The number of nonnegative strings that the
next letter is ‘[’ is p = C(r, hx(k)+1), and the number of non-
negative strings that the next letter is ‘]’ is q = C(r, hx(k)−1),
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where r is equal to 2n′ − k − 1. Choose ‘[’ as the next letter

with probability p
p+q =

(hx(k)+2)(r−hx(k)+1)
2(r+1)(hx(k)+1) and choose ‘]’ with

probability q
p+q =

hx(k)(r+hx(k)+3)
2(r+1)(hx(k)+1) . Then we have a balanced

nonnegative string of length 2n′ uniformly at random.

Case 2: Generation of a balanced nonnegative reversible
string of length 2n′ uniformly at random. The desired bal-
anced nonnegative reversible string x can be represented as
x = x1x2 · · · xn′−1xn′ x̄n′ x̄n′−1 · · · x̄2 x̄1, where x1x2 · · · xn′ is a
nonnegative string of length n′. We thus generate a non-
negative string x′ := x1x2 · · · xn′ of length n′ uniformly at
random.

Unfortunately, a similar approach to Case 1 does not
work; given a positive prefix x1x2 · · · xi, it seems to be hard
to generate xi+1 · · · xn′ that ends at some hx(n′) uniformly,
since the string may pass below both of hx(i) and hx(n′).

The key idea is to generate the desired string back-
wardly. This step consists of two phases. The algorithm
first chooses the height hx(n′) of the last letter xn′ randomly.
Then the algorithm randomly selects the height hx(i) of the
ith letter xi from hx(i + 1) for each i = n′ − 1, n′ − 2, . . . , 1.
That is, we have either hx(i) := hx(i + 1) − 1 or hx(i) :=
hx(i + 1) + 1 in general, and hx(0) = 0 at last. From the
sequence of the heights, we can construct x = x1x2 · · · xn′

in O(n) time and space: If hx(i) = hx(i + 1) − 1, we have
xi = ‘[’, and if hx(i) = hx(i + 1) + 1, we have xi = ‘]’.

We first consider the first phase. By the proof of The-
orem 1, the number of nonnegative strings ending at height
h is C(n′, h), and

∑n′
i=0 C(n′, i) =

(
n′
�n′/2�
)
. Hence, for each h

with 0 ≤ h ≤ n′, the algorithm sets hx(n′) = h with proba-
bility C(n′, h)/

(
n′
�n′/2�
)
.

Next we consider the second phase. For general i with
1 ≤ i < n′, the height hx(i) is either hx(i) = hx(i + 1) + 1 or
hx(i) = hx(i + 1) − 1. The number of nonnegative strings of
length i ending at the height hx(i + 1) + 1 is p = C(i, hx(i +
1) + 1), and the number of nonnegative strings of length i
ending at the height hx(i + 1) − 1 is q = C(i, hx(i + 1) − 1).
The algorithm sets hx(i) = hx(i + 1) + 1 with probability

p
p+q =

(hx(i+1)+2)(i−hx(i+1)+1)
2(i+1)(hx(i+1)+1) and sets hx(i) = hx(i + 1)− 1 with

probability q
p+q =

hx(i+1)(i+hx(i+1)+3)
2(i+1)(hx(i+1)+1) . The algorithm finally

obtains hx(1) = 1 and hx(0) = 0 with probability 1 after
repeating this process. The string x′ = x1x2 · · · xn′−1xn′ can
be computed from the sequence of heights by traversing the
sequence of the heights backwards and hence we can obtain
x = x′ x̄′.

Now we consider complexities. Binomial coefficient(
n
k

)
can be computed in O(nk + 1) time and O(k + 1) space

with Iriyama’s algorithm [21]. Thus Catalan number C(n)
can be computed in O(n2) time and in O(n) space. General-
ized Catalan number C(n, k) can be computed in O(n2) time
and in O(n) space. Note that we can compute an n bit ran-
dom number in O(n) time provided we can compute 1 bit
random number in O(1) time. Since we compute the gener-
alized Catalan number n/2 times in the first phase in Case 2,

our random generation algorithm can be performed in O(n3)
time. Note that C(n) is exponentially larger than

(
n
�n/2�
)

so

the probability of selecting Case 2 is close to 0. Therefore
the complexity O(n2) on that depends on the selection which
type of string to generate.

The generation of x′ = x1x2 · · · xn′ from the sequence
of their heights hx(n′), hx(n′ − 1), . . . , hx(1) in Case 2 in the
proof of Theorem 2 require O(n) space. Calculations of
Catalan numbers also require O(n) space. Hence the space
complexity of the algorithm is O(n). �

4. Enumeration

We here enumerate all connected proper interval graphs with
n vertices. It is sufficient to enumerate each string repre-
sentation of connected proper interval graphs, by Lemma 1.
Let S n be the set of balanced and canonical strings x =
x1x2 · · · x2n in Σ2n such that x1 = ‘[’, x2n = ‘]’, and the string
x2 · · · x2n−1 is nonnegative. We define a tree structure, called
family tree, in which each vertex corresponds to each string
in S n. We enumerate all the strings in S n by traversing the
family tree. Since S n is trivial when n = 1, 2, we assume
n > 2.

We start with some definitions. Let x = x1x2 · · · x2n

be a string in Σ2n. If xixi+1 = [ ], i is called a front index
of x. Contrary, if xixi+1 = ][, i is called a reverse index
of x. For example, a string [[[[ ][ ][ ]][ ]][ ][ ]] has 6 front
indices 4, 6, 8, 11, 14, and 16, and has 5 reverse indices 5,
7, 10, 13, and 15. The string [n]n in S n is called the root
and denoted by rn. Let x = x1x2 · · · x2n be a string in Σ2n.
We denote the string x1x2 · · · xi−1 x̄i x̄i+1xi+2 · · · x2n by x[i] for
i = 1, 2, . . . , 2n−1. We define P(x) by x[ j] for x ∈ Σ2n \ {rn},
where j is the minimum reverse index of x. For example, for
x =[[[[][][ ]][ ]][ ][ ]], we have P(x) =[[[[[ ]][ ]][ ]][ ][ ]] (the
flipped pair is enclosed by the grey box and the minimum
reverse indices are underlined).

Lemma 2. For every x ∈ S n \ {rn}, we have P(x) ∈ S n.

Proof. For any x ∈ S n \ {rn}, it is easy to see that P(x) =
x′1x′2 · · · x′2n satisfies that x′1 = ‘[’, x′2n = ‘]’, x′2 · · · x′2n−1 is
balanced and nonnegative. Thus we show that P(x) is canon-
ical.

We first assume that x is reversible. Then the minimum
reverse index j of x satisfies j ≤ n, since x is reversible and
is not the root. If j = n, P(x) is still reversible and hence
P(x) is canonical. When j < n, we have x j′ = x̄′2n− j′+1
for each 1 ≤ j′ < j, x j = ‘[’, and x′2n− j+1 = ‘[’. Hence

P(x) < P(x).
Next we consider the case that x is not reversible. There

must be an index i such that xi = x2n−i+1 = ‘[’ and xi′ =

x̄2n−i′+1 for all 1 ≤ i′ < i, since x is canonical. Moreover we
have 1 ≤ i < n, since x is balanced. Let � be the minimum
reverse index of x. We first observe that � � i since x� = ‘]’.
We also see that � < 2n − i + 1 since xi′ = x̄2n−i′+1 for all
1 ≤ i′ < i. If � < i − 1, using a similar argument above, we
have P(x) < x < P(x). If � > i, the changes to the string has



1820
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

no effect; we still have x′i = ‘[’ and x′2n−i+1 = ‘[’ and hence
P(x) < P(x). The last case is � = i − 1. In this case, we have
xi−1xi = ‘][’, xn−i+1xn−i+2 = ‘[[’ and xi′ = x̄2n−i′+1 for all
1 ≤ i′ < i. Thus we have x′i−1x′i = ‘[]’, x′n−i+1x′n−i+2 = ‘[[’,
and x′i′ = x̄′2n−i′+1 for all 1 ≤ i′ < i − 1. This implies that
P(x) < P(x). �

Next we define the family tree among strings in S n. We
call P(x) the parent of x, and x is a child of P(x) for each x ∈
S n \ {rn}. Note that x ∈ S n may have multiple or no children
while each string x ∈ S n \ {rn} has the unique parent P(x) ∈
S n. Given a string x in S n\{rn}, we have the unique sequence
x, P(x), P(P(x)), . . . of strings in S n by repeatedly finding the
parent. We call it the parent sequence of x. For example, for
x =[[[ ][ ]][ ]], we have P(x) =[[[[ ]]][ ]], P(P(x))=[[[[ ]][ ]]],
P(P(P(x))) =[[[[ ][ ]]]], and P(P(P(P(x)))) = r5. The next
lemma ensures that the root rn is the common ancestor of all
the strings in S n.

Lemma 3. The parent sequence of x in S n eventually ends
up with rn.

Proof. For a string x = x1x2 · · · x2n in S n, we define a poten-
tial function p(x) =

∑n
i=1 2n−ib(xi) +

∑n
i=1 2i−1(1 − b(xn+i)),

where b(‘[’) = 0 and b(‘]’) = 1. For any x ∈ S n, p(x) is a
non-negative integer, and p(x) = 0 if and only if x = rn.

Suppose x is not the root rn. Then x has the minimum
reverse index, say j. If j = n, it is easy to see that p(P(x)) =
p(x) − 2. We suppose that j < n. Then we have p(P(x)) =
p(x)−2n− j+2n− j−1 = p(x)−2n− j−1 < p(x) by the definitions
of the parent and the potential function. The case j > n
is symmetric and we obtain p(P(x)) < p(x). Therefore we
eventually obtain the root rn by repeatedly finding the parent
of the derived string, which completes the proof. �

We have the family tree Tn of S n by merging all the
parent sequences. Each vertex in the family tree Tn corre-
sponds to each string in S n, and each edge corresponds to
each parent-child relation. See Fig. 1 for example.

Now we give an algorithm that enumerates all the
strings in S n. The algorithm traverses the family tree by re-
versing the procedure of finding the parent as follows. Given

Fig. 1 The family tree T6.

a string x in S n, we enumerate all the children of x. Every
child of x is in the form x[i] where i is a front index of x. We
consider the following cases to find every i such that x[i] is
a child of x.

Case 1: String x is the root rn. The string x has exactly one
front index n. Since P(x[n]) = x, x[n] is a child of x. Since
x[i] is not a child of x when i is not a front index, x has
exactly one child.

Case 2: String x is not the root. In this case, x has at least
two front indices. Let i be any front index, and j be the
minimum reverse index. If i > j + 1 then x � P(x[i]), since
i is not the minimum reverse index of x[i]. If i ≤ j + 1, x[i]
may be a child of x. Thus we call i satisfying the minimum
front index or j + 1 a candidate index of x. For a candidate
index i, if x[i] is in S n (i.e. x[i] is canonical), i is called a
flippable index and x[i] is a child of x. There must exist a
reverse index between any two front indices. Since only the
indices satisfying the minimum front index or j + 1 can be
candidate indices, x has at most two candidate indices. Thus
x has at most two children. For example, x = [[[]][]] has two
candidate indices 3 and 6, one reverse index 5, and one child
x[3] = [[][][]].

Given a string x in S n, we can enumerate all the chil-
dren of x by the case analysis above. We can traverse Tn

by repeating this process from the root recursively. Thus we
can enumerate all the strings in S n.

Now we have the following algorithm and lemma.

Procedure find-all-children(x = x1x2 · · · x2n) // x is
the current string.

begin
01 Output x // Output the difference from the

previous string.

02 for each flippable index i
03 find-all-children(x[i]) // Case 2

end

Algorithm find-all-strings(n)
begin

01 Output the root x = rn

02 find-all-children(x[n]) // Case 1

end

Lemma 4. Algorithm find-all-strings(n) enumerates all the
strings in S n.

By Lemma 4 we can enumerate all the strings in S n.
We need two more lemmas to generate each string in O(1)
time. First we show an efficient construction of the candi-
date index list.

Lemma 5. Given a string x in S n and its flippable indices,
we can construct the candidate index list of each child of x
in O(1) time.

Proof. Let x[i] be a child of x. Each string x in S n has at
most two flippable indices (see the proof of Lemma 3). Let
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Fig. 2 Case analysis of candidate indices.

a and b be two flippable indices of x, and let a′ and b′ be two
candidate indices of x[a] or x[b]. We assume that a < b and
a′ < b′ without loss of generality. We have the two cases
below about x[i].

Case 1: A child x[a] of x. If xa+2 = ‘]’, we have two candi-
date indices a

′
= a− 1 and b

′
= a+ 1 (see Fig. 2 (a)). Other-

wise we have one candidate index a
′
= a− 1 (see Fig. 2 (b)).

Case 2: A child x[b] of x. If xb+2 = ‘]’, we have two candi-
date indices a

′
= a and b

′
= b+ 1 (see Fig. 2 (c)). Otherwise

we have one candidate index a
′
= a (see Fig. 2 (d)).

By the above case analysis, a candidate index of a child
either (1) appears in the previous or next index of a or b, or
(2) is identical to one of x’s. �

Since the number of candidate indices of x is at most
two, our family tree is a binary tree. We note that a candidate
index of x can become “non-candidate”. In the case, such
index does not become a candidate index again.

Next lemma shows that there is a method of determin-
ing whether a candidate index is flippable.

Lemma 6. One can determine whether or not a candidate
index is flippable in O(1) time.

Proof. Let x = x1x2 · · · x2n be a string in S n and a be a can-
didate index of x. We denote x[a] = y = y1y2 · · · y2n. A
candidate index a is flippable if and only if x[a] is canonical
and y2y3 · · · y2n−1 is nonnegative.

We first check whether or not a string y2y3 · · · y2n−1 is
nonnegative. We have hy(a) = hx(a)−2 and hy(i) = hx(i) for
each 1 ≤ i < a and a < i ≤ 2n, since a > 1, yaya+1 = ‘][’,
xaxa+1 = ‘[]’, and xi = yi for each 1 ≤ i < a and a + 1 < i ≤
2n. Thus y2y3 · · · y2n−1 is nonnegative if and only if hx(a) >
2. Therefore we can check the negativity of y2y3 · · · y2n−1 in
O(1) time using an array of size n to maintain the sequence
of heights of the string. Updates of the array also can be
done in O(1) time.

We next check whether or not a string is canonical.
We call xL = x1x2 · · · xn the left string of x, and xR =

x2nx2n−1 · · · xn+1 the right string of x. Then x is canonical
if and only if xL ≤ xR. We maintain a doubly linked list L
in order to check it in O(1) time. The list L maintains the
indices of different characters in xL and xR. First L is initial-
ized by an empty since xL = xR for x = rn. In general L is
empty if and only if x is reversible. We can check whether
xL < xR by comparing xL

L[1] and xR
L[1].

Now we have that x is canonical and nonnegative, x[a]
is nonnegative, and L consists of the different indices of xL

and xR. Then we have xL
L[1] is ‘[’ and xR

L[1] is ‘]’. We in-
troduce two pointers associated to the candidate index a to
update the list efficiently; two pointers pL

a and pR
a that point

two elements in the list L. Intuitively pL
a and pR

a gives the
two indices L[i] and L[i + 1] such that a is between L[i] and
L[i + 1]. When L is empty, pL

a and pR
a are also empty. As-

sume that L consists of k elements L[1], L[2], . . ., L[k]. Then
we have one of the following three cases. (1) If a is between
L[i] and L[i + 1], pL

a and pR
a point L[i] and L[i + 1], respec-

tively. More precisely, this case occurs either 1 ≤ a ≤ n
and L[i] ≤ a < L[i + 1] for some i or n + 1 ≤ a ≤ 2n and
L[i] ≤ 2n − a + 1 < L[i + 1] for some i. (2) If a is less
than L[1], pL

a and pR
a point L[1]. This case occurs either

a < L[1] or a > 2n − L[1]. (3) Otherwise, i.e., the case
L[k] ≤ a ≤ 2n − L[k]. In this case pL

a and pR
a point L[k].

Now we assume that we update x by x[a], xaxa+1 = ‘[]’
is replaced by xaxa+1 = ‘][’. It is straightforward and te-
dious that we can update the list L in O(1) time; typically,
if L[pL

a ] < a and a + 1 < L[pR
a ], the algorithm inserts two

new elements between pL
a and pR

a in L. When pL
a points a,

the algorithm remove it from L. The other cases are similar,
and hence omitted.

The flippable index a is updated by a − 1 or a + 1 by
Lemma 5. Hence the update of pL

a and pR
a can be done in

O(1) time, which completes the proof. �

Lemmas 5 and 6 show that we can maintain the list
of flippable indices of each string in O(1) time, during the
traversal of the family tree. Thus we have the following
lemma.

Lemma 7. Our enumeration algorithm uses O(n) space and
runs in O(|S n|) time.

By lemma 7, our algorithm generates each string in S n

in O(1) time “on average”. However it may have to return
from the deep recursive calls without outputting any string
after generating a string corresponding to the leaf of a large
subtree in the family tree. This takes much time. Therefore
each string may not be generated in O(1) time in the worst
case.

This delay can be canceled by outputting the strings in
the “prepostorder” manner in which strings are outputted in
the preorder (and postorder) manner at the vertices of odd
(and even, respectively) depth of the family tree. See [31]
for further details of this method; in [31] the method was not
explicitly named, and the name “prepostorder” was given by
Knuth [20]. Now we have the main theorem in this section.

Theorem 3. After outputting the root in O(n) time, the al-
gorithm enumerates every string in S n in O(1) time.

Let G and G[i] be two proper interval graphs corre-
sponding to a string x and its child x[i], respectively. We
note that G[i] can be obtained from G by removing the one
edge which represents an intersection between (1) the inter-
val with the right endpoint corresponding to xi+1 and (2) one
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with the left endpoint corresponding to xi. Moreover, the
root string represents a complete graph. Therefore our al-
gorithm can be modified to deal with the graphs themselves
without loss of efficiency. Note that it is not true that ev-
ery constant delay enumeration algorithm for parentheses
applies to that for proper interval graphs since the sizes of
differences may not equal among string representations and
graph representations.

Theorem 4. After outputting the n-vertex complete graph
in O(n2) time, the algorithm enumerates every connected
proper interval graph of n vertices in O(1) time.

5. Conclusion

We concentrated on the graphs of n vertices in this paper.
For the counting and random generation, it is straightfor-
ward to extend the results to those of graphs with at most
n vertices. For the enumeration, a naive way of enumer-
ating i-vertex proper interval graphs for each i is not suffi-
cient, since the difference between the roots of proper in-
terval graphs of i vertices and those of i + 1 vertices is not
constant. However we can extend our results with suitable
parent-child relation. Precisely, we extend the relation and
define the parent of the root ri ∈ S i by [i]i−1[]] in S i+1. From
the viewpoint of the graphs, we add a pendant vertex to a
complete graph of i vertices. From the algorithmic point of
view, when the algorithm outputs the graph of i+ 1 vertices,
it recursively calls itself with the root ri as a child of the
graph, and enumerates all the smaller graphs. Thus we have
the following corollary.

Corollary 1. For any given positive integer n, (1) the num-
ber of connected proper interval graphs of at most n ver-
tices can be computed in O(n3) time and O(n) space, (2) a
connected proper interval graph of at most n vertices can
be generated uniformly at random, and (3) there exists an
algorithm that enumerates every connected proper interval
graph of at most n vertices in O(1) time and O(n) space.

We investigate unlabeled connected proper interval
graphs. In some cases labeled graphs may be required.
Modifying our algorithms to deal with labeled graphs are
straightforward. In Observation 1, it is shown that any (not
necessarily connected) proper interval graph can be repre-
sented by a balanced and nonnegative string. However, in
the case, we have to deal with two or more connected com-
ponents. Our algorithm for enumeration can be extended to
disconnected case straightforwardly, however, counting and
random generation cannot be.

To deal with unlabeled graphs, it is important to deter-
mine whether or not two unlabeled graphs are isomorphic.
In this sense, counting/random generation/enumeration on a
graph class seems to be intractable if the isomorphism prob-
lem for the class is as hard as that for general graphs (See
[38] for further details of this topic). It is known that the
graph isomorphism problem can be solved in linear time for

interval graphs [24]. Hence the future work would be the
extensions of our algorithms to general unlabeled interval
graphs.

We note that recently related results about bipartite per-
mutation graphs are obtained [35].
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[6] A. Brandstädt, V.B. Le, and J.P. Spinrad, “Graph classes: A survey,”
SIAM, 1999.
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