
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010
1889

PAPER

Decomposition Optimization for Minimizing Label Overflow in
Prime Number Graph Labeling

Jaehoon KIM†a) and Seog PARK††b), Members

SUMMARY Recently, a graph labeling technique based on prime num-
bers has been suggested for reducing the costly transitive closure computa-
tions in RDF query languages. The suggested prime number graph labeling
provides the benefit of fast query processing by a simple divisibility test of
labels. However, it has an inherent problem that originates with the nature
of prime numbers. Since each prime number must be used exclusively, la-
bels can become significantly large. Therefore, in this paper, we introduce
a novel optimization technique to effectively reduce the problem of label
overflow. The suggested idea is based on graph decomposition. When
label overflow occurs, the full graph is divided into several sub-graphs,
and nodes in each sub-graph are separately labeled. Through experiments,
we also analyze the effectiveness of the graph decomposition optimization,
which is evaluated by the number of divisions.
key words: graph labeling, prime number, graph decomposition, access
control, query processing

1. Introduction

Through studies on eXtensible Markup Language (XML)
query processing [1]–[3] and XML access control [4], [5],
we have learned that the tree labeling techniques signifi-
cantly enhance performance. Similarly, some graph label-
ing techniques [6], [7] have been suggested for the optimiza-
tion of RDF query languages in recent times. In particular,
they optimize the queries on subsumption relationship over
an ontology hierarchy by avoiding the costly transitive clo-
sure computations [8].

G. Wu et al. [7] have recently shown that their graph
labeling based on prime numbers performs better than the
interval-based scheme and the prefix-based scheme sug-
gested by Christophides et al. [6]. When the size of a graph
to be labeled is small, the prime number graph labeling can
support fast query processing by only a simple divisibility
test of labels. It can identify node relationships over a graph
by using only elementary arithmetic operators, such as mul-
tiplication, division, and modulo. However, it has an inher-
ent problem that originates with the nature of prime num-
bers. A prime number label can become significantly large
since each prime number must be used exclusively. There-
fore, G. Wu et al. suggested some optimization techniques

Manuscript received October 30, 2009.
Manuscript revised February 25, 2010.
†The author is with the Dept. of Information Communication,

Seoil University, 49–3 Myeonmok-Dong Jungnang-Gu, Seoul,
131–702, Korea.
††The author is with the Dept. of Computer Science, Sogang

University, 1–1 Shinsu-Dong Mapo-Gu, Seoul, 121–742, Korea.
a) E-mail: jhkimygk@seoil.ac.kr
b) E-mail: spark@dblab.sogang.ac.kr

DOI: 10.1587/transinf.E93.D.1889

(Least Common Multiple, Topological Sort, etc.) to mini-
mize the label overflow problem, where a fixed-length vari-
able cannot store the significantly large prime number label.
However, those optimization techniques still have the label
overflow problem. We can consider simply extending the
variable length, but this naive extension is not a desirable
solution. Let us consider an n-bit label variable as in Fig. 1.
If (n) bits are wholly filled with ‘1’ by multiplying the con-
secutive prime numbers . . . , 11, 13, 17, . . . , pnk, simply
extending the variable into (n +m) bits is not effective. This
is because the extended space must be large enough to store
the next prime numbers which are larger than pnk. For ex-
ample, let m be 3. Although the extension allows the four
additional prime numbers 2, 3, 5 and 7 (< 23 = 8), it is
useless since 23 � pnk. In short, although we additionally
assign a space that is quite large, we can only use a few ad-
ditional labels. It is inefficient.

Therefore, in this study, we investigate graph decom-
position as another optimization technique. It uses the ex-
tended space more efficiently. When there is a label over-
flow, a full Directed Acyclic Graph (DAG) can be divided
into several sub-DAGs, and nodes in each sub-DAG can be
separately labeled. The extended 3 bits are used for identi-
fying sub-DAGs, and (n) bits are reused by re-labeling from
the first prime number ‘2’.

However, this optimization technique is useless when
the division is intensive. This is because it requires an ad-
ditional calculation to identify node relationship between
sub-DAGs. The more the number of divided sub-DAGs, the
higher the cost of query evaluation additionally considering
the node relationship between sub-DAGs. Therefore, in this
paper, we also analyze the effectiveness of the graph decom-
position optimization according to the number of divisions
through some experiments. The experiments in Sect. 6 show
that the prime number labeling scheme is superior or similar
to the prefix-based labeling scheme [6] when the number of
divisions is less than or equal to two.

The remainder of the paper is organized as follows.
In Sect. 2, we briefly explain the prime number labeling
scheme and the optimization techniques suggested by G. Wu
et al. [7]. In Sects. 3, 4, and 5, we introduce the graph de-

Fig. 1 A fixed-length label variable.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

1890
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

composition optimization technique, and in Sect. 6 we ana-
lyze the effectiveness of the technique according to the num-
ber of divisions. Section 7 finally concludes this paper.

2. Background: Prime Number Graph Labeling and
Optimization Techniques

The prime number graph labeling (= PNGL) suggested by
G. Wu et al. [7] extends the prime number tree labeling sug-
gested by X. Wu et al. [3] to DAG. The following is the
definition of PNGL; since the depth-first traversal adapted
in G. Wu et al.’s scheme can have many big prime numbers
at upper vertices which are propagated to lower vertices, we
here replace it with the breadth-first traversal.

Definition 1 (PNGL = Prime Number Graph Labeling): Let G =
(V , E) be the DAG. By traversing G with a breadth-first
traversal, the following PNGL(v) = (L1[v], L2[v], L3[v]) is
performed for each vertex v ∈ V .

L2(v) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L1(v) ×∏w∈parents(v) L2(w),
in-degree(v) > 0

1 in-degree(v) = 0

L3(v) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∏
w∈parents(v) L1(w),

in-degree(v) > 0
1 in-degree(v) = 0

where L1(v) indicates an exclusive prime number assigned
to each vertex, parents(v) indicates the parent vertices of
a vertex, v, and in-degree indicates the number of parent
vertices of a vertex v. L2(v) is obtained by multiplying the
labels of the parent vertices of v and the prime number of
v, and L3(v) is obtained by multiplying the prime numbers
of the parent vertices of v. As an illustration, refer to the
labeling in Fig. 2 (a).

Only by doing a simple arithmetic calculation on the
labels, we can conveniently grasp the ancestor/descendant
relationship, the parent/child relationship, and the sibling
relationship between nodes. First, since a prime number is
divided by 1 and itself, the ancestor/descendant relationship
between two nodes can be simply determined by the divisi-
bility test of their L2 labels. For example, in Fig. 2 (a), ‘B’
is the ancestor node of ‘K’ since L2(K) mod L2(B) = 0.
Similarly, if and only if L3(v1) mod L1(v2) = 0, v2 is the
parent node of v1. In addition, v1 and v2 are siblings if and
only if the greatest common divisor gcd(L3(v1), L3(v2)) �
1. For example, ‘G’ is the sibling of ‘F’ since gcd(3, 15) =
3 � 1. Regarding re-labeling ability for updates, PNGL per-
forms the elementary arithmetic calculation just for the de-
scendant nodes of an updated node. When the new ‘S’ node
is inserted between ‘B’ and ‘G’, the L2 values of ‘G’ and
its descendants are multiplied by the L1 of ‘S’. When ‘G’ is
deleted, the L2 values of the descendants of ‘G’ are divided
by the L2 value of ‘G’.

Although PNGL has the strong benefit of identifying
node relationships by this simple arithmetic calculation, it
has an inherent problem that originates with the nature of

Fig. 2 Decomposition optimization.

prime numbers. Since each prime number is exclusive in
PNGL and each vertex can inherit the prime number labels
from multiple parent vertices, the label size can become too
large to be covered by a fixed-length variable. We name this
problem label overflow.

In order to cope with this problem, G. Wu et al. sug-
gested some optimization techniques.

• Least Common Multiple: This optimization minimizes la-
bel overflows through removing redundancy between inher-

KIM and PARK: DECOMPOSITION OPTIMIZATION FOR MINIMIZING LABEL OVERFLOW IN PRIME NUMBER GRAPH LABELING
1891

ited labels from ancestor nodes. For example, in Fig. 2 (a),
L2(G) inherits L1(A) two times from L2(B) and L2(C).
Hence, we can remove the redundancy, and the smaller
L2(G) (= L1(A) × L1(B) × L1(C) × L1(G)) is still enough
to identify the ancestor/descendant relationship. In order to
remove the redundancy, G. Wu et al. used the optimization
technique which multiplies a self-label L1 by the least com-
mon multiple of all the parents’ L2 labels.

• Topological Sort: The purpose of this optimization is to
consider a topological sort of a DAG which results in a much
smaller label size. As an example, in Definition 1, we con-
sidered the breadth-first traversal instead of the depth-first
traversal.

3. Decomposition Optimization

Our optimization technique is based on graph decomposi-
tion. That is, when a label overflow occurs, a full DAG
is divided into some sub-DAGs, and the PNGL with the
breadth-first traversal is executed for each sub-DAG. Also,
connection information between sub-DAGs is maintained to
calculate relationship between nodes individually belonging
to other sub-DAGs.

When a DAG is given, we think that an optimal divi-
sion is related with the number of sub-DAGs, the size of
the connection information, and the label size in each sub-
DAGs. And these factors are all to minimize query process-
ing cost including the calculation of node relationships for
the DAG. If the number of sub-DAGs and the connection
information are large, the cost for calculating node relation-
ships among sub-DAGs must be high. Also, if the label size
in each sub-DAG is big, label overflow arises before long
and consequently this requires another decomposition.

We think that our decomposition problem is NP-
complete since the schema selection problem [9], [10] can
be easily reduced to our problem. Zheng et al. [9] and Bo-
hannon et al. [10] studied on optimally partitioning an XML
graph in order to obtain the optimal relational mapping
schema for a given query set. Zheng et al. [9] mentioned that
the graph partition problem in Garey et al. [11], which is NP-
Complete, can be reduced to the schema selection problem.
Our problem is also to optimally partition an ontology graph
into subgraphs in order to minimize query processing cost.
In our study, the subgraphs are mapped into relational tables
since large ontology data are considered. Through studying
other partitioning approaches including the greedy methods
in the Refs. [9], [10], we have known that a more complex
partitioning approach makes the calculation of node rela-
tionships more complex and inefficient. Therefore, in this
paper, we suggest a heuristic method which is based on lin-
ear decomposition by the breadth-first traversal (BFT). Al-
though as in the schema selection problem our problem also
considers given queries having the calculation of node rela-
tionships, due to such complexity and inefficiency, our linear
approach does not use query processing cost as a selection
criterion. That is, regardless of a given query set, our simple

approach produces a general solution. Our optimal graph
partition problem is defined as follows.

Definition 2 (optimal graph partition in PNGL): Let G a
DAG, and let Q given queries having the calculation of node
relationships for G. Also, it is assumed that PNGL is per-
formed with BFT as in Definition 1. The optimal graph
partition in PNGL is to optimally partition G such that the
query processing cost for Q is minimal.

Instead of the BFT, we can also implement the linear
decomposition by the depth-first traversal (DFT). However,
since the DFT is most likely to have much bigger L2 labels
than the BFT, we adopted the BFT. As might have been
expected, the experimental results of Sect. 6.2 have shown
that the DFT has more sub-DAGs.

The outline of our linear approach is as follows. If
a graph parsed for an Resource Description Framework
(RDF) document is given, PNGL is performed for the graph
by the BFT. Whenever label overflow arises at a graph node,
the node is connected to a virtual root node. When all nodes
have been visited, PNGL is again performed for the sub-
DAG of the virtual root node. Similarly, whenever there is
label overflow in the sub-DAG, the node is connected to an-
other virtual root node. Again, PNGL is performed from the
virtual root node. This processing is repeated until there is
no label overflow. While performing PNGL, the label infor-
mation <L1, L2, L3> is kept in the parsed RDF graph, and
the connection information between sub-DAGs is also kept
in the graph. And by another BFT, the label and the con-
nection information are stored into a stable storage (this is a
database in our implementation).

The codes in the Appendix describe the representation
of a single node in a DAG and the decomposition algorithm.
The boolean variable visit f lag in the node structure is used
for marking whether or not a node is visited already. The
boolean variable store f lag is used for marking whether or
not the label information of a node is stored into a stable
storage. The suggested algorithm is performed with two
scannings of a DAG. One scanning (lines 4 to 45) is for
assigning a label to each node and the other (lines 46 to 67)
is for storing the assigned labels into a stable storage.

The execution of the function Decomp PNGL is as fol-
lows. The input parameter R refers to the root node of an
input DAG and the input parameter gID is used for identify-
ing sub-DAGs. First, at line 3, a virtual root node having the
label <1, 1, 1> is created as in Fig. 2 (b) (hereafter denoted
as VR). Next, from line 5 to line 45, the PNGL of Definition
1 is executed with the BFT. Lines 4, 5, 6, 11, 17, 23, 26, 30,
37, and 41 which use the queue Q, implement the BFT. For
example, in Fig. 2 (a), the parent node ‘B’ is deleted from Q
by line 5, the child nodes ‘E’, ‘F’, and ‘G’ are labeled by
lines 7 to 43, and the child nodes are added into Q by lines
11, 17, 23, and 26. Again, the first child node ‘E’ is deleted
from Q by line 5.

If a node is not visited, <L1, L2, L3> of the node is
calculated at lines 13, 19, and 25. Otherwise, L2 and L3
are calculated at lines 33 and 40. If a label overflow occurs

1892
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

Fig. 3 LABEL and BRIDGE tables.

Fig. 4 Linear decomposition.

at a node, the node is connected to VR, and itself and its
descendant nodes are marked by zero at lines 10, 16, 22,
29, and 36. For example, in Fig. 2 (b), ‘G’, ‘I’, ‘J’, ‘K’,
‘M’, ‘N’ and ‘R’ are connected to the VR1 and their de-
scendant nodes are set to zero. In the figure, we assume
the maximum label value is 256. When a node is connected
to VR, the decomposition information is stored into the ta-
ble BRIDGE(PV gID, PV L1, PV L2, CV gID, CV L2) in
Fig. 3, where the prefixes CV and PV indicate a child ver-
tex with label overflow, and its parent vertices respectively.
For example, in Fig. 2 (c), when ‘G’ has a label overflow,
(gID(B) = 1, L1(B) = 3, L2(B) = 6) are saved into the vari-
ables PV gID, PV L1 and PV L2 of G, and (gID(G) = 2,
L2(G) = 2) are saved into the variables CV gID and CV L2
of G. This is performed by lines 54, 58, and 64 in the al-
gorithm. Next, the saved information is stored into the ta-
ble BRIDGE by line 54. With the second BFT, lines 47
to 67 store the label information into the LABEL and the
BRIDGE tables in Fig. 3.

Recursively, at line 70, the function Decomp PNG-
L(VR1, 2) is executed. In Fig. 2 (c), since O, P, Q, and R
nodes have a label overflow, they are connected to the VR2

and the function Decomp PNGL(VR2, 3) is executed again.
At line 69, this successive decomposition process is exe-
cuted until VR has no child node, that is, until there is no
label overflow.

The suggested decomposition is linear. As in Fig. 4,

sub-DAG1, sub-DAG2, . . . , sub-DAGn, and sub-DAGn+1

are cut off linearly. There are (N + 1) sub-DAGs by N-
Decomposition. We call dividing a graph into (N + 1) sub-
DAGs as “N-Decomposition”. For example, in Fig. 2, there
are three sub-DAGs by 2-Decomposition. In order to ac-
complish the linear decomposition, we used the virtual root
node.

We believe that a chaotic decomposition makes the
PNGL complex and inefficient. That is, it degrades the key
benefit of simplicity of the PNGL since answering for node
relationships cannot be simply performed by only the simple
divisibility test of labels. Therefore, we adopted this simple
linear decomposition.

4. Answering for Node Relationships

Some typical operations such as descendant(), ancestor(),
and sibling() are still executable through the simple divisi-
bility test over the BRIDGE and the LABEL tables. In this
study, since we are interested in implementing the opera-
tions using standard SQL engines, we will show how they
can be represented in SQL. We are interested in querying
very large RDF data. Let us first consider descendant().
For a series of sub-DAGs Gi, 1 ≤ i ≤ (N+1), if a node
is in Gk, its descendant nodes need to be calculated for
G j, j ≥ k due to the linearity. For example, in Fig. 2,
descendant(B) is calculated for sub-DAG1, sub-DAG2, and
sub-DAG3, but descendant(L) is calculated for sub-DAG2

and sub-DAG3. The following SQL expressions are for
descendant(B). Here, the symbol ‘→’ means that some
nodes in two sub-DAGs are connected, and the symbol ‘%’
is the modulo operator in SQL.

sub-DAG1:
select name from LABEL
where gID = 1 and L2 % 6 = 0 /* L2(B) = 6 */

sub-DAG1 → sub-DAG2, sub-DAG1 → sub-DAG3:
select name from LABEL,

(select CV gID, CV L2
from BRIDGE
where PV gID = 1 and PV L2 % 6 = 0) u

where LABEL.gID = u.CV gID and
LABEL.L2 % u.CV L2 = 0

sub-DAG1 → sub-DAG2 → sub-DAG3:
select name from LABEL,

(select BRIDGE.CV gID, BRIDGE.CV L2
from BRIDGE,

(select CV gID, CV L2
from BRIDGE
where PV gID = 1 and PV L2 % 6 = 0) u

where PV gID = u.CV gID and PV L2 % u.CV L2 = 0) v
where LABEL.gID = v.CV gID and LABEL.L2 % v.CV L2 = 0

In the above expressions, we can see that the node
relationship between sub-DAGs is simply identified using
the self-join and the modulo operation over the BRIDGE
table. The SQL expression for ancestor() can be repre-
sented similar to descendant(). The following example is
for ancestor(K).

sub-DAG2:
select name from LABEL

KIM and PARK: DECOMPOSITION OPTIMIZATION FOR MINIMIZING LABEL OVERFLOW IN PRIME NUMBER GRAPH LABELING
1893

where gID = 2 and 22 % L2 = 0 /* L2(K) = 22 */

sub-DAG2 → sub-DAG1:
select name from LABEL,

(select PV gID, PV L2
from BRIDGE
where CV gID = 2 and 22 % CV L2 = 0) u

where LABEL.gID = u.PV gID and
u.PV L2 % LABEL.L2 = 0

Next, let us consider sibling(). For a series of sub-
DAGs Gi, 1 ≤ i ≤ (N+1), if a node is in Gk, its sibling nodes
exist in Gk and in G j, which satisfies G j → Gk or Gk → G j,
j ∈ i. For example, the sibling nodes of ‘G’ in sub DAG1

exist in sub DAG1 and sub DAG2. The sibling nodes of ‘R’
in sub DAG3 exist in sub DAG2, the sibling nodes of ‘F’ in
sub DAG1 exist in sub DAG1 and sub DAG2. Therefore, to
implement the sibling() operation, the upward case (G j →
Gk) and the downward case (Gk → G j) are both tested. The
SQL expressions for sibling(G) are as follows. gcd() is a
stored procedure to calculate the greatest common divisor.

sub-DAG2:
select name from LABEL
where gID = 2 and gcd(1, L3) != 1 /* L3(G) = 1 */
union
select name from LABEL
where gID = 2 and L2 in (

select CV L2 from BRIDGE
where CV gID = 2 and PV L1 in (

select PV L1 from BRIDGE
where CV gID = 2 and CV L2 = 2) /* L2(G) = 2 */

sub-DAG1 → sub-DAG2:
select name from LABEL,

(select PV gID, PV L1
from BRIDGE
where CV gID = 2 and CV L2 = 2) u /* L2(G) = 2 */

where LABEL.gID = u.PV gID and
LABEL.L3 % u.PV L1 = 0 /* ‘LABEL.gID = u.PV gID’ is for

testing all G js which satisfies G j → Gk , 1 ≤ j < k. */

sub-DAG2 → sub-DAG3: /* However, since G has no sibling node in
sub-DAG3, this query returns null. */

select name from LABEL,
(select CV gID, CV L2
from BRIDGE
where PV gID = 2 and 1 % PV L1 = 0) u /* L3(G) = 1 */

where LABEL.gID = u.CV gID and
LABEL.L2 = u.CV L2 /* ‘LABEL.gID = u.CV gID’ is for testing

all G js which satisfy Gk → G j, k < j ≤ (N+1). */

There is a special case where a large number of sib-
ling nodes can belong to several sub-DAGs. See the Fig. 5.
In Fig. 5 (b), by the label overflow in Fig. 5 (a), sub-DAG2

with the virtual root node VR1 is configured. Again, in
Fig. 5 (c), by the label overflow in Fig. 5 (b), sub-DAG3 with
the virtual root node VR2 is configured. In this case, as in
Fig. 5 (c), the nodes in sub-DAG3 have <1, 1, 1> which rep-
resents PV gID, PV L1, and PV L2 for VR1 in sub-DAG2.
Remember that a virtual root node has the label <1, 1, 1>
in Sect. 3. Since the BRIDGE information for the original
parent node v in sub-DAG1 is lost, we cannot calculate all
sibling nodes. To cope with this problem, we use inher-
iting the BRIDGE information <PV gID, PV L1, PV L2>
of the node v into sub-DAGs, and this inheritance arises only

Fig. 5 Inheritance of BRIDGE information.

when child nodes are detached from a virtual root node. In
Fig. 5 (d), the child nodes in sub-DAG3 have the BRIDGE
information <PV gID, PV L1, PV L2> of v. Since all sib-
ling nodes belonging to several sub-DAGs have the same
PV (parent vertex) information, we can correctly calculate
the operations sibling(), descendant(), and ancestor(). In
order to implement the inheritance, we added the condition
‘tmpn1. L1 != 1’ into line 57 and 63 in the suggested algo-
rithm of Appendix. Note that the L1 for a virtual root node
is 1. By the condition, the BRIDGE information assigned
once in Fig. 5 (a) is kept in the consecutively decomposed
sub-DAGs.

5. Re-Labeling for Updates

In this section, for update operations, we consider how re-
labeling can be expressed by SQL queries on the LABEL
and the BRIDGE tables.

5.1 Deletion

Deletion operation can be performed for edges or nodes.
For example, as for edge deletion, we can delete the edge
(‘B’, ‘G’) in Fig. 2 (a); this means that a subClassO f or
a subPropertyO f relationship [11] is broken. Also, as for
node deletion, we can delete the node ‘G’; this means that
a class, a property, or an instance is removed. Since both
re-labeling mechanisms for edge deletion and node deletion
are the same, we here focus on node deletion.

The re-labeling cost in the deletion operation is under-
standably low. This is because re-labeling needs to be per-
formed just for the sub-DAG which a deleted node belongs
to. For example, when the node ‘B’ is deleted, we need to
adjust the L2 values of the descendant nodes of ‘B’ just in
the sub-DAG1 and the L3 values of the child nodes of ‘B’.
Let us see the following SQL queries. We first update the
LABEL table.

delete from LABEL
where gID = 1 and L1 = 3 /* L1(B) = 3 */

update LABEL set L3 = L3 / 3

1894
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

where gID = 1 and L3 % 3 = 0 /* L1(B) = 3 */

update LABEL set L2 = L2 / 6
where gID = 1 and L2 % 6 = 0 /* L2(B) = 6 */

Next, we update the BRIDGE table.

delete from BRIDGE
where PV gID = 1 and PV L1 = 3 /* L1(B) = 3 */

update BRIDGE set PV L2 = PV L2 / 6 /* L2(B) = 6 */
where gID = 1 and PV L2 % 6 = 0

Let us now consider a special deletion operation which
removes all the descendant nodes of a deleted node. An
example is to remove all the descendant nodes of ‘B’. In
this case, the re-labeling procedure must be performed for
all sub-DAGs rather than a specific sub-DAG. Hence, the
re-labeling cost can be high according to the number of di-
visions. The re-labeling procedure is as follows. First, using
the BRIDGE table, the descendant nodes of a deleted node
are deleted from LABEL. As in the descendant operation,
for a series of sub-DAGs Gi, 1 ≤ i ≤ (N+1), if a deleted
node is in Gk, re-labeling need to be performed for G j, j ≥
k. The following SQL queries are for deleting ‘B’ and its
descendant nodes.

sub-DAG1:
delete from LABEL
where gID = 1 and L2 % 6 = 0 /* L2(B) = 6 */

sub-DAG1 → sub-DAG2, sub-DAG1 → sub-DAG3:
delete from LABEL where exists

(select CV L2
from BRIDGE
where PV gID = 1 and PV L2 % 6 = 0 and
LABEL.gID = BRIDGE.CV gID and LABEL.L2 % BRIDGE.CV L2

= 0)

sub-DAG1 → sub-DAG2 → sub-DAG3:
delete from LABEL where exists

(select BRIDGE.CV L2
from BRIDGE,

(select CV gID, CV L2
from BRIDGE
where PV gID = 1 and PV L2 % 6 = 0) u

where PV gID = u.CV gID and BRIDGE.PV L2 % u.CV L2 = 0 and
LABEL.gID = BRIDGE.CV gID and LABEL.L2 % BRIDGE.CV L2 =
0)

Next, using the LABEL table, delete the orphaned
nodes from the BRIDGE table which do not exist in the
LABEL table.

delete from BRIDGE where not exists
(select L2 from LABLE where gID = BRIDGE.PV gID and L2 =

BRIDGE.PV L2)

delete from BRIDGE where not exists
(select L2 from LABLE where gID = BRIDGE.CV gID and L2 =

BRIDGE.CV L2)

5.2 Insertion

A node/edge insertion can bring about a chain of label over-
flows between sub-DAGs. When a new node is inserted into
a sub-DAG, it can have some overflown descendant nodes in
the sub-DAG. When the overflown descendant nodes are in-
serted into the next sub-DAG, they can also have some over-

flown descendant nodes in the sub-DAG. In the worst case,
these consecutive insertions can be repeated until reaching
the last sub-DAG. The re-labeling cost can be significant.
This problem is a limitation in the suggested decomposi-
tion optimization. To minimize this insertion problem, we
adopt an approach to reserve some space in a fixed-length
label variable for later additional insertions. As in Fig. 1,
only (n-r) bits are used for the initial labeling, and the re-
maining space r is reserved for later additional insertions.
An insertion is allowed just within the reserved space. It is
important to understand that this approach still allows many
more insertions than the basic PNGL. The proof is straight-
forward. For example, in Fig. 1, let us consider the n-bits
variable is almost fully occupied by the basic PNGL. If so,
a label overflow can easily arise by only a few additional in-
sertions. However, suppose that the fully occupied labels are
transformed into (n − r) bits labels in several sub-DAGs by
N-Decomposition. There are apparently as many additional
insertions for each sub-DAG as can be accommodated by
the reserved space r. In our implementation, we set up r to
a half of n.

Based on the above approach, we consider the follow-
ing two re-labeling cases for a node/edge insertion.

• Non-leaf node/edge insertion in a sub-DAG: Let us con-
sider inserting a new node ‘S’ between ‘A’ and ‘B’ as an
illustration. In the sub-DAG1, the smallest next prime num-
ber for ‘S’ is 17. See the L1 values of which gID is 1 in
Fig. 3. Hence the label of ‘S’ is <17, 34, 2>, and the labels
of ‘B’, ‘E’, and ‘F’ are recalculated. This operation can be
performed by the following SQL queries.

insert into LABEL values(1, 17, 34, 2, ‘S’)

update LABEL set L2 = L2 * 17
where gID = 1 and L2 % 6 = 0 /* L2(B) = 6 */

update LABEL
set L3 = L3 / 2 * 17 /* L1(A) = 2, L1(S) = 17 */
where gID = 1 and L1 = 3 /* L1(B) = 3 */

Next, we also must update L2 in the BRIDGE table.

update BRIDGE set PV L2 = PV L2 * 17
where PV gID = 1 and PV L2 % 6 = 0 /* L2(B) = 6 */

• Leaf node insertion in a sub-DAG: Let us consider insert-
ing ‘S’ node between ‘B’ and ‘G’ as an illustration. In this
case, we only need to replace ‘B’ with ‘S’ in the BRIDGE
table.

insert into LABEL values(1, 17, 108, 3, ‘S’);

update BRIDGE set PV L2 = 108 /* L2(S) = 108 */
where PV gID = 1 and PV L1 = 3 /* L1(B) = 3 */

update BRIDGE set PV L1 = 17 /* L1(S) = 17 */
where PV gID = 1 and PV L1 = 3

6. Performance Evaluation

6.1 Experimental Setup

In the graph decomposition optimization technique, the
more the number of divided sub-DAGs, the higher the eval-

KIM and PARK: DECOMPOSITION OPTIMIZATION FOR MINIMIZING LABEL OVERFLOW IN PRIME NUMBER GRAPH LABELING
1895

Table 1 Experimental parameters.

Parameter Range Description
#n 100 to 1,000 Number of nodes in a DAG
f o 5 to 20 Average number of fan-out

(= outdegree) of a tree node
f i 1 to 5 Average number of fan-in

(= indegree) of a graph node
#vl long (8 bytes) Length of a variable to store

each prime number label

Fig. 6 Test DAG generation.

uation cost of a query. This is because query evaluation re-
quires as many join operations over the BRIDGE table as
the number of divisions. In this section, we analyze how
much the graph decomposition optimization can extend the
basic PNGL and also analyze how much decomposition is
acceptable. In previous studies [6], [7], we can see that the
prefix-based scheme (Dewey Decimal Coding) has, on aver-
age, the best performance, and G. Wu et al. [7] showed that
the PNGL is better than the prefix-based scheme. There-
fore, as an indicator of the acceptable graph decomposition,
we consider the performances of the basic PNGL and the
prefix-based scheme.

Table 1 summarizes some important experimental pa-
rameters. First, a tree as in Fig. 6 (a) is randomly generated
according to #n and # f o, and then a test DAG as in Fig. 6 (b)
is generated according to # f i. For example, in Fig. 6 (a), #n
is twelve and # f o is three since each node has three child
nodes. In Fig. 6 (b), # f i is about two since each node has
two parent nodes on the average. Since the PNGL is suitable
for few data, we tested it within #n = 1000 and within # f o =
20. We used a long variable (eight bytes) in Java for each of
the prime number labels L1, L2, and L3. For the decompo-
sition optimization, we used one additional byte to identify
sub-DAGs, which is indexed by a B-tree. As explained in
Sect. 5.2, we used just four bytes among the allocated eight
bytes to cope with later additional insertions. For the prefix-
based scheme, we used the unicode string and adopted the
relational representations of UPrefix in the Ref. [6]. All ex-
periments were performed on a Windows XP computer with
1 GB of memory and 3.0 GHz Pentium(R) IV CPU. All
codes were written in Java, and MS SQL server 2000 (Per-
sonal Edition) was used as a database server.

6.2 Label Extension

We first analyze how much labels can be additionally as-
signed by the decomposition optimization. Table 2 shows
that the basic PNGL has many cases of label overflow. Even
in the case of #n = 100 and # f o = 5 which has small nodes,
label overflow occurred. However, our suggested decom-
position optimization prevents the label overflow with some
division. The measured numerical values in the table rep-
resent N-Decomposition. In addition, it shows that the de-
composition optimization by BFT has much less division
than DFT. This is because DFT is most likely to have much
bigger L2 labels, as mentioned in Sect. 3. We can also see
that almost every column of the basic PNGL has the label
overflow when the fan-out is small. This is because, for an
equal number of graph nodes, the smaller the fan-out of a
DAG, the deeper the depth of the DAG. When the depth
of a DAG is significant, it is most likely to have big prime
number labels.

6.3 Label Size and Construction Time

In this subsection, we analyze the label construction time
of the decomposition optimization and its storage cost for
saving labels. First, when # f o = 20, we measured the label
construction time of each method. The graph of Fig. 7 (a)
compares the construction times of the basic PNGL, the de-
composition optimization, and the prefix scheme. We can
see that the decomposition optimization has a similar con-
struction time to the prefix scheme. Through some addi-
tional experimental results as in Fig. 7 (b) (c), we verified
that the construction time of the decomposition optimization
is similar or superior to the prefix scheme. In the graphs of
Fig. 7 (b) (c), we cannot measure the construction time of
the basic PNGL since it has a label overflow.

Regarding the comparison of label size, the graphs of
Fig. 8 show that the decomposition optimization consumes
less storage space than the prefix scheme. Similarly, in the
graphs of Fig. 8 (b) (c), we cannot measure the basic PNGL
since it has a label overflow.

6.4 Response Time of Typical Operations

In this subsection, we evaluate the response time of typi-
cal operations according to the number of divisions. We
tested the primary operations descendant(v), ancestor(v),
and sibling(v) where v represents an arbitrary vertex. The
measured times in Fig. 9 represent the average execution
time of each operation for randomly selected vertices. For
example, when v1, v2, v4, v7, and v10 are selected in the
DAG of Fig. 6, a measured time in Fig. 9 (a) is the average
of the execution times of descendant(v1), descendant(v2),
descendant(v4), descendant(v7), and descendant(v10). We
ensured vertices were selected evenly for the whole graph.

The graph of Fig. 9 (a) shows the comparison for the

1896
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

Table 2 Label extension by the decomposition optimization
(‘×’: label overflow, ‘-’: non label overflow, figures: N-Decomposition).

f o 5 10 20
#n 100 500 1000 100 500 1000 100 500 1000
f i 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4

PNGL × × × × × × - - × × × × - - - - - ×
PNGL+Decomp (with BFT) 1 2 2 3 3 3 1 1 1 2 2 2 0 0 1 1 1 1
PNGL+Decomp (with DFT) 2 2 2 4 3 4 1 1 2 2 2 3 0 0 1 1 2 2

(a) # f o = 20

(b) # f o = 10

(c) # f o = 5

Fig. 7 Label construction time.

descendant operation according to the number of divi-
sions. Note that the X-axis represents N-Decomposition
only for ‘PNGL+Decomp (with BFT)’. We can see that 1-
Decomposition has a performance similar to the other two
schemes, and 2-Decomposition has slightly worse perfor-
mance than the prefix scheme. Additionally, the expense of
3-Decomposition is high. In the cases of 2-Decomposition
and 3-Decomposition, we cannot measure the basic PNGL
due to label overflow.

The graph of Fig. 9 (b) shows the comparison for the
ancestor operation. We can see that 1-Decomposition and

(a) # f o = 20

(b) # f o = 10

(c) # f o = 5

Fig. 8 Total label size.

2-Decomposition has a better or similar performance com-
pared with the other two schemes and 3-Decomposition
has slightly worse performance. In the case of 1-
Decomposition, since the decomposition optimization per-
forms the ancestor operation just for the corresponding
sub-DAGs, the execution time can be lower than the ba-
sic PNGL. For example, in Fig. 2 (b), ancestor(‘E’) is per-
formed just for the sub-DAG1 rather than the whole graph.
The graph of Fig. 9 (c) is for the sibling operation. We can
see that all decompositions have a similar performance to
the prefix scheme. In the case of 1-Decomposition, the ba-

KIM and PARK: DECOMPOSITION OPTIMIZATION FOR MINIMIZING LABEL OVERFLOW IN PRIME NUMBER GRAPH LABELING
1897

(a) descendant operator

(b) ancestor operator

(c) sibling operator

Fig. 9 Response time of typical operations according to N-Decomposi-
tion (#n = 1000).

sic PNGL has slightly worse performance since the sibling
operation is performed for the whole DAG.

Through the above experiments, we believe that 1-
Decomposition has a similar performance to the other two
schemes and 2-Decomposition is acceptable although it has
slightly worse performance in the descendant operation.
From 3-Decomposition on, the decomposition optimization
is not recommended. In Table 2, the decomposition opti-
mization with BFT is not practical for the cases of (# f o: 5,
#n: 500, # f i: 4) and (# f o: 5, #n: 1000, # f i: 2 or 4) due to
3-Decomposition.

6.5 Re-Labeling Performance

In this subsection, we evaluate the re-labeling performance
for updates. First, the graph of Fig. 10 (a) shows the compar-
ison of deleting a specific node. As in explained in Sect. 5.1,
the decomposition optimization performs better than the
prefix scheme since the re-labeling is performed just for
the corresponding sub-DAG. From this result, we can also

(a) A single node deletion

(b) A sub-graph deletion

Fig. 10 Re-labeling cost according to N-Decomposition (#n = 1000).

estimate the comparison result for the insertion operation.
This is because, as explained in Sect. 5.2, an insertion also
is allowed just within the corresponding sub-DAG. Next,
the graph of Fig. 10 (b) shows the comparison for a spe-
cial deletion operation which removes a specific node and
its descendant nodes together. In this case, the re-labeling
performances of the decomposition optimization are slightly
worse than the prefix scheme in 1- or 2-Decomposition. 3-
Decomposition is not desirable.

7. Conclusions

When the data to be labeled are few, the prime number graph
labeling provides a novel label mechanism by using only el-
ementary arithmetic calculation such as multiplication, di-
vision, and modulo. However, there is an inherent prob-
lem of label overflow. In this paper, we have introduced
another optimization technique based on graph decomposi-
tion for minimizing the problem. The suggested optimiza-
tion technique can effectively extend the range of prime
number labeling. Experimental results have shown that just
1- or 2-Decomposition has a better performance than the
prefix-based labeling scheme. However, even within 1- or
2-Decomposition, we can perform quite a lot of additional
labeling.

Acknowledgments

We would like to thank the anonymous referees for their
valuable comments on earlier draft of this paper.

This study is supported in part by the Second Stage of

1898
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

BK21.

References

[1] Q. Li and B. Moon, “Indexing and querying XML data for regu-
lar path expressions,” Proc. 27th International Conference on Very
Large Databases, pp.361–370, Sept. 2001.

[2] H. Kaplan, T. Milo, and R. Shabo, “A comparison of labeling
schemes for ancestor queries,” Proc. 13th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp.954–963, Jan. 2002.

[3] X. Wu, M. Lee, and W. Hsu, “A prime number labeling scheme for
dynamic ordered XML trees,” Proc. 20th International Conference
on Data Engineering, pp.66–78, April 2004.

[4] J.G. Lee, K.Y. Whang, W.S. Han, and I.Y. Song, “The dynamic
predicate: Integrating access control with query processing in XML
databases,” The VLDB J., vol.16, no.3, pp.371–387, July 2007.

[5] S. Yokoyama, M. Ohta, K. Katayama, and H. Ishikawa, “An access
control method based on the prefix labeling scheme for XML repos-
itories,” Proc. 16th Australasian Database Conference (ADC2005),
pp.105–113, 2005.

[6] V. Christophides, G. Karvounarakis, D. Plexousakis, M. Scholl, and
S. Tourtounis, “Optimizing taxonomic semantic web queries using
labeling schemes,” J. Web Semantics, vol.11, no.1, pp.207–228,
Nov. 2003.

[7] G. Wu, K. Zhang, C. Liu, and J. Li, “Adapting prime number label-
ing scheme for directed acyclic graphs,” Proc. Database Systems for
Advanced Applications (DASFAA), pp.787–796, April 2006.

[8] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and
M. Scholl, “RQL: A declarative query languages for RDF,” Proc.
11th International World Wide Web Conference, pp.592–603, May
2002.

[9] S. Zheng, J. Wen, and H. Lu, “Cost-driven storage schema selec-
tion for XML,” Proc. Database Systems for Advanced Applications
(DASFAA), pp.337–344, March 2003.

[10] P. Bohannon, J. Freire, P. Roy, and J. Simeon, “From XML schema
to relations: A cost-based approach to XML storage,” Proc. 18th
International Conference on Data Engineering, pp.64–75, Feb. 2002.

[11] M.R. Garey, D.S. Johnson, and L.J. Stockmeyer, “Some simplified
NP-complete graph problems,” Theor. Comput. Sci., vol.1, no.3,
pp.237–267, 1976.

[12] RDF Primer, W3C Recommendation, http://www.w3.org/TR/
rdf-primer/

Appendix: The Suggested Decomposition Optimiza-
tion Algorithm

class Node
{

long L1;
long L2;
long L3;
long[] PV gID = null;
long[] PV L1 = null;
long[] PV L2 = null;
boolean visit f lag = false;
boolean store f lag = false;
};

f unction Decomp PNGL (R, gID)

{
1 Node tmpn1, tmpn2;
2 Queue Q;

3 create a virtual root node VR with the label <1, 1, 1>;
4 Q.addq(R)

5 while((tmpn1 = Q.deleteq()) != null){ /* This first scanning of a DAG
assigns a label to each node. */
6 while(tmpn2 = tmpn1.nextChild()){ /* visit the child nodes of tmpn
iteratively */
7 if(tmpn2.visit f lag == false){
8 tmpn2.visit f lag = true;

9 if(tmpn1.L1 == 0){
10 tmpn2.L1 = tmpn2.L2 = tmpn2.L3 = 0;
11 Q.addq(tmpn2); continue;
12 }
13 assign the L1 value to tmpn2;

14 if(tmpn2.L1 is overflow){
15 make tmpn2 be the child of VR;
16 tmpn2.L1 = tmpn2.L2 = tmpn2.L3 = 0;
17 Q.addq(tmpn2); continue;
18 }
19 assign the L2 value to tmpn2 using tmpn2.L1 and tmpn1.L2;

20 if(tmpn2.L2 is overflow){
21 make tmpn2 be the child of VR;
22 tmpn2.L1 = tmpn2.L2 = tmpn2.L3 = 0;
23 Q.addq(tmpn2); continue;
24 }
25 assign the L3 value to tmpn2 using tmpn1.L1;
26 Q.addq(tmpn2);
27 }else{ /* if tmpn2 is visited */
28 if(tmpn1.L1 == 0){
29 tmpn2.L1 = tmpn2.L2 = tmpn2.L3 = 0;
30 Q.addq(tmpn2); continue;
31 }
32 if(tmpn2.L1 != 0){
33 assign the L2 value to tmpn2 using tmpn2.L2 and tmpn1.L2;

34 if(tmpn2.L2 is overflow){
35 make tmpn2 be the child of VR;
36 tmpn2.L1 = tmpn2.L2 = tmpn2.L3 = 0;
37 Q.addq(tmpn2); continue;
38 }
39 if(tmpn2.L3 % tmpn1.L1 != 0)
40 assign the L3 value to tmpn2 using tmpn2.L3 and tmpn1.L1;

41 Q.addq(tmpn2);
42 }
43 }
44 }
45 }
46 Q.addq(R)

47 while((tmp1 = Q.deleteq()) != null){ /* This second scanning of a
DAG stores the label of each node into a stable storage. */
48 while(tmpn2 = tmpn1.nextChild()){ /* visit the child nodes of tmpn
iteratively */
49 if(tmpn2.store f lag == false){
50 tmpn2.store f lag = true;

51 if(tmpn2.L1 != 0){
52 store the label of tmpn2 into the LABEL table;

53 if(The values PV gID, PV L1, and PV L2 of tmpn2 exist)
54 store the connection information (PV gID, PV L1, PV L2,
gID(tmpn2), L2(tmpn2)) into the BRIDGE table;

55 Q.addq(tmpn2);
56 }else{
57 if(tmpn1.L1 != 0 && tmpn1.L1 != 1){
58 assign the values PV gID, PV L1, and PV L2 to tmpn2;

59 Q.addq(tmpn2);
60 }

KIM and PARK: DECOMPOSITION OPTIMIZATION FOR MINIMIZING LABEL OVERFLOW IN PRIME NUMBER GRAPH LABELING
1899

61 }
62 }else{ /* if tmpn2 is stored */
63 if(tmpn1.L1 != 0 && tmpn1.L1 != 1 && tmpn2.L1 == 0)
64 assign the values PV gID, PV L1, and PV L2 to tmpn2;
65 }
66 }
67 }
68 gID++;
69 if(VR has child nodes)
70 Decomp PNGL(VR, gID);
71 }

Jaehoon Kim received the B.S. and M.S.
degrees in computer science from Konkuk Uni-
versity in 1997 and 1999, respectively and the
Ph.D. degree in computer science from Sogang
University in 2005. He worked as a senior re-
searcher at Telecommunication R&D center in
Samsung Electronics Company from 2005 to
2006. From 2006 to 2009, he was a research
professor of computer science at Sogang Uni-
versity. From 2009, he is a professor of Dept.
of information communication at Seoil Univer-

sity. His major research areas are database, database security, contextual
information management in ubiquitous computing, and Semantic Web.

Seog Park received the B.S. degree in com-
puter science from Seoul National University,
Korea, in 1978, the M.S. and the Ph.D. degrees
in computer science from Korea Advanced In-
stitute of Science and Technology (KAIST) in
1980 and 1983, respectively. He is a profes-
sor of computer science at Sogang University,
Seoul, Korea. Since 1983, he has been working
in the Department of Computer Science of the
College of Engineering, Sogang University. His
major research areas are database security, real-

time systems, data warehouse, digital library and web database. Dr. Park
is a member of the IEEE Computer Society, ACM, and the Korea Informa-
tion Science Society. Also, he has been a member of Database Systems for
Advanced Applications (DASFAA) steering committee since 1999.

