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Orientation Field Estimation for Embedded Fingerprint
Authentication System
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SUMMARY Orientation field (OF) estimation is a fundamental process
in fingerprint authentication systems. In this paper, a novel binary pattern
based low-cost OF estimation algorithm is proposed. The new method con-
sists of two modules. The first is block-level orientation estimation and
averaging in vector space by pixel level orientation statistics. The sec-
ond is orientation quantization and smoothing. In the second module, the
continuous orientation is quantized into fixed orientations with sufficient
resolution (interval between fixed orientations). An effective smoothing
scheme on the quantized orientation space is also proposed. The proposed
algorithm is capable of stably processing poor-quality fingerprint images
and is validated by tests conducted on an adaptive OF matching scheme.
The proposed algorithm is also implemented into a fingerprint System on
Chip (SoC) to comfirm that it satisfies the strict requirements of embedded
system.
key words: orientation field, fingerprint authentication, feature extraction,
binary pattern, image processing

1. Introduction

The authentication of Personal identity by Automatic Fin-
gerprint Identification System (AFIS) offers greater conve-
nience and security than traditional password or ID card
based methods since a password and ID card can easily be
forgotten or stolen. A fingerprint is the pattern of ridges and
valleys on the surface of the finger. The uniqueness of a fin-
gerprint can be determined by the overall pattern of ridges
and valleys as well as the local ridge minutiae (ridge ending
and ridge bifurcation).

Most classical algorithms take the minutiae and the
singular point (SP) as the distinctive features to represent
the fingerprint in the matching process. Minutiae extrac-
tion mainly includes the following steps: Orientation Field
(OF) Estimation, Ridge Enhancement, Binarization, Thin-
ning, Minutiae Detection and post processing to handle the
whole image [1]. SPs are directly extracted from OF. Thus,
an algorithm to estimate OF accurately and robustly is de-
sired as a fundamental process for the whole recognition
system. Given the requirements of embedded systems, there
are several problems to be solved in advance:

• Low workspace memory requirement for online pro-
cessing;
• Low computational complexity in feature extraction

and matching;
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• Avoiding floating point calculation;
• Processing covers most parts of the fingerprint image.

Many algorithms have been proposed for OF estima-
tion, such as gradient-based approaches [2]–[5], filter-bank
based approaches [6], [7], methods based on high-frequency
power in 3-D space [8], and 2-D spectral estimation meth-
ods [9]. However, it is reported that these methods do not
provide results with the same accuracy as the gradient-based
methods. This is mainly because most of them rely on a
number of fixed possible templates or filters [1]. Further-
more, those methods usually employ floating point calcu-
lations, which makes the computation complexity too high
for embedded system. Therefore, our motivation in this pa-
per is to find a new method to estimate OF, which not only
matches the strict requirements of embedded system but also
performs as well as the classical methods. Given these re-
quirements, a novel binary pattern based fingerprint OF esti-
mation method is proposed. The new method consists of two
modules. The first is block-level orientation estimation and
averaging in vector space by pixel-level orientation statis-
tics, as described in Sect. 2. In the second module presented
in Sect. 3, the orientation field is quantized to reduce com-
putational complexity. An effective smoothing scheme for
the quantized orientation space is also proposed to fix the
incorrect estimation in very noisy area where the averaging
scheme in the first module fails. In Sect. 4, an adaptive OF
matching scheme is introduced for large dataset evaluation
of OF estimation algorithms. Finally, in Sect. 5, experiments
are conducted to validate that the proposed algorithm is ca-
pable of stably processing poor-quality fingerprint images
and satisfies the requirements of an embedded system [15].

2. Orientation Estimation in Vector Space

Before binarization, raw fingerprint image should be en-
hanced. Our enhance process includes a highpass filter to
sharpen the ridge profile and a lowpass filter to remove the
high frequency noise.

2.1 Ridge Orientation Analysis

In the foreground of a binarized fingerprint image, ridge and
valley are labeled as white and black respectively. In a small
block, the ridge profile is defined as the boundary pixels in
the ridge which separate the ridge from the valley, as shown
in Fig. 1. If the block size is small enough, the ridge profile
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Fig. 1 Ridge profile in block 8 by 8 pixels.

Fig. 2 An example of line represented in a binary image.

is an approximation of tangent of ridge curve. It is reason-
able that by calculating the slope of the profile, the local
ridge orientation† within the small block can be estimated.
This idea is illustrated by a 3-step algorithm:

1. search the whole block and label the ridge profile;
2. find the start point (x0, y0) and end point (x1, y1) of

ridge profile;
3. calculating y1−y0

x1−x0
, x1 � x0, otherwise the orientation is

horizontal.

This algorithm is simple, but it is not so easy to search
(x0, y0) and (x1, y1). When the block of interest is large
enough, it may include more than one identical shape of
ridge profiles. Therefore, we propose an extended method
to calculate the slope. Suppose a line is drawn in an image
as shown in Fig. 2. The start point is A(x0, y0) and the end
point is B(x1, y1). The general formula for the line between
two points A and B is given by:

y − y0 =
y1 − y0

x1 − x0
(x − x0), x1 � x0 (1)

This formula gives the slope of the line AB, which is
y1−y0

x1−x0
. In another case, to obtain the slope of AB, one can cal-

culate the accumulative steps along x and y directions, de-
noted by dx and dy respectively, from the ordered sequence
of C, which is composed of all the points in line AB:

(
dx
dy

)
=

(∑N−1
n=0 (xn+1 − xn)∑N−1
n=0 (yn+1 − yn)

)
, xN−1 � x0 (2)

where N is the number of points in C and point (xn, yn) ∈ C.
The slope will be given by dy

dx , which can also be represented

by a vector �O(dx, dy). As a result, dy will not be affected

Table 1 Five types of micropatterns and their contribution to the slope.

Type Angle Micropattern Contribution
Configurations to Slope

1 0◦ dx = dx ± 1,
dy = dy

2 45◦ dx = dx + 1,
dy = dy + 1

3 90◦ dx = dx,
dy = dy + 1

4 135◦ dx = dx − 1,
dy = dy + 1

5 Don’t care -

by the calculation priority of yn+1 − yn and yn+2 − yn+1, etc
(same situation for dx). Thus, instead of constructing the se-
quenced set C within the block of interest, formula 2 can be
replaced with statistical calculation of steps locally to avoid
searching A and B.

In a local 2 by 2 window of binarized image in pixel
level, there are 24 = 16 patterns. Excluding the config-
uration of all black and all white, the left 14 patterns can
be categorized into 5 classes associating to their contribu-
tion to dx and dy, corresponding to 0◦, 45◦, 90◦, 135◦, and
undefined respectively, as shown in the third column of Ta-
ble 1. Because type 5 may be 45◦, 135◦ or noise, this type
is also discarded. It is easy to notice that pattern 1 repre-
sents the fact that the ridge flow steps one pixel horizontally
from left to right (or from right to left, further discrimination
is necessary for block orientation estimation, which is dis-
cussed in Sect. 2.2). Associated with the accumulative steps
dx and dy, the contribution to the slope of each pattern is
listed in the fourth column of Table 1. If we take the upper
left pixel as interested, the pixel-level ridge orientation can
be obtained by comparing the 2 by 2 window with the 16
configurations. By overlapping the 2 by 2 window, all the
ridge profile pixels will be labeled by one identical value
from type 1 to 4.

2.2 Block Level Ridge Orientation

To derive block level orientation from pixel-level orienta-
tion statistics, firstly, a histogram of four valid types of
pixel orientation pattern is obtained and denoted as H(hi|i =
1, 2, 3, 4), where hi ≥ 0. hi denotes the count of appeared
type i pattern in a block size of w by w, and its correspond-
ing angle is θi =

π×(i−1)
4 . If the block size is w by w pixels,

there must be
∑

hi ≤ w2. Secondly, the accumulative steps
dx and dy can be derived from histogram H. The only prob-
lem is to discriminate whether the slope vector is in the first
or second quadrant. This can be solved by comparing the
value of h2 and h4. Therefore, there are 3 cases should be
considered for generating the accumulative steps dx and dy
except the case that all histogram values are 0. Here, all the
possible cases are summarized and listed below:

†Ridge orientation represents a disorientated direction within
the range of [0,π).
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1. if h2 > h4(
dx
dy

)
=

(
h2 − h4 + h1

h2 − h4 + h3

)
(3)

2. if h2 = h4

a. if h1 ≥ h3(
dx
dy

)
=

(
h1

0

)
(4)

b. if h1 < h3(
dx
dy

)
=

(
0
h3

)
(5)

3. if h2 < h4(
dx
dy

)
=

(
h2 − h4 − h1

h4 − h2 + h3

)
(6)

Thus, the orientation θ ∈ [0, π) of this block can be
derived from the vector �O(dx, dy):

θ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arctan

(
dy
dx

)
dx � 0

0 dy = 0
π
2 dx = 0, dy � 0

(7)

where arctan is calculated by:

arctan(z) =
i
2

log
( i + z
i − z

)
(8)

2.3 Averaging the orientation vectors

The OF obtained from Sect. 2.2 is rough and not accurate,
because the local window may be comparatively small in
some area. Noise or broken ridge flow has the effect of false
presentation of local orientation. An averaging scheme will
help to correct by investigating a larger window.

To average the orientation vectors, a local 3 by 3 win-
dow lowpass filter for the pixel-level orientation histogram
Hmn(himn |i = 1, 2, 3, 4) on block level is applied, where m
and n denote the m-th column and n-th row of block wise
OF. The parameter of filter mask LPM is listed in Table 2.

The center block with the heaviest weight is the block
of interest. Thus, the output H′mn(h′imn

|i = 1, 2, 3, 4) will be
calculated by:

h′imn
=

∑k=1
k=−1

∑l=1
l=−1 hi(m+k)(n+l) × LMP(k, l)∑k=1

k=−1
∑l=1

l=−1 LMP(k, l)

=

∑k=1
k=−1

∑l=1
l=−1 hi(m+k)(n+l) × LMP(k, l)

16
(9)

The division by 16 can be implemented with a 4-bit
shift operation. Actually, the division does not affect the re-
sult of dy

dx as defined in previous section and thus is omitted.

Table 2 Parameter of lowpass filter window for orientation histogram of
each block centered by OF (m,n).

1 (m-1,n-1) 2 (m-1,n) 1 (m-1,n+1)
2 (m,n-1) 4 (m,n) 2 (m,n+1)

1 (m+1,n-1) 2 (m+1,n) 1 (m+1,n+1)

3. Orientation Field Quantization and Smoothing

The resolution of the vector space OF estimated by the pre-
vious model is luxuriously high. The orientation θ derived
from the vector �O(dx, dy) by Formula 8 has implementation
with fixed point arithmetic but the computation complexity
is rather high. Moreover, noisy part will require larger win-
dow to average. Simply enlarging the window will degrade
the resolution accuracy around SP, because high curvature
area requires small block to satisfy the assumption that the
ridge profile is the tangent of ridge curve. Quantizing the
OF into a number of fixed orientations, which reserve suf-
ficient resolution, can speed up the processing with main-
taining the accuracy. Thus, in Sect. 3.1, the method which
quantizes a continuous orientation into one of N predefined
discrete orientations is presented. An hybrid smoothing al-
gorithm in the quantized OF is also proposed, which can fix
the incorrect estimation of the previous module, and will be
described in Sect. 3.2.

3.1 Quantization by Inner Product

To quantize the vector �O(dx, dy) into fixed orientations, a
simple way is to construct the predefined orientations as vec-
tors with the same amplitude. For example, in resolution of
4, the reference vector of quantized orientations of 0◦, 45◦,
90◦, 135◦ can be denoted by (256,0), (181,181), (0,256) and
(−181,181) respectively. Then, by performing inner product
between the reference vectors and a vector �O(dx, dy):

IP(i) = x(i) × dx + y(i) × dy (10)

where (x(i), y(i)) denotes the i-th predefined orientation vec-
tor, IP(i) denotes the corresponding inner product. The
expected quantized orientation for �O(dx, dy) is j, where
IP( j) = max(IP(0), . . . , IP(3)). This method avoids di-
vision and floating point calculation. However, the com-
putation complexity increases with quantization resolution.
Therefore, a suitable quantization resolution should be esti-
mated for system optimization.

3.2 Smoothing Quantized OF

The basic idea to smooth the quantized OF is based on the
fact that the ridge flow is continuous, so that the tangent
of the ridge may change from one in the neighbors, but may
not jump from the one. In this section, 2 smoothing schemes
are designed and combined to smooth the quantized OF ef-
ficiently and effectively.

3.2.1 One Dimensional Lowpass Filtering

Let i, j denote the block of i-th column and j-th row in the
OF. The idea of one dimensional lowpass filtering is to cal-
culate the orientation difference between current block θi j

and its previous block θ(i−1) j and next block θ(i+1) j in the
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case of horizontal scanning, named Dp and Dn respectively:(
Dp

Dn

)
i j

=

(
Difference(θi j, θ(i−1) j, n)
Difference(θ(i+1) j, θi j, n)

)
(11)

where the difference (or distance, in the range of (− n
2 , n

2 ])
between two quantized angle a and b in the congruence class
modulo n is calculated by:

Difference(a, b, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a − b if − n

2 < a − b ≤ n
2 ;

a − b + n if a − b ≤ − n
2 ;

a − b − n else.

(12)

For any θi j, the averaging result is given by:

θ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
θ +

Dn−Dp

2

)
mod n if Dp < 0,Dn ≥ 0

or Dp ≥ 0,Dn < 0;(
θ +

Dn+Dp

2

)
mod n else,

(13)

where the subscript i j for θi j, θ′i j, Dni j and Dpi j is omitted for
simplicity.

It is easy to be noticed that:

Dpi j = Dn(i−1) j . (14)

Thus, for each row processed from left to right, it is
simpler to generate all of values of Dp at first and then cal-
culate the averaged orientation of each block by formula 13
using Eq. 14, which makes this one dimensional lowpass fil-
ter a nonrecursive one.

3.2.2 Two Dimensional Lowpass Filtering on Quantized
OF

If a small block size, such as 8 × 8 pixels, is selected to re-
serve sufficient resolution for high curvature area around SP,
mutational orientations will appears in some area as group
of blocks. The nonrecursive one dimensional lowpass filter-
ing scheme proposed in Sect. 3.2.1 is not capable to produce
correct estimation result for very noisy area, which gener-
ates mutational orientations. We herein propose a recur-
sive 2 dimensional lowpass filtering scheme by searching
the most possible orientation of the block of interest to solve
the mutational orientation area problem. The idea is that if
in a local window of a certain size, OF is smoothed to the
perfect result, the variance of center block to all the other
surrounding blocks is supposed to be the least. We will find
the quantized orientation of the center block, which min-
imize the average difference from orientations of the sur-
rounding blocks, by calculating all average differences for
all the candidate orientations. Because the orientations are
quantized into limited number of values, it makes the ex-
haustive searching possible.

Define the variance between an angle value m,m ∈
[0, n − 1] and a local window of w by w blocks:

VARm =

w
2∑

k=− w
2

w
2∑

l=− w
2

(Difference(m, θ(i+k)( j+l), n))2 (15)

the result of averaging is q, where VARq = min{VAR0,
VAR1, . . . ,VARn−1}. The filtering is processed from up to
down, left to right on the quantized OF. The averaging result
q is written into the current block of coarse OF and loaded
when calculating the VARs for the next block. By this recur-
sive scheme, the whole mutational orientation segment can
be rectified, which is quite similar as an erosion process.

3.2.3 Hybrid Lowpass Filter

Compared to the two dimensional filter described in
Sect. 3.2.2, one dimensional lowpass filter alleviates the
computation complexity from O(n×N×M) to O(N), where n
is the quantization resolution, N is the number of orientation
blocks to be processed and M is the local window size. In
our implementation, the 8 neighboring blocks encircled the
block of interest are selected as the local window. Therefore,
the smoothing of quantized OF can be carried out effectively
and efficiently by embedding the two dimensional filter into
the one dimensional one through setting a threshold T for
Dpi j . If Dpi j is sufficient large, two dimensional filter will
be processed on current block θi j and update Dpi j in prior to
the calculation of Dpi( j+1) . For the block size of 8 × 8 pixels,
the empirical value for the threshold T becomes π6 . Because
for most part of the OF, Dp is less than π6 , the computation
complexity of the hybrid filter is approximately O(N).

4. Adaptive OF Matching

Since there is no ground truth for OF of fingerprints, mea-
surements of objective error are difficult to be constructed.
Evaluation through human inspection is subjective and only
executable for small data set. Some authors conducted ob-
jective measurement indirectly by investigating the results
of sequent processing, for instance, the effect on SP detec-
tion, false minutiae detected, etc. However, the haleness of
the sequent processing will confuse the evaluation of orien-
tation estimation algorithms.

One way to construct an objective measurement is by
measuring the difference ratio (DR) between genuine OFs.
The DR is defined as the average difference between all
paired elements of 2 aligned OFs. A robust algorithm will
produce similar OFs for genuine pairs which correspond to
low DR. However, the DR distributions are difficult to be
compared directly. Because the DR between an impostor
OF pair is irrelevant to the accuracy of OF estimation algo-
rithms, we plot the accumulative DR distributions of gen-
uine and impostor against each other, which is actually the
Receiver Operating Characteristic (ROC) curve of the OF
based verification, to compare the performances of variant
OF estimation algorithms. The DR becomes a representa-
tion of the similarity score. High (low) DR corresponds to
low (high) similarity score.

Here, an adaptive OF matching scheme is introduced to
solve the alignment in advance, along with the calculation of
the DR to evaluate the robustness and stability of orientation
estimation algorithm for large data set.
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Although there will be no orientation in the background
area, the orientation estimation algorithm will produce a ori-
entation value as a result. This result will show high uncer-
tainty among genuine images. Therefore, background area
should be excluded from DR calculation. The background
detection algorithm described in [14] uses the coherence, the
mean, and the variance of the fingerprint image as features
and morphological operators to smooth the detection result.
Because the coherence can only be carried out by gradient-
based method, in this paper, only the mean and the variance
are adopted, along with the morphological operators, by the
background detection algorithm used in experiment. This
simplified background detection algorithm preserves suffi-
cient accuracy and is independent to OF estimation algo-
rithms.

The adaptive matching scheme works as following. For
an alignment parameters (δx, δy) that are applied to align Q
and P, where Q and P represents two OFs, it suggests that
the block of the i-th row and j-th column in the foreground
area of Q aligns with the block of the (i+δx)-th row and ( j+
δy)-th column in P. The alignment of the pair of orientation
blocks is valid for DR calculation when the position (i +
δx, j + δy) is also within the foreground area of the input.
Suppose the valid aligned areas are denoted by A and A′ for
input and template, respectively, the DR is given by:

DR =

∑
i j(Difference(θi j, θ

′
i′ j′ , n))2

N × ( n
2 )2

, θi j ∈ A, θ′i′ j′ ∈ A′

(16)

where N is the total number of aligned orientation blocks,
and i′ = i + δx, j′ = j + δy. Here the range of DR calcu-
lated by Eq. 16 is [0,1]. In the case of continuous OF, Eq. 16
can be applied by just replacing n with π. The actual DR is
the minimum of DR values for all possible transformation
parameters (δx, δy) between Q and P, with the restriction of
N > ε, where “ε” is the threshold for valid foreground area
size. In our experiment, the optimal value of “ε” is found to
be approximately 1/3 of the total image size.

5. Experiment Results

In this section, some experiment results will be presented.
First in Sect. 5.1, the processing results of several examples
with different image quality are presented to show the ro-
bustness of the proposed algorithm. And in the following
Sect. 5.2, the previously derived results are applied to a large
number of fingerprints by the adaptive OF matching. The
effect of quantization resolution on accuracy is also given.
Finally, in Sect. 5.3, some computational aspects of the al-
gorithms will be presented.

5.1 Small Data Set Evaluation

Figure 3 presents the processing results of each stage of dif-
ferent quality fingerprint images, including good, normal,
poor and extremely poor quality. The description about

quality will be presented in Sect. 5.2.2. For the former 3
kinds of quality, the proposed algorithm produces smoothed
OF. For the extremely poor-quality image, because of too
many unrecoverable parts, although it can be classified as
a whorl type fingerprint by human inspection, the proposed
algorithm fails to produce an OF which describes a good
whorl pattern. For the poor-quality image, because of the
cutlines in the lower part, after local 3× 3 averaging, blocks
in a small area is labeled with orientation around 45◦. How-
ever, by human inspection, the orientation in this area should
be around 120◦ to 160◦. This small area is the so called mu-
tational orientation area. As shown, the hybrid lowpass fil-
ter presented in Sect. 3.2.3 fixed this error. Furthermore, the
2 dimensional lowpass filter is robust in the high curvature
area around SP, in which the difference between neighboring
blocks may be larger than the threshold π6 .

Figure 4 shows the OF estimation results of the method
proposed in [8]. It is shown that 8 fixed orientations can not
present the continuous ridge flow accurately. The estima-
tion error of this method is similar to the quantization error
caused by quantizing a continuous OF into 8 fixed orien-
tations. In the result of poor quality image, the mutational
area is not correctly detected.

5.2 Experiment Conducted on Large Data Set

5.2.1 Experimental Database

To evaluate our algorithm by the adaptive OF matching
scheme, a suitable database should be selected, where the
translation and rotation effect should be limited. This is
based on the consideration that in the case of translation,
the adaptive OF matcher will only evaluate the robustness
on the small overlapping area, other area can not be in-
volved in the evaluation; in the case of rotation, the rela-
tive rotation coefficient should be estimated and introduced
into the matcher, which makes the evaluation too compli-
cated. To simplify the evaluation scheme, instead of using
public data set such as FVC2004 [10] databases with ex-
treme translation and rotation effect, we have run the ex-
periments on our private database, which consists of 1240
images collected from 248 fingers of 80 persons (5 prints
per finger), captured by a sweep sensor at 500 dpi (dot per
inch) and categorized into 362, 413, 417 and 48 of good,
normal, poor and extremely poor quality images by human
inspection. Some examples of images with different subjec-
tive quality are shown in Fig. 3. For the good quality one,
the ridge texture is clear with sufficient contrast against val-
ley and continuous with few broken segment. For the nor-
mal quality one, the contrast of the ridge in some area is
low, but it seems recoverable, there also will be several cut-
lines which produce disconnected ridges. For the poor qual-
ity one, the majority part of the foreground is suffered from
broken ridge flows, cutlines and low contrast, very difficult
to be recovered by local-processing enhancement methods.
For the extremely poor quality, more than 2/3 of the fore-
ground area is of low contrast, which is unrecoverable. This
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Fig. 3 Processing results of proposed algorithm on fingerprints of different quality. Each row shows
good, normal, poor, extremely poor quality images, respectively; each column corresponds to origi-
nal, binarized, coarse blockwised OF, local 3 × 3 averaged OF and hybrid lowpass filtered OF after
quantization with resolution 24, respectively.

sensor helps to restrict the user’s behavior to eliminate trans-
lation and rotation effect. Therefore, for each run the cross-
match process will generate 5 × 5 × 248/2 = 3, 100 genuine
and 1240 × 248 × 5/2 = 768, 800 impostor attempts. The
image size is restricted to 256 × 400 pixels and the window
size for orientation estimation is 8 by 8 pixels. Thus, an OF

of 32 by 50 blocks will be extracted by each method.

5.2.2 Background Detection Results

As mentioned in Sect. 4, the background area should be ex-
cluded for matching. Here in Fig. 5, the background detec-
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(a) Normal Quality Fingerprint (b) Poor Quality Fingerprint

Fig. 4 OF estimation results of low orientation resolution (8 fixed orien-
tation mask) method.

Fig. 5 Background detection results of good, normal, poor and ex-
tremely poor quality fingerprints, black area represents the background,
grey area represents the foreground.

tion results are shown for the 4 images listed in Fig. 3. It
is shown that although the coherence information is not in-
cluded for background detection, the results show that suf-
ficient accuracy is preserved. The experiment result shows
that for the extremely poor quality fingerprint, the whole im-
age has no foreground. Actually, by tuning the threshold for
mean and variance, there will be some small segments of
foreground detected. However, after morphological opera-
tion, these foreground area will be removed because they
are too small and unconnected. As for the adaptive match-
ing, the DR of two OFs estimated by a certain algorithm
is calculated by those paired blocks both of which are not
background.

5.2.3 Evaluation Criteria

False Acceptance Rate (FAR) and False Reject Rate (FRR)
are two important error rates, which estimate the perfor-
mance of a fingerprint verification system at various thresh-
olds. In our case, they correspond to the accumulative DR
distribution of impostor and genuine OFs matching. Re-
ceiver Operating Characteristic (ROC) curve plots the FRR
against the FAR at different DR thresholds. Equal Error Rate
(EER), which represent the thresholds where FRR(DR) =
FAR(DR) in the ROC curve is also an interested criteria.
For un-intersected ROC curves, only by comparing the EER
values, the one with the better performance can be pointed
out.

Fig. 6 Results of adaptive OF matching of different OF estimation meth-
ods. The methods include (1) gradient: the gradient based method; (2) pro-
posed 8, 16, 24 and 32: the proposed method with quantization resolution
8, 16, 24 and 32 respectively.

Table 3 EERs of proposed method with different quantization resolution
and the gradient based method.

Methods EER (%)
Proposed 8 7.395
Proposed 16 6.7744
Proposed 24 6.6001
Proposed 32 6.6628

Gradient-based 9.021

5.2.4 Evaluation Results

As explained in Sect. 1, the aforementioned OF estimation
methods do not provide as much accurate results as the
gradient-based method. One reason is fixed number of ori-
entations as shown in Fig. 4 do not provide as much accu-
racy of ridge flow representation as the continues one. An-
other reason is the alternative pixel orientation estimation in
gray level [9] does not enroll extra information and thus only
increasing the computational complexity without achieving
more accuracy. Therefore, in the large set evaluation, we
only compare the proposed method with the gradient-based
method.

As shown in Fig. 6, on our private database, the pro-
posed method which consists of the two modules with quan-
tization resolution of more than 16 produced similar results.
This is because fixed window size limits the orientation res-
olution. As the resolution decreased from 16 to 8, the verifi-
cation result became worse, which is because lower resolu-
tion will lose the accuracy of ridge flow representation. The
EERs produced by the gradient method [4] and the proposed
method with different resolution are listed in Table 3. If the
465 poor and extremely poor quality images are excluded,
the EER of the proposed algorithm with the quantization
resolution 24 improves from 6.60% to 6.32%. While the
gradient based method improves significantly from 9.02%
to 7.68%. Same conclusion can be drawn by examining the
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Fig. 7 Effect of excluding poor and extremely poor quality images. QR
stands for quality restriction.

ROC curves shown in Fig. 7. This means the proposed algo-
rithm is more stable and robust to process the poor-quality
images than the gradient based method. The results of gradi-
ent method and the proposed method with quantization reso-
lution of 24 are plotted twice in Fig. 6 and Fig. 7 for a clearer
comparison visualization.

5.3 Computational Aspects

From multirate signal processing, it is known that the fil-
tering and decimation steps can be implemented very ef-
ficiently using polyphase filters by interchanging the order
of decimation and filtering [16]. Using this method, an ef-
ficient and optimized C implementation, the calculation of
8×8 block OF requires less than 3 k words working memory,
which benefits from that the processing is based on bina-
rized image. Because the processing is based on gray scale
image, other 3 listed methods require much more working
memory. Filter-bank based method processes 2-D gabor
filter on local blocks. High-frequency power based meth-
ods uses pre-defined mask for matching to detect the ori-
entation which achieves the best enhancement for a local
ridge. Although fixed-point solution can be designed, both
methods require high computational complexity and result
in much longer processing time. An overall comparison
of processing times and working memory between the pro-
posed method and other methods is given in Table 4. It is
shown in the previous section that the proposed algorithm
with quantization resolution 24 and 32 produces very simi-
lar verification results for both ROC curves and EERs. Con-
sidering the computational complexity for quantization, a
resolution of 24 is suitable for embedded system implemen-
tation.

In our previous work [15], a fingerprint system-on-chip
(SoC) with bit serial FPGA engine was proposed. The sys-
tem chip includes a 64 KB ROM in which algorithms such
as fingerprint image processing and minutiae extraction are
embedded. A 32-bit RISC processor was used in the system.

Table 4 Comparison of OF estimation methods. Platform: Pentium 4
2.8 GHz CPU, 1 GB RAM.

Methods Time (ms) Memory (words)
Proposed 8 2.7 3 k
Proposed 16 2.8 3 k
Proposed 24 3.1 3 k
Proposed 32 3.4 3 k
Gradient-based 8.7 20 k
Filter-bank based 89.4 48 k
High-frequency 103.5 52 k
power in 3-D space

The processor works in 200 MHz frequency with 8 KB data
cache, 8 KB instruction cache and memory protection unit.
Therefore, on the above mentioned hardware environment,
processing carried out by the proposed algorithm will be al-
ways executed in the data cache of the processor. In the case
of image size with 400× 256 pixels, it only takes about 14.4
ms to calculate the 8 × 8 blockwise OF with a resolution of
24.

6. Conclusion

In this paper, a novel binary pattern based low-cost OF es-
timation algorithm is proposed. The new method consists
of two modules. The first is block-level orientation estima-
tion and averaging in vector space by pixel-level orienta-
tion statistics. The second is orientation quantization and
smoothing. In this module, the continuous orientations are
quantized into several fixed orientations with sufficient res-
olution and smoothed by a hybrid lowpass filter. The pro-
posed algorithm is capable of stably processing low-quality
fingerprint images and satisfying the strict requirements of
an embedded system.
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