
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.2 FEBRUARY 2010
219

PAPER Special Section on Foundations of Computer Science

Context-Sensitive Grammar Transform: Compression and Pattern
Matching

Shirou MARUYAMA†a), Youhei TANAKA††b), Nonmembers, Hiroshi SAKAMOTO††c), Member,
and Masayuki TAKEDA†d), Nonmember

SUMMARY A framework of context-sensitive grammar transform for
speeding-up compressed pattern matching (CPM) is proposed. A greedy
compression algorithm with the transform model is presented as well as
a Knuth-Morris-Pratt (KMP)-type compressed pattern matching algorithm.
The compression ratio is a match for gzip and Re-Pair, and the search speed
of our CPM algorithm is almost twice faster than the KMP-type CPM al-
gorithm on Byte-Pair-Encoding by Shibata et al. [18], and in the case of
short patterns, faster than the Boyer-Moore-Horspool algorithm with the
stopper encoding by Rautio et al. [14], which is regarded as one of the best
combinations that allows a practically fast search.
key words: compressed pattern matching, grammar-based compression,
KMP automaton

1. Introduction

In this paper, we propose a framework of context-sensitive
grammar (CSG) transform for good compression ratio and
fast compressed pattern matching. For this objective, we in-
troduce a subclass of CSGs and construct an effective com-
pression algorithm with a special case of the grammar trans-
form model. We also implement Knuth-Morris-Pratt (KMP)
pattern matching automaton on the compressed strings and
show its performance by experiments. We thus refer to re-
lated work in both grammar-based compression and com-
pressed pattern matching.

The framework of grammar-based compression was
proposed by Kieffer and Yang [8] to obtain good compres-
sion as context-free grammar (CFG) transform, and we
would expand the grammar transform by using powerful
CSG. In this problem, we assume that any grammar is
defined by a unique derivation for a single string, in other
words, any CSG transform can be expressed by a CFG.
Thus, the size of minimum CSG for a string is closely re-
lated to that of CFG. So, we mention briefly the theo-
retical results on the smallest grammar-based compression
problem, which is known to be NP-hard. Three O(log n)-

Manuscript received March 23, 2009.
Manuscript revised June 30, 2009.
†The authors are with the Graduate School of Information Sci-

ence and Electrical Engineering, Kyushu University, Fukuoka-shi,
819–0395 Japan.
††The authors are with the Graduate School of Computer Sci-

ence and Systems Engineering, Kyushu Institute of Technology,
Fukuoka-shi, 820–8502 Japan.

a) E-mail: shiro.maruyama@i.kyushu-u.ac.jp
b) E-mail: t youhei@donald.ai.kyutech.ac.jp
c) E-mail: hiroshi@ai.kyutech.ac.jp
d) E-mail: takeda@i.kyushu-u.ac.jp

DOI: 10.1587/transinf.E93.D.219

approximation algorithms [4], [15], [16] were proposed for
this problem, and the space efficiency was improved in [17]
within almost log-scale approximation ratio. Particularly,
the technique of LZ-factorization in [15] is useful for gram-
mar size analysis in this study.

On the other hand, a large number of practical algo-
rithms have been proposed. We specially refer to Re-Pair [9]
since our compression algorithm is also based on the recur-
sive pairing. In order to develop an O(n)-time/space algo-
rithm, the input string is represented by a linked-list so that
any occurrence of a digram is connected to its successor and
predecessor of the same digram. The Byte-Pair-Encoding
(BPE) is considered as simple implementation of Re-Pair
with grammar symbols at most 256.

Such effective compression algorithms are closely re-
lated to fast compressed pattern matching (CPM). Amir
et al. [2] introduced an algorithm of finding the first occur-
rence of a pattern on LZW compression in O(n + m2) time,
where n and m are the lengths of text and pattern, respec-
tively. Navarro and Raffinot [13] developed more general
technique, which abstracts both LZ77 and LZ78 and runs in
O(nm/w + m + occ), where w is the machine word length
and occ is the number of pattern occurrences. Kida et al. [7]
proposed the collage systems: a formal system to represent
a string by dictionaryD and sequence S of variables, which
unifies various dictionary-based compressions such as LZ
family (LZ77, LZSS, LZ78, LZW), CFG transform based
compressions, Run-Length encoding, etc. They also pre-
sented a general CPM algorithm on collage systems which
runs in O(h · (d + s) + m2 + occ) time, where d, h are the
size and the maximum dependence of D, respectively, and
s is the length of S, and the factor h disappears for the class
of truncation-free collage systems that subsumes the CFG
transform.

For practical speed-up of CPM, compressions with
byte code are attractive since we can avoid any bitwise pro-
cessing. BPE limits the number of the grammar symbols by
256 in order to represent in one byte each of them, and al-
lows a fast search [18], [19]. The compression ratio is, how-
ever, very poor. Matsumoto et al. [12] recently proposed
to represent a large number of grammar symbols by byte-
oriented Huffman code and improved both the compression
and the search performances. However, the space require-
ment for the finite-state machine used grows linearly pro-
portional to the number of grammar symbols.

Along this line of researches, our study is motivated

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

220
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.2 FEBRUARY 2010

by improving the present CPM performance in both theo-
retical and practical sense. Let us express our strategy for
grammar-based compression by an intuitive example. If a
text contains many occurrences of a digram AB, we can re-
place all of them by a single variable X which is associated
with AB like X → AB. The text is thus compressed to a
shorter one according to the frequency of AB. However the
variables are incompatible among different digrams, i.e., we
must produce k different variables for each k different di-
grams. Since this restriction is not avoidable in CFG trans-
form, we relax the grammar class to context-sensitive gram-
mars (CSGs) and introduce the CSG transform.

The introduced grammars CSGs are the Σ-sensitive
grammars such that each of the production rules is of the
form aA → aγ or A → γ, where a is a symbol in the alpha-
bet, A is a variable and γ is a non-empty string of symbols
and variables. The production rules of the former form is
also called Σ-sensitive. This grammar transform is related to
the context-dependent grammar (CDG) by [20]. Indeed, a
subclass of the Σ-sensitive grammars produced by our com-
pression algorithm is included in the CDG transform.

Our contribution in this paper is as follows. We first an-
alyze the expressiveness of Σ-sensitive grammars compared
with CFGs by proving the upper/lower bound of grammar
size. We next give a compression algorithm by recursive
pairing. In our method, digram AB is replaced by a vari-
able X for every occurrence of trigram aAB with yielding a
new production rule aX → aAB. This strategy is potentially
better than the standard recursive pairing since different di-
grams like AA, AB, . . . can be replaced by a same variable if
they are appearing in different contexts. While the compres-
sion model is a special case of the Σ-sensitive grammars,
we can show that, even when the number of grammar sym-
bols is bounded by 256, the compression performance is a
match for other practical methods such as Gzip and Re-Pair.
Finally we develop a CPM algorithm on the compression
model and show that it runs almost twice faster than the
KMP type CPM algorithm on BPE by Shibata et al. [18], and
that in the case of short patterns, it runs faster than the CPM
technique of Rautio et al. [14], which is based on a vari-
ant of the Boyer-Moore-Horspool algorithm and the stopper
encoding (SE), regarded as one of the best combinations of
compression scheme and pattern matching technique that al-
low a fast search in practice.

2. Preliminaries

We assume a finite set Σ of alphabet symbols. The set of
all strings over Σ is denoted by Σ∗, and Σ+ = Σ∗ − {ε} for
the empty string ε. The expression Σi denotes the set of all
strings of length i. The length of a string w ∈ Σ∗ is denoted
by |w|, and also for a set S, the notation |S| refers to the size
of S.

We recall the definition of context-free grammars
(CFGs) and context-sensitive grammars (CSGs). A CFG is
defined by G = (V,Σ, P, S) with disjoint finite sets Σ and V ,
a finite set P ⊆ V×(V∪Σ)∗ of production rules, and the start

symbol S ∈ V . Symbols in V are called variables. Here we
define the derivation of G. For string α, β ∈ (V ∪ Σ)∗, αAβ
derives αγβ if (A → γ) ∈ P. This relation is expressed by
αAβ ⇒ αγβ. The reflexive, transitive closure of ⇒ is de-

noted by
∗⇒, and S

∗⇒ α is called a derivation of α from the
start symbol.

A CSG is defined by G = (V,Σ, P, S) such that any
production rule is of αAβ → αγβ for A ∈ V and α, β, γ ∈
(V ∪ Σ)∗. In case of CSG, we can replace an occurrence of
variable A ∈ V with a string γ by a production rule (αAβ→
αγβ) ∈ P only if A appears together with the contexts α, β.
The derivation of CSG is thus similarly defined, and we also

use the notation
∗⇒ for CSGs.

The size of a grammar, |G|, is the total length of all
production rules. Without loss of generality, we can regard
the size of a CFG G as |V | in G, since there is an equivalent
CFG G′ in Chomsky normal form such that |G′| ≤ 2|G|.

3. CSG Transform and Grammar Size Analysis

In this section, we give the definition of a very restricted
class of CSGs and show that the class is powerful enough to
handle the CSG transform defined as follows. We assume
that any CFG G is restricted to be an admissible grammar:
G derives exactly one string w ∈ Σ+. This notion leads us

to the CFG transform: G is an encoding of w and S
∗⇒ w

is the decoding to w. The notion of CSG transform is di-
rectly obtained by the same condition, i.e. any CSG derives
exactly one string. We then assume that any CSG is also an
admissible grammar.

3.1 Σ-Sensitive Grammars

For CSG transform, we introduce restricted CSGs each of
which production rules is either of the forms:

aA→ aγ and A→ γ,

where a ∈ Σ, A ∈ V , and γ ∈ (V ∪ Σ)+. Such a gram-
mar is said to be Σ-sensitive. The preceding symbol a of an
occurrence of A is called its context, and the definition of
derivation follows the case of general CSG. Moreover, in
order to obtain the uniqueness of derivation, we assume the
leftmost derivation, i.e. leftmost variable must be replaced
by possible production rule at all times.

The grammars are naturally extended to the Σn-
sensitive grammars, where a production rule αA → αγ for
α ∈ Σn is allowed. Such a production αA → αγ can be re-
duced to a short expression xA → xγ, where x is a variable
in a CFG which derives α.

Next we mention a normal form of Σ-sensitive gram-
mar. Any production rule aA → aγ with γ = A1 · · · Ak

can be simulated by aA → aA1B1, Bi → Ai+1Bi+1 and
Bk−2 → Ak−1Ak. Thus, without loss of generality, we can
assume that the length of right hand of any production rule
is bounded by two.

MARUYAMA et al.: CONTEXT-SENSITIVE GRAMMAR TRANSFORM: COMPRESSION AND PATTERN MATCHING
221

3.2 Grammar Size Analysis

We compare the size of CFG with that of Σ-sensitive gram-
mar over k-letter alphabet as well as Σn-sensitive grammar
over three-letter alphabet, respectively. We begin with the
following upper bound.

Theorem 1: Let Gs be a minimum Σ-sensitive grammar
for a string and G f be a minimum CFG for same string. If

|Σ| = k, then
|G f |
|Gs| = O(k).

proof. We show that a CFG satisfying the bound can be
constructed from Gs. By the assumption, Gs has a unique
leftmost derivation of w. Let Ts be a corresponding deriva-
tion tree. If all variables appearing in Ts are different, this
bound is trivial. Assume that Ts contains two occurrences
of a variable A, and let T1,T2 be the corresponding subtrees
rooted by the two As. Let a ∈ Σ be the context of the root
A of T1, that is, the preceding leaf of the leftmost leaf of T1,
and let b ∈ Σ be the context of the root A of T2. Then, T1

is identical to T2 iff a = b, since the derivations from the
two As are decided by their contexts a, b only. Thus, there
are at most k different subtrees rooted by A. Replacing all
such roots by a CFG variable Aa, a derivation tree T of a
CFG G is produced. The number of different variables in
T is denoted by |T |. Then, |T f | ≤ |T | ≤ k|Ts| ≤ k|Gs| by
|Ts| ≤ |Gs|. Therefore, we obtain the bound |G|/|Gs| = O(k)
by |G| = O(|T |) = O(|V |). Q.E.D.

On the other hand, the upper bound does not tell us the
existence of such a difficult string to compress. Thus, by
proving two theorems, we would show that CSG transform
is indeed powerful compared with CFG transform. The first
one is the comparison between Σ-sensitive grammars and
CFGs, and the second is an extension for Σn-sensitive gram-
mars allowed to take long contexts.

Theorem 2: Let Gs be a minimum Σ-sensitive grammar
for a string and G f be a minimum CFG for same string.
For |Σ| = k and any sufficiently large n, there exists w ∈ Σn

satisfying
|G f |
|Gs| ≥ c

(
k log n

k

k + log n
k

)
, where c is a constant inde-

pendent of w.

proof. For m ≥ 1 and Σ = {ai, b j | 0 ≤ i ≤ k, 0 ≤ j < k}, let
us consider the following string.

w =

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∏
i=0

am
i bibi

⎞⎟⎟⎟⎟⎟⎟⎠ akak

= (
m︷���︸︸���︷

a0 · · · a0 b0b0)(
m︷���︸︸���︷

a1 · · · a1 b1b1) · · ·

(
m︷��������︸︸��������︷

ak−1 · · · ak−1 bk−1bk−1)akak

For this w we can construct the Σ-sensitive grammar defined
by

3k productions

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aiA → aiai

aiB → aibibi (0 ≤ i < k)
biA → biai+1

and (�log m
+�log k
+1) production rules for the derivations

X
∗⇒ AmB and S

∗⇒ a0XkA. On the other hand, it is clear
that G f must contain at least k�log m
 production rules for
deriving w. Thus, we obtain the bound by the relation n =
km + 2k + 2. Q.E.D.

Here we specify that the bound in Theorem 2 is smaller
than k, which is the upper bound in Theorem 1. Next we
show another bound in case that the length of contexts are
unlimited. We recall the rich class of CSGs, called Σn-
sensitive grammars, i.e. a context is possibly equal to the
string itself. Note that this case is incomparable to the upper
bound of |G f |/|Gs| since the length of context in Gs is just
one.

For this purpose, we begin with the notion of LZ-
factorization. The factors f1, f2, . . . , fk is called the LZ-
factorization of a string w if w = f1 f2 · · · fk, f1 = w[1], and
fi is the longest prefix of fi · · · fk appearing in f1 · · · fi−1. By
#LZ(w), we denote the number of the factors. For example,
if w = ababaaba, the LZ-factorization is a, b, ab, a, aba, and
#LZ(w) = 5.

Theorem 3: (Rytter [15]) For any string w and its admissi-
ble CFG G, it holds that #LZ(w) ≤ |G|.

Here we show a bound of the ratio CFG/CSG on a con-
stant alphabet. For this proof, we use the infinitely long
square-free string over a three-letter alphabet.

A string is said to be square-free if it contains no
squares like α2. For example, abcacb is square-free but
ababc is not square-free. It is known (see e.g. [10]) that for
a three-letter alphabet Σ = {a, b, c}, there exists the infinite
square-free string

abcbacbcabcbabcacbacabcacbcabacbabcabac · · · .
Using the infinitely many prefixes of the string, we prove the
following bound of the ratio CFG/CSG on the three-letter
alphabet.

Theorem 4: Let Gn
s be a minimum Σn-sensitive grammar

for a string and G f be a minimum CFG for same string. For
a 3-letter alphabet Σ = {a, b, c} and any sufficiently large n,

there exists w ∈ Σn satisfying
|G f |
|Gn

s | ≥ c

(3
√

n log n
3
√

n + log n

)
, where

c is a constant independent of w.

proof. Let pi be the i-th prefix of the infinite square-free
string, that is, p0 = a, p1 = ab, p2 = abc, p3 = abcb, . . . For
any even number m, we define the following string w.

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
m
2∏

i=0

pm
2i p

2
2i+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ pm+2 pm+2

= (
m︷���︸︸���︷

p0 · · · p0 p1 p1)(
m︷���︸︸���︷

p2 · · · p2 p3 p3) · · ·

(
m︷����︸︸����︷

pm · · · pm pm+1 pm+1)pm+2 pm+2

222
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.2 FEBRUARY 2010

We first analyze the size of G f . Consider the LZ-
factorization of w. If pm

i contains a period† shorter than i,
it must be of (αβ)kα for some k ≥ 2, which is not square-
free. Thus, pk

i is not appearing in pm
j for any i < j and

k ≥ 2. Hence, the LZ-factorization for pm
i contains Ω(log m)

factors, that is, #LZ(w) = Ω(m log m) ≤ |G f |.
On the other hand, we can construct a CFG deriving

all strings p1, p2 . . . , pm+2 by m production rules defined by
variables P1, P2 . . . , Pm+2. Then, this grammar encodes the
string to the following string.

P(w) = (
m︷���︸︸���︷

p0 · · · p0 P1P1)(

m︷����︸︸����︷
P2 · · · P2 P3P3) · · ·

(

m︷�����︸︸�����︷
Pm · · · Pm Pm+1Pm+1)Pm+2Pm+2

By the similar technique in Theorem 2, we can con-
struct a Σn-sensitive grammar which derives P(w) within
O(log m2) = O(log m) production rules. Thus, |Gn

s | =
O(m + log m).

Therefore, since |pm| = m and |w| = n = Θ(m3), we can
obtain the bound for the string.

|G f |
|Gn

s | ≥ c

(
m log m

m + log m

)
≥ c

(3
√

n log n
3
√

n + log n

)

Q.E.D.

From the analysis in this section, we can conclude that
our CSG transform is powerful compared with the standard
CFG transform.

4. Greedy Compression Algorithm

Re-Pair [9] is one greedy CFG transform algorithm based on
the most-frequent-first strategy. It replaces every occurrence
of a most frequent digram AB in the input string by a new
variable symbol X and generates the production rule X →
AB. This process is repeated until no digram appear more
than once.

We extend this algorithm to the CSG transform. Let
Σ = {a1, . . . , ak} with |Σ| = k. The key idea is to select
a digram AiBi that occurs most frequently just after ai for
every i = 1, . . . , k, and generate the following production
rules

a1X → a1A1B1, . . . , akX → akAkBk,

where X is a new variable symbol and Ai, Bi are either sym-
bols in Σ or variable symbols introduced so far. Every oc-
currence of AiBi preceded by a context ai in the input string
is replaced by one symbol X independently of i. We remark
that rewriting the input string yields occurrences of digrams
preceded by a variable symbol (not a symbol in Σ), but their
contexts remain unchanged and can be kept.

The extended Re-Pair algorithm is presented in Algo-
rithm 1, and the outline of this algorithm is illustrated in
Fig. 1. As is shown in this example, although a straight-
forward extension of the algorithm of [9] requires Ω(|Σ||w|)

Fig. 1 An example run of the extended Re-Pair.

time and space, we can reduce the time/space complexity to
O(|w|). The key technique is a data structure which returns
in constant time one of the most frequent digram for each
context. Let c ∈ Σ, and let Lc(f) be the list of active digrams
with context c having frequency f . We use a specialized
priority queue which stores Lc = Lc(f1), . . . , Lc(fk), where
f1, . . . , fk are the positive integers (priorities) in the increas-
ing order such that Lc(fi) is not empty for all i = 1, . . . , k.
We maintain the priority queues Lc for all contexts c. An
update of the priority queues takes constant time per a re-
placement operation. The total time and space complexity
is thus O(|w|).

5. Compressed Pattern Matching

One goal of the CPM problem (Goal 1) is a faster search in
a compressed text, compared with decompression followed
by an ordinary search [1]. A more ambitious goal (Goal 2)
is a faster search in a compressed text in comparison with

Algorithm 1 Extended Re-Pair
1: input a string S .
2: repeat
3: scanning S from left to right, get frequency of digrams with a con-

text a ∈ Σ.
4: Introduce a new variable X.
5: for each a ∈ Σ do
6: get the lexicographically first AB (A, B ∈ (Σ∪V)) that is the most

frequent digram with context a,
7: generate aX → aAB, and update P.
8: end for
9: scanning S , replace the leftmost AB with context a by X for some

aX → aAB ∈ P, and
10: update S to the replaced string.
11: until no digram to replace appear in S
12: output (S , P).

†A positive integer p is called a period of a string x if x[i] =
x[i+ p] for i = 0, 1, . . . , |x| − p− 1, where x[i] is the i-th symbol of
x.

MARUYAMA et al.: CONTEXT-SENSITIVE GRAMMAR TRANSFORM: COMPRESSION AND PATTERN MATCHING
223

an ordinary search in the original text [11]. The aim of com-
pression in the context of Goal 2 is not only to reduce disk
storage requirement or data transmission cost but also to
speed up string searching. In this section, we consider the
CPM problem for restricted Σ-sensitive grammars and show
a CPM algorithm based on [7]. We then discuss a Goal 2-
oriented implementation of it.

Definition 1: CompPatMatch
Input: A pattern π ∈ Σ+ and a Σ-sensitive grammar G =
(V,Σ, P, S) generating a string w ∈ Σ+ such that every pro-
duction rule in P takes either of the forms: aA → aγ and
A→ γ (a ∈ Σ, A ∈ V, γ ∈ (V ∪ Σ)+).
Output: All occurrences of π within w.

The claim for CompPatMatch is to find all occurrences
of π without expansion of G. Let us consider the production
rules

S → bBBaA, aA→ aBB, aB→ abb, bB→ bab,

and pattern P = ababb. Since the original string is
babababbab, the output for this input is the occurrence po-
sition 4. Such an answer can be reported by a pattern au-
tomaton over (π,w). Thus, our goal is to construct a com-
pact data structure for simulating such automata over (π,G).
Fortunately, the techniques of CPM is established for CFG,
our strategy is focused on convert a Σ-sensitive grammar to
an equivalent CFG preserving the compactness of automata.

The production rule with lhs S is called the start rule,
and the set of other rules in P is denoted by P#. Let S → bμ
be the start rule of G with b ∈ Σ and μ ∈ (V ∪Σ)∗. Similar to
the collage system, we regard P# as a dictionary and bμ as a
variable sequence although the rules of P# are not context-
free. Denote by ‖P#‖ the total length of the rhs’s of rules in
P#. Let V# = V − {S }.

For a ∈ Σ and X ∈ V , let ξ(a, X) denote the string u in

Σ+ such that aX
∗⇒ au. If no such a string u exists, ξ(a, X) is

undefined. For X = c ∈ Σ, let ξ(a, X) = c. Let λ(a, X) be the
rightmost symbol of ξ(a, X).

Lemma 1: The function λ : Σ × (V# ∪ Σ) → Σ can be
constructed in O(‖P#‖) time so that it responds in constant
time.

5.1 Application of Algorithm by Kida et al.

The input Σ-sensitive grammar G = (V,Σ, P, S) is equivalent
to the CFG G′ = (Vf∪Vs∪{S },Σ, Pf∪Ps∪{S → ψ(b, μ)}, S),
where

Vf = {A | A ∈ V#, A→ γ ∈ P},
Vs = {Aa | A ∈ V, a ∈ Σ, aA→ aγ ∈ P},
Pf = {A→ γ | A ∈ Vf , A→ γ ∈ P},
Ps = {Aa → ψ(a, γ) | Aa ∈ Vs, aA→ aγ ∈ P},

where ψ(a, γ) denotes the string over (Vf ∪Vs ∪Σ) obtained
from γ by replacing every occurrence of A ∈ V−Vf such that

γ = αAβ and α, β ∈ (V∪Σ)∗ by Ac ∈ Vs such that c = λ(a,Y)
where Y is the rightmost symbol of aα. Conversion of G into
G′ takes O(‖P‖) time by using the function λ.

A naive solution to CompPatMatchwould be to convert
G into G′ and apply the algorithm of Kida et al. [7]. The al-
gorithm first preprocesses π and the rules in Pf∪Ps to build a
finite-state machine M and then makes M run over the sym-
bols of ψ(b, μ). The machine M consists of state-transition
and output functions defined on the domain Q×(Vf ∪Vs∪Σ),
where Q is the set of states of the KMP automaton for π. It
can be implemented in O(|π|2 + ‖Pf ∪ Ps‖) = O(|π|2 + ‖P#‖)
time and space and runs in O(|μ| + occ) time over ψ(b, μ).

Theorem 5: CompPatMatch can be solved in O(|π|2+‖P‖+
occ) time using O(|π|2 + ‖P#‖) space.

5.2 Practically-Fast Implementation

For practical speed-up, we want to implement the state-
transition function as a two-dimensional array of size |Q| ×
|Vf ∪ Vs ∪ Σ| as in [18]. However, this is unrealistic for a
large V since |Vf ∪ Vs| can be |V#||Σ|. In what follows, we
describe how to reduce the domain size.

Consider the set Q = {0, 1, . . . , |π|} of states of the KMP
automaton for a pattern π, where j corresponds to the j-
length prefix of π. The idea is to modify the KMP automaton
by adding |Σ| distinct states so that it memorizes the symbol
read previously. Let QΣ = {qa | a ∈ Σ} be the set of these
states. The state-transition function δ′ : (Q∪QΣ)×Σ→ Q∪
QΣ of the modified KMP automaton is defined as follows.

δ′(q, a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ(0, a), if q = qc ∈ QΣ for some c;

qa, if q ∈ Q ∧ δ(q, a) = 0;

δ(q, a), otherwise,

where δ is the state-transition function of the original KMP
automaton. The function δ is extended for strings by
δ(p, aw) = δ(q,w) if δ(p, a) = q, a ∈ Σ, and w ∈ Σ+, and so
is the function δ′.

The function δ′ is computed from the modified version
of the goto and the failure functions. The modified goto
function differs from the original one in that the arrows from
the auxiliary state ⊥ to qa and the arrows from qa to state 1
are added for all a ∈ Σ. The inductive computation of the
modified failure function is performed in exactly the same
way as the original one.

An example of the modified KMP automaton is shown
in Fig. 2, together with the original one.

Based on the modified KMP automaton, we define
functions Jump and Output on the domain (Q∪QΣ)×(V#∪Σ)
by

Jump(q, X) = δ′(q, ξ(a, X)),

Output(q, X) ={
|ξ(a, X)| − |w|

∣∣∣∣∣ w is a non-empty prefix of ξ(a, X)

such that δ′(q,w) is the final state.

}

where q ∈ (Q − {0}) ∪ QΣ, X ∈ V# ∪ Σ, and a ∈ Σ is the

224
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.2 FEBRUARY 2010

context memorized by state q. For q = 0, Jump(q, X) and
Output(q, X) are defined only for X ∈ Σ.

Figure 3 shows the functions Jump and Output built
from the modified KMP automaton of Fig. 2 for the produc-
tion rules aA → aBB, aB → abb, bB → bab. Figure 4
shows the move of the machine over the rhs of S → bBBaA.

We note that |Vf ∪ Vs| can be |V#||Σ| for a large V . This
means |Q × (Vf ∪ Vs ∪ Σ)| ≥ |V#||Q||Σ|. On the other hand,
|(Q∪QΣ)×V#| ≤ |V#|(|Q|+ |Σ|). Thus, the domain (Q∪QΣ)×
V# can be much smaller than the domain Q × (Vf ∪ Vs ∪ Σ).
This is a big advantage in the sense that we can adopt the

Fig. 2 A standard KMP automaton for π = ababb is displayed on the
upper, and the modified one is displayed on the lower, where Σ = {a, b} and
the solid and the broken arrows represent the goto and the failure functions.
We note that the values of the failure function for states 1 and 2 differ
between the two automata.

Fig. 3 Jump and Output functions built from the modified KMP automa-
ton of Fig. 2 for production rules aA → aBB, aB → abb, bB → bab. Each
parenthesized symbol following state s means the symbol read immediately
before reaching s. Variable A represents bbab in context a, while it repre-
sents nothing in context b. Also variable B means bb in context a, while it
means ab in context b.

Fig. 4 Move of the machine of Fig. 3 over the rhs of S → bBBaA.

standard two-dimensional array implementation of Jump.

Theorem 6: We can build in O(|π||V | + ‖P#‖) time a two-
dimensional table storing the values of Jump and a data
structure for Output which responds in time linear in the
answer size.

If |V# ∪ Σ| ≤ 256, we can encode symbols in V# ∪ Σ
in one byte. Compared to the CPM algorithm on BPE pre-
sented in [18], the number of production rules can be |Σ|
times larger whereas the table size of Jump is larger just
by 256 × |Σ| table entries. Thus, both the compression and
the search performances are expected to be improved dras-
tically.

6. Computational Experiments

We implemented in C language the compression algo-
rithm presented in Sect. 4 where the grammar symbols are
bounded by 256 and encoded in one byte, and the CPM al-
gorithm presented in Sect. 5.2. We evaluated their perfor-
mances by a series of computational experiments. All the
experiments were carried out on a SUN Ultra 20 M2 Work-
station with a 2.2 GHz Dual Core AMD Opteron 1214 and
2.0 GB RAM running Solaris 10. The text files we used are
as follows.

Medline. A clinically-oriented subset of Medline, consist-
ing of 348,566 references. The file size is 60.3 Mbytes.
|Σ| = 87.

Genbank. The file consisting of accession numbers and nu-
cleotide sequences taken from a data set in Genbank.
The file size is 17.1 Mbytes. |Σ| = 59.

DBLP. A set of DBLP XML records. The file size is
130.7 Mbytes. |Σ| = 96.

Sources. The concatenation of all the .c, .h, .C, .java files of
the linux-2.6.11.6 and gcc-4.0.0 distributions. The file
size is 52.4 Mbytes. |Σ| = 227.

Pitches. A sequence of pitch values obtained from a myriad
of MIDI files freely available on Internet. The file size
is 52.4 Mbytes. |Σ| = 133.

Table 1 compares the compression ratios of our method

Table 1 Compression ratio comparison (%).

standard compressors
gzip bzip2 Re-Pair

Medline 33.29 23.57 33.83
Genbank 21.98 22.17 31.32
DBLP 17.48 11.66 17.67
Sources 23.29 19.79 31.07
Pitches 30.27 35.73 58.23

Goal 2-oriented compressors
SE [14] BPE ours

Medline 66.50 56.41 32.94
Genbank 51.74 31.37 28.22
DBLP 70.05 40.83 20.24
Sources 71.93 80.54 55.56
Pitches 74.77 78.34 63.36

MARUYAMA et al.: CONTEXT-SENSITIVE GRAMMAR TRANSFORM: COMPRESSION AND PATTERN MATCHING
225

Fig. 5 Search-time comparison for MEDLINE.

Fig. 6 Search-time comparison for DBLP.

and other compressors, where SE denotes the stopper encod-
ing with 4-bit base symbols. Despite using byte codes, the
compression ratio of our method is competitive to or slightly
worse than the standard compressors for Medline, Genbank
and DBLP. It is also much better than the other Goal 2-
oriented compressors†. On the other hand, the performance
of our method is poor for Sources and Pitches. For Pitches,
the performance of Re-Pair is also poor. Although Pitches
is a mixture of pitch data with different nature, our method
as well as Re-Pair depends on the substring statistics over
the whole data and therefore shows poor performance. In
fact, the performance of our method was improved by par-
titioning the file into fragments and then compressing them
separately. The poor performance for Sources is mainly due
to the large alphabet size (|Σ| = 227). We note that the
number of production rules generated is upper-bounded by
|Σ|(256− |Σ|), and the bounds for Medline, Genbank, DBLP,
Sources and Pitches are, respectively, 14703, 11623, 15360,
6583 and 16359. Thus our compression scheme is suited
when |Σ| is closed to 128.

We compared the search time of our method with the
KMP algorithm (KMP) and the BMH algorithm (BMH)
over uncompressed text as well as existing Goal 2-oriented
CPM methods: the KMP algorithm over BPE compressed
text (KMP on BPE) [19] and the BMH algorithm over SE
compressed text (BMH on SE) [14]. Figures 5 and 6. dis-
plays the search times (including the preprocessing times)
for Medline and DBLP. Our method runs faster than BMH
on SE for short patterns.

7. Conclusion

We proposed a special case of CSGs called Σ-sensitive
grammars for effective grammar transform and fast com-
pressed pattern matching. While the Σ-sensitiveness is
strong restriction, we show that this grammars is powerful
enough to represent a compact formal model. Using a small
subclass of this class, we obtained a sufficient compression
ratio competitive with other practical models. Moreover we
implemented the CPM algorithm on the compressed texts
and confirmed its performance. In particular, compared to
the BMH algorithm and the stopper encoding, regarded as
one of the best combinations that allows a practically fast
search, our method achieves much better compression and a
faster search for short patterns.

In practice our method as well as BPE assumes that
a text file is a sequence of characters in Σ which are en-
coded in 8-bit codewords and compresses it by exploiting
the unused codewords for encoding variables. Thus at most
256 different characters/variables are allowed. However,
oriental languages such as Japanese, Korean, and Chinese
have much more characters and multi-byte character code is
used to represent them. One solution would be to compress
such a text by simply regarding it as a sequence of bytes.
Since the ASCII characters are still expressed with a sin-
gle byte for compatibility, there are single byte characters
and multi-byte characters in one text file. For example, a
text in Japanese Extended-Unix-Code (EUC) is a mixture of
single byte characters and two byte characters. Therefore a
straightforward application of the CPM technique presented
in Sect. 5 causes false-detection of pattern. Fortunately, this
problem can be resolved by using the synchronization tech-
nique [3], [6].

In [3], the technique of dividing characters into halves
is presented for a space-economical implementation of the
Aho-Corasick (AC) automata: We build AC automaton by
regarding each pattern as a sequence of half-bytes, and then
make it run over the half-bytes sequence of a text file. Again
the synchronization technique is used to avoid the false-
detection of patterns. The number of states is at most twice
larger than the ordinary AC automaton since we need in-
termediate states. But the size of two-dimensional array of
the state-transition function is reduced to 1/8 since the al-
phabet size becomes 1/16. The technique, however, is not

†Compression methods for achieving faster search than un-
compressed pattern matching algorithms.

226
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.2 FEBRUARY 2010

applicable to our method. If we regard a text file as a se-
quence of half-bytes, then most of the 16 half-bytes are al-
ready used up, and hence a BPE-type compression method
does not work well. Suppose we regard the text file as a se-
quence of bytes and compress it by using a BPE-type com-
pression method. The rhs of the start rule is a sequence of
bytes representing either characters or variables. We have to
create intermediate states for the first half-bytes of not only
characters but also variables. Thus the number of states can
grow more than twice as large as that of the ordinary AC
automaton.

References

[1] A. Amir and G. Benson, “Efficient two-dimensional compressed
matching,” Proc. Data Compression Conference’92 (DCC’92),
p.279, 1992.

[2] A. Amir, G. Benson, and M. Farach, “Let sleeping files lie: Pattern
matching in Z-compressed files,” J. Comput. Syst. Sci., vol.52, no.2,
pp.299–307, 1996.

[3] S. Arikawa and T. Shinohara, “A run-time efficient realization of
Aho-Corasick pattern matching machines,” New Generation Com-
puting, vol.2, no.2, pp.171–186, 1984.

[4] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A.
Sahai, and A. Shelat, “The smallest grammar problem,” IEEE Trans.
Inf. Theory, vol.51, no.7, pp.2554–2576, 2005.

[5] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings,
Cambridge University Press, 2007.

[6] S. Arikawa et al., “The text database management system SIGMA:
An improvement of the main engine,” Proc. Berliner Informatik-
Tage, pp.72–81, 1989.

[7] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and S.
Arikawa, “Collage systems: A unifying framework for compressed
pattern matching,” Theor. Comput. Sci., vol.298, no.1, pp.253–272,
2003.

[8] J.C. Kieffer and E.-H. Yang, “Grammar-based codes: A new class
of universal lossless source codes,” IEEE Trans. Inf. Theory, vol.46,
no.3, pp.737–754, 2000.

[9] N.J. Larsson and A. Moffat, “Off-line dictionary-based compres-
sion,” Proc. IEEE, vol.88, no.11, pp.1722–1732, 2000.

[10] M. Lothaire, Combinatorics on Words, Cambridge University Press,
1983.

[11] U. Manber, “A text compression scheme that allows fast searching
directly in the compressed file,” ACM Trans. Inf. Syst., vol.15, no.2,
pp.124–136, 1997.

[12] T. Matsumoto, K. Hagio, and M. Takeda, “A run-time efficient im-
plementation of compressed pattern matching automata,” Proc. 13th
International Conference on Implementation and Application of Au-
tomata (CIAA’08), pp.201–211, 2008.

[13] G. Navarro and M. Raffinot, “Practical and flexible pattern matching
over Ziv-Lempel compressed text,” J. Discrete Algorithms, vol.2,
no.3, pp.347–371, 2004.

[14] J. Rautio, J. Tanninen, and J. Tarhio, “String matching with stop-
per encoding and code splitting,” Proc. 13th Annual Symposium
on Combinatorial Pattern Matching (CPM’02), vol.2373 of LNCS,
pp.42–52, 2002.

[15] W. Rytter, “Application of lempel-ziv factorization to the approx-
imation of grammar-based compression,” Theor. Comput. Sci.,
vol.302, no.1-3, pp.211–222, 2003.

[16] H. Sakamoto, “A fully linear-time approximation algorithm for
grammar-based compression,” J. Discrete Algorithms, vol.3, no.2-
4, pp.416–430, 2005.

[17] H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono, “A space-
saving approximation algorithm for grammar-based compression,”
IEICE Trans. Inf. Syst., vol.E92-D, no.2, pp.158–165, Feb. 2009.

[18] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T.
Shinohara, and S. Arikawa, “Speeding up pattern matching by text
compression,” Proc. 4th Italian Conference on Algorithms and Com-
plexity (CIAC’00), vol.1767 of LNCS, pp.306–315, 2000.

[19] Y. Shibata, T. Matsumoto, M. Takeda, A. Shinohara, and S. Arikawa,
“A Boyer-Moore type algorithm for compressed pattern matching,”
Proc. 11th Annual Symposium on Combinatorial Pattern Matching
(CPM’00), vol.1848 of LNCS, pp.181–194, 2000.

[20] E.-H. Yang and D.-K. He, “Efficient universal lossless data compres-
sion algorithms based on a greedy sequential grammar transform -
part two: With context models,” IEEE Trans. Inf. Theory, vol.49,
no.11, pp.2874–2894, 2003.

Shirou Maruyama received his B.S. in
2006 in Engineering from Fukuoka University
and his M.S. degree in 2008 in Information Sci-
ence from Kyushu Institute of Technology. He is
currently a doctoral student in Graduate School
of Information Science and Electrical Engineer-
ing, Kyushu University. His research inter-
ests include data compression and string pattern
matching algorithms.

Youhei Tanaka received his B.S. in 2007
and his M.S. degree in 2009 in Information Sci-
ence from Kyushu Institute of Technology. He is
currently working in TOPPAN PRINTING CO.,
LTD.

Hiroshi Sakamoto received his B.S. in 1994
in Physics, his M.S. in 1996, and Dr. Sci. degree
in 1998 in Information Systems all from Kyushu
University. He received JSPS Research Fellow-
ships for Young Scientists from 1996 to 1998.
From Jan. 1999 to Oct. 2003, he was a re-
search associate of Department of Informatics,
Kyushu University. He is currently an associate
professor of Graduate School of Computer Sci-
ence and Systems Engineering, Kyushu Institute
of Technology. His research interests include al-

gorithms in data compression and web mining. He is a member of JSAI,
and DBSJ. He is currently a JST PRESTO researcher.

Masayuki Takeda received his B.S. in 1987
in Mathematics, his M.S. in 1989 in Informa-
tion Systems, and his Dr. Eng. degree in 1996
all from Kyushu University. From April 1989
to March 1996, he was a research associate of
Department of Engineering, From April 1996
to March 2000, an associate professor of Grad-
uate School of Information Science and Elec-
trical Engineering, Kyushu University. He is
currently a professor of Graduate School of In-
formation Science and Electrical Engineering,

Kyushu University. His research interests include algorithms in string pat-
tern matching, text compression, and string data mining. He is a member
of IPSJ, JSAI, and DBSJ.

