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SUMMARY  This paper presents a novel noise-robust feature extraction
method for speech recognition. It is based on making the Minimum Vari-
ance Distortionless Response (MVDR) power spectrum estimation method
robust against noise. This robustness is obtained by modifying the distor-
tionless constraint of the MVDR spectral estimation method via weighting
the sub-band power spectrum values based on the sub-band signal to noise
ratios. The optimum weighting is obtained by employing the experimental
findings of psychoacoustics. According to our experiments, this technique
is successful in modifying the power spectrum of speech signals and mak-
ing it robust against noise. The above method, when evaluated on Aurora
2 task for recognition purposes, outperformed both the MFCC features as
the baseline and the MVDR-based features in different noisy conditions.
key words: feature extraction, robust MVDR power spectral estimation,
speech recognition

1. Introduction

Speech recognizer systems are normally trained in certain
conditions and tested in different environments, e.g. clean
vs. noisy. This causes a mismatch in the training and test
conditions. Therefore, the performance of automatic speech
recognition systems degrades drastically in noisy environ-
ments. The type of the noise encountered in test conditions
is usually not predictable. This makes robust speech recog-
nition one of the most challenging areas in speech process-
ing technology. Robust speech recognition methods may be
classified into four main categories [1]:

Robust speech feature extraction.

Speech enhancement for improved recognition.
Model-based compensation for noise.
Model-based feature enhancement.

el

The main purpose of the first method is to find a set
of parameters that are robust against the variations made by
different noises on speech signals. This category, itself, can
be further classified into two main divisions:

1. Extracting more robust features
2. Post-processing of the features for robustness

Among the robust speech feature extraction methods
of the former type, modifying the power spectrum of the
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speech signal to make it robust against additive or convolu-
tional distortions is more widely used, since the speech fea-
tures are mostly derived either directly from the power spec-
trum of the speech signal or from a modified version of it.
Mel Frequency Cepstral Coefficients (MFCC) [2], Percep-
tual Linear Prediction (PLP)[3], Differential Power Spec-
trum (DPS)[4], Autocorrelation Mel Frequency Cepstral
Coeflicients (AMFCC) [5], DCT and MVDR features [6],
[7] are good examples in this category. Furthermore, feature
normalization techniques are considered as one of the most
significant group of methods in the post-processing of fea-
tures. Histogram Equalization (HEQ) [8] and cepstral mo-
ment normalization methods [9] are the best examples in this
division.

In the group of methods based on speech enhancement,
the aim of noise reduction or increasing the signal to noise
ratio is followed. Therefore, some initial information about
the noise and speech signals are required. Spectral Subtrac-
tion (SS)[10] and Wiener filtering [11] are the most well-
known approaches among speech enhancement methods.

In the case of model-based compensation for noise,
speech models such as Hidden Markov Models (HMMs) are
considered as the main framework, and the model parame-
ters are improved during the recognition process in order
to have better speech representation in noisy environments.
Parallel Model Combination (PMC) [12] is known as one of
the most important approaches in this category.

Model-based feature enhancement methods aim to ex-
tract clean features given noisy speech coefficients by con-
sidering different models for speech and noise. Vector Tay-
lor Series (VTS) [13], and switching Linear Dynamic Model
(LDM) [14] methods are some examples of this approach.

In this paper, we focus on the first division of robust
feature extraction methods, i.e. modifying the power spec-
trum of the noisy speech signal in order to obtain a noise-
robust power spectrum. Spectral estimation methods are ei-
ther non-parametric or parametric [15]. The FFT-based peri-
odogram is the most popular method of the former strategy,
especially in speech recognition areas, while model identifi-
cation and MVDR methods are among the most well-known
approaches of the latter [15]. The model identification meth-
ods are classified into three divisions, namely Auto Regres-
sive (AR), Moving Average (MA) and ARMA [15].

The FFT-based periodogram, as the fundamental step
in extracting the traditional speech features, Mel-Frequency
Cepstral Coeflicients (MFCC), suffers from large bias and
variance in estimating the power spectrum[7]. Bias is
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mainly caused by the leakage of power from surround-
ing frequencies of the band-pass filter used to measure the
power [7]. This problem can be solved by using DCT in-
stead of FFT [6]. Moreover, large variance is due to em-
ploying a single sample in the power estimation process [7].
Both of these shortcomings have been addressed by the
MVDR spectrum estimation method [6], [7]. During the use
of stochastic models for acoustic modeling, such as hidden
Markov models (HMMs), the state parameter distributions
are usually modeled by mixtures of Gaussians. The param-
eters of these Gaussians should be estimated using features
extracted from the training data. The bias and variance of
the spectrum estimate affect such features used to extract
Gaussian parameters that model the speech classes. Further-
more, increasing the level of noise in noisy signals enlarges
the variance of the power spectrum and therefore deterio-
rates the recognition accuracy. For this reason, incorporat-
ing MVDR spectral estimation method as one of the well-
known strategies in reducing the bias and variance of the
spectrum estimates would be effective in extracting robust
speech features. On the other hand, AR or linear prediction
(LP) methods as other well-known approaches in extracting
widely used features in ASR systems, namely LP and PLP,
are ill-suited for accurate estimation of the power spectrum
of voiced speech, especially high-pitch voices. This is due
to the inaccurate spectrum matching that happens when the
number of harmonics decreases. Therefore, since the LP-
based envelope tends to follow the fine structure of speech
spectrum in such voices, LP-based spectrum may also be
sensitive to noise [7]. Thus, MVDR-based speech feature
extraction may be considered as an appropriate approach for
making ASR systems more robust against noise.

Howeyver, it has been shown that the MVDR method,
by itself, is not as efficient as expected in low signal to noise
ratios [6]. Therefore, an improvement in the feature extrac-
tion process based on MVDR is sought in this paper. Here,
we present a new method to make the MVDR power spec-
trum more robust against additive noise. This robustness is
achieved by modifying the distortionless constraint of the
MVDR spectral estimation method by weighting the sub-
band power spectrum values based on the sub-band signal to
noise ratios. The recognition results show that this strategy
is very helpful in extracting more robust features. The paper
is organized as follows. In Sect. 2, we describe the new ro-
bust MVDR power spectrum estimation method. In Sect. 3,
our proposed robust front-end is introduced. The experi-
mental results are presented in Sect.4. Finally, discussion
and conclusions are given in Sects. 5 and 6, respectively.

2. Robust MVDR Spectral Estimation

Reducing the bias and variance of the estimated spectrum is
the main purpose of MVDR spectral estimation. This goal
is accomplished by designing an FIR filter, /(r), which min-
imizes its output power subject to the constraint that its re-
sponse at the frequency of interest, w;, has unity gain. This
constraint, called the distortionless constraint, certifies pass-
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ing the components of the input signal with the frequency
of interest without any distortion through the filter. More-
over, the output power minimization precludes the leakage
of power from surrounding frequencies, which reduces bias.
The power of signal at the frequency of interest will be equal
to the power of the filtered signal [7],[15]. Hence, comput-
ing power using all of the output samples decreases the vari-
ance. The MVDR filter is designed by solving the following
constrained optimization problem [7]:

n1hinhHRL+1h subjectto v (wp)h = 1 (1)

which results in:
R v(w)

1= =
v (w)R; ! v(w)

2

where v(w) = [l,e/®, e/ ... ¢lv] R,, 1is the
(L+1)x(L+1) Toeplitz autocorrelation matrix of the data,
and h = [hg, hy,--- ,h;]". The MVDR spectrum for all of
the frequencies is then computed by [7]:

1

Pyv(w) VIR V(@) (3)

According to the distortionless constraint in (1), the fil-
ter responses at all frequencies have unity gain, and there-
fore, they contribute to the final result with the same weight-
ing. Consequently, if some of the frequencies are corrupted
by noise, the resulting MVDR power spectrum at those fre-
quencies will also be deteriorated. For this reason, in or-
der to make the MVDR spectrum robust against noise, we
proposed to modify this constraint such that the response
of the filter at the frequency of interest has a gain which is
determined by the signal to noise ratio at that frequency, in-
stead of a unity gain. In other words, the higher the SNR
at a certain frequency, the larger the gain we assign to that
frequency. The robust distortionless constraint, explained
above, assures that the components of the input signal at the
frequencies least affected by noise, pass through the filter
with larger weights, while the others get smaller weights.
We assign:

v (w)h = w(w)) “4)
where
_ S(w)
w(wy) = N (5

where S (w;) and N(w;) are the clean signal and noise at the
frequency of interest, wy, respectively. Therefore, the robust
MVDR spectrum for all frequencies will be computed by:

w(w)?
Prmvpr(W) = ————F—— (6)
vi(w)R}! v(w)

This process is the same as weighting the power spec-
trum value at the frequency of interest based on the ratio of
the energy of the signal to the energy of noise at that fre-
quency.
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3. The Proposed New Front-End: RPMCC Features

It has been shown that extracting MVDR features from the
warped power spectrum, i.e incorporating the PLP structure
in extracting Perceptual MVDR-based Cepstral Coefficients
(PMCC), gives better recognition results [7]. This is due to
the fact that exploiting the perceptual information always
improves the speech recognition systems. The flow diagram
for PMCC parameter extraction is given in Fig. 1 (a). The
equal loudness curve and power law of hearing blocks are
according to [3]. In this paper, the warped power spectrum

speech
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is obtained by applying the conventional triangular Mel-
based filter-bank to the FFT-based periodogram. Then the
warped MVDR power spectrum is computed from the so-
called Mel-warped spectrum similar to the way parameters
are calculated in PMCC, after applying weighting to sub-
bands. Then, the cepstral features are calculated by apply-
ing IFFT to the Mel-scale MVDR log-spectrum [6], [7]. The
Mel-warped spectrum is also known as sub-band spectrum
in the area of speech recognition.

For the same reason, the proposed robust MVDR fea-
tures are extracted from the robust sub-band MVDR power
spectrum, calculated by weighting the sub-band power spec-
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Fig.1 (a) PMCC front-end [7], (b) The proposed front-end.
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Fig.2  (a) The proposed 7y as the gain controlling the steepness of the weighting function, (b) Com-
parison of the proposed weighting function with the one obtained by a sigmoidal function for .

trum values based on the sub-band signal to noise ratios.
Our experiments showed that using the raw sub-band sig-
nal to noise ratios as the weighting factors does not lead
to sufficient recognition accuracies in low SNRs. Therefore,
we decided to employ the experimental findings of psychoa-
coustics in defining a suitable weighting function with val-
ues between zero and one [16], [17]:

wi2 =1- exp(—%)

Yi

)

where SNR; is the signal to noise ratio computed from the
ratio of the energy of noisy signal to noise in the i mel fre-
quency sub-band and ¥; is the gain that controls the steep-
ness of the weighting function. The use of this weight-
ing function may be justified by the experimental findings
of psychoacoustics on the masking effects of background
noise on the perceived loudness [16],[17]. In [17], it has
experimentally been shown that the masking sound (noise)
not only shifts the audible loudness, known as the masked
threshold, but also produces a masked loudness function that
has steeper slope than the unmasked one for low sound pres-
sure levels. Nevertheless, in large sound pressure levels,
the masked loudness functions almost reach the unmasked
one. Therefore, we suggested using an exponential weight-
ing function which follows this property in low and high
signal to noise ratios. Different functions have been tested
in order to find the optimum 7; which gives the best recog-
nition accuracy. According to the experimental results given
in Sect. 4, using a high vy, which is close to one, gives bet-
ter recognition results in medium SNRs, while a lower y
is preferred in low and high SNRs. Thus, a function that
corresponds to this property can work better than the sig-
moid function used to define the sub-band compression and
weighting functions in [16], [18] respectively. Although a
Gaussian function is among those that assure these charac-
teristics, our experimental results to find an optimum func-
tion for y;, showed that a wider function with flat peak per-
formed better than a Gaussian regarding recognition accura-

cies. Therefore, we applied a function which is made up of
the difference between two sigmoidal functions, i.e.

1
"~ 1 +exp(=3(SNR; — 0.5))
1
" 1+exp(=3(SNR; - 3.5))

Yi

®)

This function has been shown in Fig. 2 (a). Figure 2 (b)
compares the weighting function obtained by applying our
proposed y; with that of the sigmoidal function suggested in
[16], [18]. According to this figure, a larger weight is always
assigned in our proposed algorithm in comparison with us-
ing a sigmoidal function for y;. Furthermore, it is worth
mentioning that assigning a smaller y in lower SNRs means
setting larger weights for the mentioned signal to noise ra-
tios in comparison with choosing a larger y. Therefore,
we will save more information in low SNRs by assigning
smaller y compared to medium SNRs. This is due to the
fact that the probability of having error in SNR estimation
for low SNRs is more than the medium ones, and therefore,
if we assign smaller weights, we will lose more informa-
tion in case of estimating the SNRs inaccurately. Moreover,
since the information in high SNRs is more reliable, we also
choose smaller y for high SNRs in order to assign larger
weights. In addition, this y; makes the sub-band weights
smoother in comparison with the sigmoid function in [16],
[18]. This fact has been shown in Fig. 3. The smoother vari-
ations of the weights with SNR assure the robustness of our
proposed method. This robustness is achieved because our
weighting function follows the SNR values more smoothly;
and therefore, is not as susceptible as the previous weighting
function suggested in [16], [18] to errors in SNR estimation.

In order to improve the performance of our algorithm
against non-stationary noises, the noise power spectrum is
estimated by a simple updating algorithm where the first
few non-speech frames are considered as the initial noise
values [19]:



2256

SNR & weighting
o o
== ©

e
3

o
>

0.5

04
0

Fig.3

SNR

—s— weighting with a sigmoidal function fE)ryi

—— proposed weighting

Comparison of the variations of the proposed weighting function
with SNR and the weighting function used in [16], [18], for all 23 Mel sub-

5 10 15 20 25
bins (Mel subband number)

bands in a file with SNR = 0 chosen from Aurora 2 task.

Spectrum(dB)

Spectrum (dB)

-3

-4

-5.5

L MVDR of clean speech
—~A— MVDR of noisy speech
—— RMVDR of noisy speech
. . . . n n
0 10 20 30 40 50 60 70
Frequency bins
(a)
L MVDR of clean speech 4
—~— MVDR of noisy speech
—*— RMVDR of noisy speech
T T . . . .
10 20 30 40 50 60 70
Frequency bins
(©
Fig.4

Spectrum (dB)

Spectrum (dB)
|
o

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.8 AUGUST 2010

if  E[yi()] <BE[N,(i — 1)]
then E[N;(i)] = e¢E[N,(i - D] + (1 — @)E[y;(})]

else  E[N,()] = E[Ni(i — 1)]

€))

where E[y;(i)] and E[N,(7)] are the estimated energies of the
noisy signal and the noise of the /* sub-band in frame i,
respectively. In addition, @ has been set to 0.99 and 3 to 2.
Furthermore, SNR;(7), which is the signal to noise ratio of
the I sub-band in frame i is calculated as:

E[y(9)]

SNRID = B

(10)

For computational purposes, the L" order MVDR
spectrum is computed using LP coefficients a; and predic-
tion error variance P, [7],[15]:
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Comparison of warped MVDR and RMVDR spectral estimates for 25 ms long voiced speech

frames chosen from four different noisy speech files of Test set A in Aurora 2 task. These utterances
include connected digits pronounced by females and contaminated by four different noises (a) /ey/ sound
in subway noise, (b) /v/ sound in babble noise, (c) /n/ sound in car noise and (d) /o/ sound in exhibition

noise.
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Fig.5 Comparison of warped MVDR and RMVDR spectral estimates for 25 ms long voiced speech
frames chosen from four different noisy speech files of Test set B in Aurora 2 task. These utterances
include connected digits pronounced by females and contaminated by four different noises (a) /ey/ sound
in restaurant noise, (b) /v/ sound in street noise, (c) /n/ sound in airport noise and (d) /o/ sound in train

station noise.

1
P = 11
mvDR(W) ST ke ik (11)
7 SENL+1-k—2i)
uk) =4 xaa;,, k=0,---,L (12)
w(=k) k=-L,--,—1

where (2L + 1) coeflicients of u(k) are called the MVDR co-
efficients, and the MVDR spectrum can easily be calculated
by an FFT computation according to (11).

In order to extract Robust Perceptual MVDR-based
Cepstral Coeflicients (RPMCC), LP coefficients are ex-
tracted from the weighted perceptually warped power spec-
trum as discussed before. Figure 1 (b) shows the flow dia-
gram of our proposed robust front-end in detail. Equal loud-
ness curve and power law of hearing blocks have been used
in calculating RPMCC features according to the PLP struc-
ture [3]. In addition, according to (6), the weighting should
be applied before calculating the MVDR spectrum. There-

fore, as Fig. 1 (b) shows, the SNR estimation is performed
using the FFT spectrum, and not the MVDR power spec-
trum.

In order to perform a comparison between the methods
in improving the power spectrum of noisy speech signals,
we have shown the perceptually warped MVDR log-spectral
estimates, called MVDR spectrum, and robust perceptu-
ally warped MVDR log-spectral estimates, called RMVDR
spectrum, of a frame of some speech files of Aurora 2 task,
pronounced by female speakers and contaminated with dif-
ferent noises. Figure 4 compares the MVDR and RMVDR
spectral estimates of 25 ms frames of four speech files cho-
sen from Test set A corrupted by subway, babble, car, and
exhibition noises, at SNR 10 dB, respectively. In addition,
the MVDR and RMVDR spectral estimates of four different
files of Test set B corrupted by restaurant, street, airport, and
train station noises, at SNR 10dB, have been represented
in Fig.5 (a)—(d) respectively. According to these figures,
the RMVDR spectrum of noisy speech can follow the clean
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spectrum better than the MVDR spectrum. It is worth men-
tioning that the RMVDR method is more successful in find-
ing the fundamental peaks or formants of the power spec-
trum as figures show. Consequently, the RMVDR spectral
estimation method is able to reduce the noise and estimate
a more robust power spectrum in comparison with MVDR
spectrum, which itself, was shown to be more robust than
MECC in [7].

4. Experimental Results

Recognition experiments were conducted on Aurora 2
task [20] with clean training scenario. The Aurora 2 corpus
is known as one of the most popular tasks in evaluating the
robust speech recognition methods in speaker-independent
systems. It is derived from the TIDigits database, consisting
of connected digits spoken by American English talkers, and
is downsampled to 8 kHz. It includes two training modes:

Table 1

various SNR values and three values of ;.

Y

SNR 535 7 03 1

clean | 98.42 | 9856 | 98.11
30 [ 9500 | 9428 | 9352
15 | 0140 [ 9001 | 8897
10 | 7873 | 8032 | 79.76
5 48.91 53.37 55.61
0 [ 2482 [ 2507 [ 24.19
-5 13.37 12.69 12.20

Table 2

SNRs for test sets A, B and C and different features.

Average recognition accuracies over different noise types for

Average recognition accuracies over different noise types and
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clean-condition training (training on clean-data only) and
multi-condition training (training on clean and noisy data).
8440 utterances, containing the recordings of 55 male and
55 female adults, have been selected from the training part
of the TIDigits for the former mode. All of these signals
have been filtered with G.712 characteristic. For the lat-
ter mode, the same 8440 utterances are equally split into
20 subsets with 422 utterances in each one. Four different
noises, namely suburban train, babble, car and exhibition
hall, have been added to the so-called subsets at SNRs of
20dB, 15dB, 10dB, and 5dB. The filtering process is ex-
actly like the clean training mode.

The test data of Aurora 2 task have been divided into
three sets, namely, Test set A, B and C. 4004 utterances from
TIDigits test set data are split into four subsets with 1001 ut-
terances in each. Besides the clean speech signals, one noise
type is added to each subset at SNRs of 20dB, 15dB, 10dB,
5dB, 0dB, and -5 dB, in order to constitute the test set. The
noises of test set A are suburban train, babble, car and exhi-
bition hall. In addition, restaurant, street, airport, and train
station are used to make test set B. Test set C consists of 2
of the 4 subsets. Consequently, while each of the test sets
of A and B contains 28028 utterances, test set C is made up
of 14014 utterances. Suburban train and street are used as
the additive noises in test set C. In this set, speech and noises
are filtered with an MIRS characteristic before adding the so
called noises. Test set C is used to evaluate the performance
of ASR systems in presence of a convolutional noise.

In this paper, we have only used the clean condition
training. It is advantageous to multi-condition scenario,
since the speech is modeled without distortion by any type
of noise. We used hidden Markov models (HMM) to model
the digits and pauses using the same topology in [20]. The
robustness of the obtained features was evaluated on Aurora

Feature SetA | SetB | Set C
MFCC 63.90 | 66.15 | 5821 2 task using HTK software [21].
WMFCC | 66.59 | 68.89 | 60.93 The baseline uses the well-known MFCC features. For
PMCC | 66.25 | 68.73 | 60.87 extracting all the features, speech was segmented into 25 ms
RPMCC | 7236 | 7299 | 67.17 frames with a frame-shift of 10 ms. The Mel filter-bank con-
Table 3  Recognition accuracies for different features in various noise types of test set A of Aurora 2
task.
. SNR
Noise type | Feature | —ger—r—r7g 5 10 5 0 —5 [ Average
MFCC 97.88 | 95.70 | 90.88 | 74.33 | 4191 | 23.95 16.15 65.35
Subway WMFCC | 9797 | 9552 | 91.25 | 77.10 | 49.59 | 25.76 | 16.86 67.84
PMCC 97.97 | 9638 | 92.17 | 77.34 | 45.66 | 24.99 | 17.65 67.31
RPMCC | 98.19 | 9690 | 94.11 | 86.21 | 65.70 | 31.84 | 18.30 74.95
MFCC 97.97 | 93.86 | 89.84 | 77.27 | 51.39 | 24.06 | 11.15 67.28
Babble WMFCC | 9791 | 94.01 | 89.57 | 78.14 | 56.95 | 26.33 11.19 69.00
PMCC 97.94 | 9489 | 91.44 | 81.47 | 56.35 | 26.03 11.88 70.04
RPMCC 98.25 | 94.92 | 9148 | 82.56 | 62.00 | 28.84 | 12.70 71.96
MFCC 97.88 | 96.12 | 90.25 | 67.49 | 32.36 | 20.61 11.90 61.37
Car WMFCC | 97.73 | 96.45 | 91.59 | 74.59 | 39.55 | 21.12 | 11.72 64.66
PMCC 97.94 | 96.63 | 92.51 | 73.07 | 35.70 | 21.77 12.97 63.94
RPMCC 98.15 | 97.17 | 95.17 | 86.28 | 57.95 | 25.80 | 13.54 72.47
MFCC 97.78 | 94.85 | 89.02 | 68.65 | 35.36 | 20.18 | 12.13 61.61
Exhibition WMFCC | 97.99 | 96.24 | 90.37 | 73.84 | 41.13 | 22.80 | 12.87 64.88
PMCC 98.12 | 95.06 | 90.50 | 72.29 | 39.68 | 21.04 | 11.60 63.71
RPMCC 97.96 | 94.79 | 92.47 | 82.51 | 54.18 | 26.35 | 13.67 70.06




SEYEDIN and AHADI: A NEW SUBBAND-WEIGHTED MVDR-BASED FRONT-END FOR ROBUST SPEECH RECOGNITION

2259
Table 4  Recognition accuracies for different features in various noise types of test set B of Aurora 2
task.
. SNR
Noise type | Feature o ——6 T 15 | 10 5 0 —5 | Average
MFCC 97.88 | 92.51 | 88.39 | 77.89 | 53.27 | 2499 | 11.33 67.41
Restaurant WMFCC | 9797 | 9242 | 88.64 | 78.57 | 57.84 | 30.27 | 12.68 69.55
PMCC 97.97 | 93.64 | 9042 | 80.96 | 56.77 | 26.87 | 11.85 69.73
RPMCC | 98.19 | 9235 | 89.87 | 81.30 | 61.81 | 31.44 | 13.11 71.35
MFCC 97.97 | 95.86 | 89.75 | 69.98 | 41.44 | 23.64 | 13.66 64.13
Street WMFCC | 9791 | 9586 | 89.39 | 73.04 | 46.70 | 25.12 | 13.69 66.02
PMCC 97.94 | 96.31 | 91.54 | 7424 | 4450 | 2539 | 15.08 66.40
RPMCC | 9825 | 96.67 | 93.20 | 83.31 | 57.92 | 29.72 | 15.54 72.16
MFCC 97.88 | 93.26 | 89.32 | 78.59 | 52.61 | 27.68 | 12.62 68.29
Airport WMFCC | 97.73 | 94.04 | 90.01 | 81.06 | 59.59 | 31.85 | 13.57 71.31
PMCC 97.94 | 9421 | 91.95 | 82.02 | 56.93 | 30.72 | 14.49 71.17
RPMCC | 98.15 | 94.78 | 92.57 | 85.30 | 65.64 | 34.75 | 15.75 74.61
MFCC 97.78 | 93.80 | 89.73 | 74.88 | 43.23 | 22.28 | 12.71 64.78
Train Station WMFCC | 97.99 | 9522 | 91.58 | 79.85 | 51.77 | 24.96 | 12.16 68.68
PMCC 98.12 | 95.09 | 91.82 | 79.98 | 47.24 | 2394 | 13.51 67.61
RPMCC | 97.96 | 95.56 | 93.77 | 86.33 | 63.19 | 30.33 | 14.25 73.84
Table 5  Recognition accuracies for different features in various noise types of test set C of Aurora 2
task.
. SNR
Noise type Feature | —qon T 20 T 15 10 5 0 —5 | Average
MFCC 97.94 | 91.50 | 82.68 | 62.67 | 33.50 | 14.43 8.32 56.96
Subway (MIRS) WMFCC | 97.61 | 9441 | 87.14 | 68.50 | 37.15 | 1839 | 9.76 61.12
PMCC 97.94 | 93.61 | 8597 | 66.75 | 3743 | 17.96 | 9.09 60.34
RPMCC | 9797 | 9392 | 89.84 | 78.14 | 52.29 | 24.04 | 10.25 67.65
MFCC 97.76 | 94.50 | 8691 | 61.85 | 34.79 | 19.26 | 12.70 59.46
Street (MIRS) WMFCC | 97.52 | 94.17 | 87.00 | 64.09 | 37.42 | 21.04 | 13.33 60.74
PMCC 97.85 | 9522 | 88.27 | 65.24 | 37.70 | 20.56 | 13.36 61.40
RPMCC | 97.76 | 9547 | 9093 | 76.30 | 46.70 | 24.03 | 13.51 66.69

sists of 23 triangular filters. To optimize the model order for
MVDR-based coefficients, different orders were tested and
the optimum model order of 15 which gives the best aver-
age recognition accuracy was used. Finally, each frame was
represented by a vector consisting of 12 cepstral features
augmented by their first and second order derivatives.

A set of preliminary experiments were carried out
to find the optimum 7; as the steepness controller of the
weighting function. For this reason, we created a compact
corpus consisting of 2110 Aurora 2 training files plus 5600
test files extracted from its test Sets A and B. Different val-
ues of y; with various types of noises and SNRs were evalu-
ated. Table 1 shows the average recognition accuracies ob-
tained in all kinds of noises for this compact Aurora 2 task.
According to this table, best recognition accuracies for very
high and low SNRs were obtained by choosing smaller val-
ues of y in comparison with the medium SNRs. Although
this is not always the case, we decided to choose a function
for y; which is in accordance with such characteristic. As
mentioned in Sect. 3, our experiments showed that choosing
a function which is made up of a difference of two sigmoidal
functions gives better recognition results. The parameters of
this function were also tuned using the results of these pre-
liminary experiments.

Table 2 gives the average recognition accuracies of
MFCC, PMCC and RPMCC features over different noise

types and SNRs for Test sets A, B and C. Tables 3, 4 and
5 show word recognition accuracies for the proposed and
baseline features in different types of noises for test sets A, B
and C, respectively. In addition, the recognition results with
Weighted MFCC features (WMFCC), which are extracted
by weighting the Mel sub-bands according to (7), have been
included in tables for comparison. Furthermore, the average
recognition accuracies over different noise types for each of
the test sets A, B and C have been shown in Fig. 6 (a)—(c) for
better comparison.

5. Discussion

The tables clearly show the robustness of the proposed fea-
tures on three different test sets of Aurora 2 task in different
noisy conditions. It is worth mentioning that even in clean
conditions, the proposed features demonstrate better perfor-
mance in comparison with MFCC, WMFCC and PMCC in
most of the noisy conditions. This happens because accord-
ing to (7), the weights assigned to the sub-bands will almost
be equal to one in clean conditions, and zero in very noisy
environments. Therefore, our suggested method not only
does not deteriorate the characteristics of speech features
in clean conditions, but also improves them due to incor-
porating the findings of psychoacoustics. As tables show,
the PMCC features are more robust than MFCC, due to the
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Fig.6  Average recognition accuracies over various noise types for dif-
ferent features of Aurora 2 task. (a) Test set A. (b) Test set B. (c) Test set
C.

smaller bias and variance in estimating the MVDR power
spectrum. The low bias is helpful in detecting low level
peaks in the presence of a higher one; and therefore, the for-
mants of the signal in low signal to noise ratios can better be
preserved. Itis also useful for extracting the power spectrum
more accurately in clean conditions. Moreover, decreasing
the variance and hence smoothing the undesired fine struc-
ture in estimating the spectrum in MVDR-based features
makes them more robust against different additive noises.
It is worth stating that this variance reduction has only been
achieved by using MVDR spectral estimation method in-
stead of FFT-based approaches, without using any temporal
smoothing.

Furthermore, the recognition results of RPMCC fea-
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tures show that modifying the distortionless constraint of
the MVDR spectral estimation method and defining a new
robust distortionless constraint based on the sub-band signal
to noise ratios is absolutely advantageous in extracting more
robust features in comparison with MFCC, WMFCC and
PMCC coefficients. It is also worth mentioning that choos-
ing the weighting function in accordance with the findings
of psychoacoustics plays an important role in making our ro-
bust algorithm successful, especially in low signal to noise
ratios. The improvement of recognition accuracies of WM-
FCC features in comparison with MFCC also proves this
claim.

Moreover, comparing the execution time of extracting
the proposed and baseline features shows that our suggested
method leads to a modest increase in the computational load.
To show this, we selected 1000 files out of test set A of Au-
rora 2 task, and extracted the features on a Pentium 4 com-
puter with a 3.2 GHz dual core processor and 2 GB RAM,
running MS Windows XP. The PMCC and RPMCC fea-
tures of this set were obtained in 50 seconds and 62 sec-
onds, respectively, implemented on MATLAB. Therefore,
while our approach improves recognition accuracy in noisy
environments, it does not lead to substantial increase in the
complexity of the front-end algorithm.

It is worth mentioning that in this paper we aimed to
propose a new robust front-end for speech recognition based
on improving the power spectrum of speech signals. Thus
we chose MFCC and PMCC features as the baselines for our
experimental comparisons. There also exist more advanced
features that perform well in noisy conditions, such as the
ETSI standard front-end [22], that involves rather high com-
putational load due to its complex algorithm. Nevertheless,
we showed in this paper that our proposed front-end out-
performs the MFCC and PMCC features with a comparable
computational load. While this approach might also be able
to improve the performance of more complicated front-ends,
such as the ETSI front-end, such applications are out of the
scope of this paper.

6. Conclusions

In this paper, a new front-end for robust speech recogni-
tion was proposed. This front-end is based on making the
MVDR power spectrum estimation method robust against
noise. This robustness is achieved by modifying the distor-
tionless constraint of the MVDR spectral estimation method
such that the gain of the filter output at each Mel sub-band is
determined by a function dependent on the sub-band signal
to noise ratio. Consequently, the signal components which
have been affected by noise more than the others are given
smaller weights. These weights are carefully chosen by
incorporating the findings of psychoacoustics. Extracting
more robust power spectrum without excessively increasing
the computational load is one of the benefits achieved by
implementing this algorithm. In addition, obtaining better
recognition accuracy in comparison with MFCC, WMFCC
and PMCC features in most cases, even in clean environ-
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ments, is another valuable advantage of the proposed robust
feature extraction approach.
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