2302

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.8 AUGUST 2010

[LETTER

An Empirical Study of FTL Performance in Conjunction
with File System Pursuing Data Integrity*

In Hwan DOH', Myoung Sub SHIM', Nonmembers, Eunsam KIM'®, Member, Jongmoo CHOI'",

SUMMARY Due to the detachability of Flash storage, which is a dom-
inant portable storage, data integrity stored in Flash storages becomes an
important issue. This study considers the performance of Flash Translation
Layer (FTL) schemes embedded in Flash storages in conjunction with file
system behavior that pursue high data integrity. To assure extreme data
integrity, file systems synchronously write all file data to storage accompa-
nying hot write references. In this study, we concentrate on the effect of
hot write references on Flash storage, and we consider the effect of absorb-
ing the hot write references via nonvolatile write cache on the performance
of the FTL schemes in Flash storage. In so doing, we quantify the per-
formance of typical FTL schemes for a realistic digital camera workload
that contains hot write references through experiments on a real system en-
vironment. Results show that for the workload with hot write references
FTL performance does not conform with previously reported studies. We
also conclude that the impact of the underlying FTL schemes on the perfor-
mance of Flash storage is dramatically reduced by absorbing the hot write
references via nonvolatile write cache.

key words: Flash Translation Layer (FTL), flash memory, file system,
metadata, non-volatile RAM, write cache

1. Introduction

As Flash memory technology is getting mature, Flash stor-
age such as USB Flash drives are prevalent in various com-
puting environments. Flash storage normally adopts an FTL
to efficiently manage the underlying Flash memory. As the
efficiency of FTL dominates the performance of Flash stor-
age, issues related to improving FTL performance have been
the focus of much research [5], [8], [9]. In addition to the I/O
performance enhancement of Flash storage, it is important
to assure the data integrity stored in Flash memory against
system crashes such as sudden power failure or unexpected
removal of the Flash storage. Hence, to assure high data in-
tegrity, file systems may possibly write all the file data and
metadata synchronously, choosing to sacrifice write perfor-
mance.

Efforts of file systems to support high data integrity
may cause different effects on the performance of Flash stor-
age according to the FTL schemes adopted in the Flash stor-

Manuscript received September 17, 2009.

Manuscript revised April 1, 2010.

"The authors are with the Hongik University, Korea.

T'The author is with the Dankook University, Korea.

T The author is with the University of Seoul, Korea.

*This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MEST) (No.ROA-2007-000-20071-0, No.R01-2008-000-12028-
0).”

a) E-mail: eskim@hongik.ac.kr

DOI: 10.1587/transinf. E93.D.2302

Donghee LEE, and Sam H. NOH', Nonmembers

age. The synchronous write requests for files is accompa-
nied with frequent updates for the file system metadata. We
refer to these intermittent update requests for a specific con-
text as the hot write reference. The hot write references
may be tolerable for some FTL schemes, while for others,
these may lead to unacceptable write performance. To sup-
port high data integrity without performance degradation,
various forms of nonvolatile write cache may possibly be
adopted to absorb these hot write references. Again, this ef-
fort may cause different effects on different FTL schemes in
terms of execution performance.

In this study, we evaluate the performance of typical
FTL schemes in regards to the hot write references incurred
by synchronous writes of the VFAT file system on a real ex-
perimental environment. In addition, we quantify and ana-
lyze the effect of absorbing the hot write references via Non-
volatile RAM (NVRAM) on the FTL schemes. Employing
NVRAM also allows the file system to ensure high data in-
tegrity of Flash storages without sacrificing performance.

The experimental results show that, first, the FTL
schemes perform differently from what has been previously
reported. Specifically, for some situations the Log block
scheme shows worse performance compared to the Replace-
ment block scheme, while for some others the FAST scheme
performs worse than the Log block scheme due to the hot
write references generated by synchronous file writes. Sec-
ond, by absorbing the hot reference pattern, the performance
of the FTL schemes can be dramatically improved, while at
the same time, the performance gap among the FTL schemes
may be reduced considerably.

The remainder of this paper is organized as follows:
In the next section, we briefly review related works and the
FTL schemes that we consider. Then, in Sect. 3, we present
the methodology for absorbing hot write references that was
used in our experiments. In Sect.4, we describe the hard-
ware setup, software implementation, and workloads for our
evaluation. We discuss the experimental results in Sect. 5.
Finally, in Sect. 6, we conclude with a summary and direc-
tions for future research.

2. FTL Schemes Considered

The typical FTL schemes that we consider in this study are
the Replacement-block scheme, the Log-block scheme, and
the FAST scheme [2], [8], [9]. For a better understanding of
our work, the overview of the three schemes is presented

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers

LETTER

-------- Update Sequence — Clean Page 2 Valid Page mmm Invalid Page
Data Re, llu.mtm Data Data Lo,
Blocks Blocks Blocks Blocks Block

%’%

Log-block FAST

B
I

Replacement-block

Fig.1 Comparisons of update sequences for the FTL schemes consid-
ered (Replacement-block, Log-block, and FAST).

focusing on their differences. Figure 1 illustrates the dis-
tinct actions taken for the Replacement-block, Log-block,
and FAST scheme for a sequence of update requests. The
FTL schemes process two consecutive update requests for
the same Logical Block Number (LBN) in Flash memory
and, in turn, an update request for the LBN located in an-
other block.

As block erase operations are accompanied by allocat-
ing these additional blocks for replacement or logging, the
Replacement-block scheme seems to be easily suffered from
the hot write references. Although the Log-block scheme
appears to overcome the weakness of the Replacement-
block scheme, it still may suffer from low utilization of log
blocks when frequent random update requests come across
a wide range of blocks. In turn, the FAST scheme appears
to resolve the weakness of the Log-block scheme.

The performance of FTL schemes are very closely re-
lated to the behavior of the underlying file system. How-
ever, most studies related to FTL schemes have been simula-
tion based studies, concentrating on the performance of FTL
schemes independent of file system behavior. In this work,
we evaluate the FTL schemes on a real system environment,
and the performance of the schemes are evaluated in con-
junction with a file system behavior, in particular, when the
file system pursues high data integrity.

3. Absorbing Hot Write References

This study focuses on the effect of hot write references and
on the effect of the nonvolatile write cache for the hot write
references on the FTL schemes. The hot write references
incurred to support high data integrity can be absorbed by
various forms of nonvolatile write cache. Note that employ-
ing nonvolatile write cache does not degrade data integrity
since the file system that we employ writes all file data and
metadata synchronously to nonvolatile storage by invoking
the fsync() function. This indicates that the contents cached
in the nonvolatile write cache always can be retained irre-
spective of system failure. In this section, we describe the
various ways hot write references may be absorbed, and in
particular, the method that is adopted in our evaluation.

2303

Nonvolatile write caches can come in various forms
according to the software layer in which the cache is
adopted, the nonvolatile media that the cached data is stored
in, and the method that the cache selects hot write ref-
erences. Specifically, first, the write cache can be lo-
cated in the file system layer [10], the block device driver
layer [6], and the FTL layer[7]. Second, for nonvolatile
write caches, there are various forms of nonvolatile storage
media such as Battery-backed RAM and Nonvolatile RAM
(NVRAM). The NVRAM such as FeRAM (Ferro-electric
RAM), PRAM (Phase-change RAM), and MRAM (Magne-
toresistive RAM), which have recently caught the interest of
major semiconductor companies may also be used as non-
volatile write cache storage [3]. Third, hot write references
may be absorbed in various ways. Many schemes for select-
ing hot references based on recency, frequency, and char-
acteristics of file system metadata have been proposed [4],
[6].

In our evaluation, we consider the VFAT file system
provided in Linux as the host file system since various Flash
storages are pre-formatted by the FAT file system, which
is the dominant file system for Flash storage devices. For
high data integrity, we assume that the applications always
write files synchronously. The write cache that we consider
is located in the file system layer and the nonvolatile me-
dia for our write cache is NVRAM, specifically, FeERAM.
As hot write references, we take the write references for file
system metadata such as File Allocation Table (FAT) and
DOS_DIR_ENTRY. Hence, we modify the VFAT file sys-
tem to make use of an NVRAM write cache for its metadata.

4. Experimental Setup

Our experiments are conducted on a real embedded system
environment. In this section, we describe the hardware sys-
tem that we use in our experiments and briefly mention the
implementation of the FTLs. We also introduce the file sys-
tem workloads that we consider.

4.1 Hardware and Software Implementation

For the performance evaluation, the FTL schemes are de-
ployed in a real embedded system development board. The
embedded development board has 400 MHz CPU, 64 MB
SDRAM and 64 MB NAND Flash memory. The NVRAM
daughter board developed in-house is able to attach a max-
imum of 64 MB of FeERAM. For the evaluations, the file
system always mounts a 32MB partition of the NAND
Flash memory and exploits just 128 KB of FeRAM, which
is enough to absorb the whole file system metadata in our
benchmark configuration. The NVRAM appears in the
physical memory address space and can be directly accessed
from the CPU via memory mapped addressing.

For evaluation, we implement the FTL schemes that
we consider in Linux 2.6.21. For the Replacement block
scheme, specifically, we modify the NFTL module included
in Linux 2.6.21, that is, an FTL provided only for Flash

2304

devices developed by M-System [2]. Both the Log block
scheme and the FAST scheme are implemented on the MTD
(Memory Technology Device) layer. The Log block scheme
and the FAST scheme is implemented based on the descrip-
tion given in the paper by Kim et al. and Lee et al., respec-
tively [8], [9]. For all the experiments we set both the num-
ber of log blocks and the number of replacement blocks to
64.

4.2 File System Workload

To the best of our knowledge, there is no de facto realis-
tic file system workload that reflects the characteristics of
embedded systems. Thus, we develop a new benchmark
program that we call Camera-MS500 that simulates file sys-
tem operations for the camera module built into a popular
real world mobile phone. Since the goal of our experiments
is to evaluate the performance of the FTLs in conjunction
with the NVRAM cache, we chose the benchmark for the
camera that is one of the common products that employs
FTLs. By utilizing the BitPim tool published as a Source-
forge project, we can observe the changes of the file system
after taking pictures and deleting the pictures [1]. Using this
observation, we implement the Camera-MS500 benchmark
program that generates a realistic file system workload for a
digital camera.

The workload that the Camera-MS500 generates con-
sists of several photo files and a file that is frequently up-
dated to retain index information such as the creation date
and user descriptions for each photo file. The size of an
acyclic photo index file increases by 96 B in proportion to
the number of photo files. When photo files are created
or deleted, this photo index file synchronously creates or
deletes index information for the corresponding photo file.

The benchmark initially has no file. Then, it executes a
specified number of transactions, in our case, set to 10. Dur-
ing a transaction, the benchmark generates 20 photo files
whose size ranges from 300 KB to 500 KB and deletes half
of the generated files. If the total number of photo files is
greater than 60, all the photo files are deleted to make space
available. In our configuration, the total footprint that the
Camera-MS500 benchmark generates is 79.67 MB. To sup-
port high data integrity, we implement it so that each photo
file and photo index file writes synchronously in 512 B units.

5. Performance Evaluation

In this study, we are interested in how performance changes
as various FTL schemes are employed when the file system
provides high data integrity to Flash storage. In this section,
first, we discuss the write reference patterns represented by
the workload. Then we discuss the effect of hot write refer-
ences and the removal of the references via NVRAM on the
FTL schemes in detail.

In Fig. 2, we see the write reference pattern generated
by the Camera-MS500 benchmark. Each graph represents
the (y-axis) the Logical Block Number (LBN) for write ref-

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.8 AUGUST 2010

70000

ol
g
=
=
=
z.
3
2 35000
2
=
2
o0
=]
=

0

) 150000
Write Request
(a) Hot Metadata
70000

-
b
2 M
3
z HES
a2 .
S 35000 /i
) [
E .
£ i
= [

) {

9 150000 300000

Write Request
(b) No-Hot Metadata

Fig.2 Write reference patterns for the Camera-MS500 benchmark: (a)
before and (b) after absorbing hot write references.

Table 1 Total execution time measured at the application layer for the
Camera-MS500 benchmark: before (referred to as “Hot Metadata™) and
after (referred to as “No-Hot Metadata) absorbing hot write references
(Unit: second).

Hot Metadata No-Hot Metadata
Repl. FTL 9731.15 324.65
Log FTL 1116.10 350.33
FAST FTL 2200.72 331.29

erenced blocks as (x-axis) write requests are processed dur-
ing the execution of the Camera-MS500 benchmark. Fig-
ure 2(a) is for workload including hot write references,
while Fig. 2 (b) is for workload where the hot write refer-
ences are absorbed via NVRAM.

The Camera-MS500 benchmark generates sequential
write references with hot write references for file system
metadata, which is represented in the low numbered sec-
tors. We observe that 60% of write references is intensive
to 0.2% of total LBNs for the Camera-MS500 benchmark.
This is shown on Fig.2 (a). After absorbing the hot write
references via NVRAM write cache, the total number of
write requests shown in Fig.2 (b) decreases drastically as
shown by the disappearance of the dots along the x-axis for
Fig.2 (a).

Let us discuss the performance comparisons of the FTL
schemes for the Camera-MS500 benchmark and then, ana-
lyze the performance variations incurred by absorbing hot
write references. Table 1 represents the performance of the
FTL schemes for the Camera-MS500 benchmark in terms of
the total execution time measured at the application layer.

Let us discuss the performance for each FTL scheme
for the Camera-MS500 benchmark. The Log-block scheme
outperforms not only the Replacement-block scheme, but
also the FAST scheme for the Camera-MS500 work-

LETTER

load that contains hot write references. As expected,
the Replacement-block scheme suffers from hot write ref-
erences whereas both the Log-block scheme and FAST
scheme endure hot write references well.

Contrary to expectation, the FAST scheme does not
perform as well as the Log-block scheme for this workload.
The reason behind this is that the FAST scheme uses a log
block for all data blocks in Flash memory whereas the Log-
block scheme uses a log block for a single data block as
mentioned in Sect. 2. In so doing, the FAST scheme misses
more on opportunities to switch merge the log block to a
data block on sequential write references as the log block
is mixed with hot write references for other data blocks as
well.

As shown in Table 1, when hot write references are ab-
sorbed via NVRAM, the performance improvement varies
from 3 to 30 times for the different FTLs. Specifically,
for the Replacement-block scheme the improvement is 30
times, while for the Log-block scheme and the FAST
scheme, it is 3.2 times and 6.6 times, respectively. Note that
the workload contains sequential write patterns with numer-
ous hot write references for the file system metadata, and
the hot write references, that is, file system metadata writes,
can be absorbed via NVRAM write cache. Total 60% of
write requests from the file system are reduced in Camera-
MS500 by absorbing hot write references. Also from the
table, we can see that the performance difference among
the FTL schemes become negligible after absorbing the hot
write references.

It is worth noting that the Replacement-block scheme
outperforms the Log-block scheme after absorbing hot write
references. The reason behind this is that the advantage of
the Log-block scheme over the Replacement-block scheme
becomes minimal as the majority of the workload becomes
sequential after absorbing hot write references. Further-
more, due to its simplicity, the overhead of managing the
mapping table for the Replacement-block scheme is mini-
mal, leading to better performance in a real system environ-
ment.

6. Conclusions

In this paper, we considered the effect of hot write refer-

2305

ences on the performance of FTL schemes when file sys-
tems ensure high data integrity. We also consider the effect
of absorbing these hot write references via NVRAM on the
performance of the FTL schemes in Flash storage.

Through the evaluations, we observe that the perfor-
mance results of the FTL schemes, when hot write refer-
ences exist, do not conform with results of previous stud-
ies on FTL schemes. We also conclude that the impact of
the underlying FTL schemes on the performance of Flash
storage is dramatically reduced by absorbing the hot write
references via NVRAM.

Though we have presented the empirical study of FTL
schemes, the work here is still preliminary. As mentioned
earlier, nonvolatile caches for hot write references can be
deployed in various ways. As future work, we intend to
broaden our study to NVRAM write cache in the FTL layer
and the cache management policy issues for efficiently ab-
sorbing the hot write references.

References

[1] BitPim Sourceforge Project, http://www.bitpim.org

[2] A.Ban, Flash file system. United States Patent, no.5, 404, 485, 1995.

[3] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan,
and R.S. Shenoy, “Overview of candidate device technologies for
storage-class memory,” IBM J. Res. Dev., vol.52, no.4-5, pp.439—
447, 2008.

[4] LH. Doh, J. Choi, D. Lee, and S.H. Noh, “Exploiting non-volatile
RAM to enhance flash file system performance,” Proc. EMSOFT’07,
2007.

[5] E.Galand S. Toledo, “Algorithms and data structures for flash mem-
ories,” ACM Comput. Surv., vol.37, no.2, 2005.

[6] B.S. Gill and D.S. Modha, “WOW: Wise ordering for writes. Com-
bining spatial and temporal locality in non-volatile caches,” Proc.
FAST’05, 2005.

[7]1 H. Kim and S. Ahn, “BPLRU: A buffer management scheme for
improving random writes in flash storage,” Proc. FAST’08, 2008.

[8] J. Kim, JM. Kim, S.H. Noh, S.L. Min, and Y. Cho, “A space-
efficient flash translation layer for compactflash systems,” IEEE
Trans. Consum. Electron., vol.48, no.2, pp.366-375, 2002.

[9] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and
H.-J. Song, “A log buffer-based flash translation layer using fully-
associative sector translation,” ACM Trans. Embed. Comput. Sys.,
vol.6, no.3, article no.18, 2007.

[10] K. Salem and S. Akyiirek, “Management of partially safe buffers,”
IEEE Trans. Comput., vol.44, no.3, pp.394-407, 1995.

