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Query-Number Preserving Reductions and Linear Lower Bounds
for Testing

Yuichi YOSHIDA†a), Nonmember and Hiro ITO†b), Member

SUMMARY In this paper, we study lower bounds on the query com-
plexity of testing algorithms for various problems. Given an oracle that
returns information of an input object, a testing algorithm distinguishes
the case that the object has a given property P from the case that it has a
large distance to having P with probability at least 2

3 . The query complex-
ity of an algorithm is measured by the number of accesses to the oracle.
We introduce two reductions that preserve the query complexity. One is
derived from the gap-preserving local reduction and the other is from the
L-reduction. By using the former reduction, we show linear lower bounds
on the query complexity for testing basic NP-complete properties, i.e., 3-
edge-colorability, directed Hamiltonian path/cycle, undirected Hamiltonian
path/cycle, 3-dimensional matching and NP-complete generalized satisfia-
bility problems. Also, using the second reduction, we show a linear lower
bound on the query complexity of approximating the size of the maximum
3-dimensional matching.
key words: property testing, lower bounds

1. Introduction

To decide whether a huge object has some predeter-
mined property, a concept called property testing was pro-
posed [3], [11]. In the setting of property testing, a testing
algorithm is supposed to distinguish that an object has a
predetermined property P and that it has a large distance
to having P with high probability (say, 2

3 ). The definition
of farness varies depending on problems. In order to con-
struct algorithms that run in constant time, i.e., independent
of the size of the object, we do not want to even read the
whole object. Thus, we assume the existence of an oracle
that represents the object and a testing algorithm obtains in-
formation of the object by accessing it. The efficiency of the
testing algorithm is measured by the query complexity, i.e.,
the number of accesses to the oracle.

In the last decade, a lot of constant-time testing al-
gorithms were developed. However, lower bounds on the
query complexity were less investigated. In this paper, we
present a general technique using a reduction to prove (lin-
ear) lower bounds on the query complexity.

We introduce two reductions that preserve the query
complexity by adding new constraints to known reductions.
One of our reductions is strong gap-preserving local re-
duction, which maps a decision problem to another deci-
sion problem. This is derived from the gap-preserving lo-
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cal reduction introduced by [1]. The other one is strong L-
reduction, which maps an optimization problem to another
optimization problem. The L-reduction [9] is originally de-
signed to show the nonexistence of PTAS (polynomial time
approximation scheme).

Using these reductions, we show that various problems
have linear lower bounds on the query complexity for test-
ing. That is, all problems listed below have linear lower
bounds. We call a generalized satisfiability problem Schae-
fer if it is NP-complete [12] (the concrete definition is de-
ferred to Sect. 6). In particular, the Schaefer generalized
satisfiability problem includes one-in-three 3SAT and not-
all-equal 3SAT as special cases.

3EC-d (Bounded 3-Edge-Colorability)
Instance: An undirected graph with a degree upper
bound d.
Question: Can the edges be colorable by 3 colors such
that no two edges with the same color share a common
vertex?

DHP-d and DHC-d (Bounded Directed Hamiltonian Path/
Cycle)
Instance: A directed graph with a degree upper bound
d.
Question: Does the graph contain a Hamiltonian
path/cycle, i.e., a path/cycle that visits each vertex ex-
actly once?

UHP-d and UHC-d (Bounded Undirected Hamiltonian
Path/Cycle)
Instance: An undirected graph with a degree upper
bound d.
Question: Does the graph contain a Hamiltonian
path/cycle, i.e., a path/cycle that visits each vertex ex-
actly once?

3DM-d (Bounded 3-Dimensional Matching)
Instance: Set E ⊆ U × V × W where U,V and W are
disjoint sets. The number of occurrences in E of an
element of U,V and W is bounded from above by a
constant d.
Question: Does E contain a matching, i.e., E′ ⊆ E such
that |E′| = min(|U |, |V |, |W |) and no two elements of E′
agree in any coordinate?

Schaefer-3SAT-d (Bounded Generalized Satisfiability Prob-
lem)
Instance: An instance of Schaefer generalized satisfia-
bility problem such that each clause has exactly 3 vari-
ables and each variable occurs at most d times.
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Question: Is there a truth assignment to variables that
satisfies all clauses?

Max-3DM-d (Bounded Max-3-Dimensional Matching) is an
optimization problem, for which given an instance of 3DM-
d E ⊆ U × V ×W, we are to find the maximum number of
subsets of E that have no element in common. We show that
approximating Max-3DM-d (Bounded Max-3-Dimensional
Matching) has a linear lower bound on the query complexity.

(1) Related Work:

In [5], it is shown that any testing algorithm for bipartite-
ness and being expander of a graph with a degree bound
requires Ω(

√
n) queries where n is the number of vertices

in a graph. In [1], linear lower bounds on the query com-
plexity are shown for testing 3SAT-d (solvability of a SAT
such that each clause has exactly 3 variables and each vari-
able occurs at most d times) and E3LIN-2 (solvability of
linear equations over {0, 1} with 3 variables in each equa-
tion) such that each variable occurs in at most d equations.
A linear lower bound on the query complexity of testing 3-
colorability for a graph with a degree bound is also shown in
the same paper. There are other results for one-sided testers,
i.e., testing algorithms that always accept graphs satisfying
the concerned property. It is known that any one-sided tester
requires Ω(n) queries to test cycle-freeness [5] and the prop-
erty of having a perfect matching [14]. Also, there is a prop-
erty of graphs with/without a degree bound that is testable
in query complexity O(nα) but cannot be testable in query
complexity o(nα) for any constant α > 0 [4].

For inapproximability results, linear lower bounds on
the query complexity of approximating the size of Max-
2SAT, Max-3SAT, Vertex Cover and Max-Cut with some
constant approximation ratios are known [1]. In particu-
lar, approximating the size of Vertex Cover requires Ω(

√
n)

queries even if the approximation ratio is 2 − γ for any
γ > 0 [10].

(2) Organization:

This paper is organized as follows. In Sect. 2, we formally
give the definition of the testing and the models for each
problem. Also, we state the new reductions and basic prop-
erties of the reductions. A linear lower bound on the query
complexity for testing 3EC-d is shown in Sect. 3. Linear
lower bounds on the query complexity for testing DHP-
d, DHC-d, UHP-d and UHC-d are shown in Sect. 4. Fur-
thermore, linear lower bounds on the query complexity for
testing 3DM-d and Schaefer-3SAT-d are shown in Sects. 5
and 6, respectively. Section 7 is devoted to describe the di-
rection of future research.

2. Definitions and Preliminaries

2.1 Testing and Problems

First, we define 3SAT-d, which will be used as a source
problem of our reductions.

3SAT-d (Bounded 3SAT)
Instance: A CNF such that each clause has exactly 3
variables and each variable occurs at most d times.
Question: Is there an assignment to variables such that
every clause is satisfied?

Max-3SAT-d (Bounded Max-3SAT) is an optimization prob-
lem, for which given a instance of 3SAT-d we are to maxi-
mize the number of satisfied clauses.

Let X be combinatorial objects with a functional repre-
sentation f . The query complexity of an algorithm is mea-
sured by the number of queries to f made by the algorithm.
An instance X ∈ X is called ε-far from (satisfying) a prop-
erty P if an ε-fraction of f should be changed to make X
having the property P. The concrete definition of ε-farness
depends on the concerned combinatorial objects.

Let A be a decision problem that decides whether an
object X ∈ X satisfies a property P or not. A testing algo-
rithm with an error parameter ε > 0 (or ε-tester) for A is a
randomized algorithm that, given an oracle f that represents
X:

• if X satisfies P, accepts X with probability at least 2
3 .

• if X is ε-far from P, rejects X with probability at least
2
3 .

Let A be an optimization problem on X. For X ∈ X,
let OPTA(X) denote the optimal value of X for A. An
approximation algorithm with an error parameter ε (or ε-
approximator) for A, given an oracle f that represents X,
returns r(X) such that OPTA(X)

1+ε ≤ r(X) ≤ (1 + ε)OPTA(X).
We describe the model used for 3SAT-d and Schaefer-

3SAT-d. Let X = (U,C) be an instance of 3SAT-d or
Schaefer-3SAT-d where U is a set of variables and C is a
set of clauses. We assume that X is represented by func-
tions fU : U × [d] → C ∪ {∅} and fC : C × [3] → U where

[n]
def
= {1, 2, . . . , n}. fU(u, i) represents the ith clause at which

u occurs. If no such clause exists, the value of it is ∅. fC(c, i)
represents the ith literal in c. A testing algorithm can obtain
information of X by making a query to fU and fC . For sim-
plicity, we assume that we know the relations of clauses as
a prior knowledge. X is called ε-far from being satisfiable
if at least εdn

3 clauses must be removed to make it satisfiable
where n is the number of variables in X.

Next, we describe the model for 3EC-d and DHP-d.
Let G = (V, E) be an undirected graph with a degree bound
d and n be the number of vertices in G. G is represented
by a function f : V × [d] → V ∪ {∅}. f (v, i) represents the
ith vertex incident to v. If no such vertex exists, the value
of it is ∅. G is called ε-far from a property P if at least εdn

2
edges must be added or removed to make the graph satisfy
the property P preserving the degree bound d.

The representation and the definition of ε-farness for
directed graphs are similar to those for undirected graphs.
Let G = (V, E) be a directed graph with a degree bound d
(i.e, both of in-degrees and out-degrees are bounded by d)
and n be the number of vertices in G. G is represented by a
function fin : V × [d]→ V ∪{∅} and fout : V × [d]→ V ∪{∅}.



YOSHIDA and ITO: QUERY-NUMBER PRESERVING REDUCTIONS AND LINEAR LOWER BOUNDS FOR TESTING
235

fin(v, i) represents the end-vertex of the ith in-coming edge
of v. fout(v, i) represents the end-vertex of the ith out-going
edge of v. If there is no such vertex, the value of it is ∅. G is
called ε-far from a property P if at least εdn edges must be
added or removed to make the graph satisfy the property P
preserving the degree bound d.

Finally, we describe the model for 3DM-d. Let G =
(U,V,W, E), E ⊆ W × X × Y be an instance of 3DM-d and
n = |U | = |V | = |W |. G is represented by functions fU : U ×
[d]→ E∪{∅}, fV : V×[d]→ E∪{∅}, fW : W×[d]→ E∪{∅}
and fE : E × [3] → U ∪ V ∪ W. fU , fV and fW returns the
ith element of E that contains an element of U,V and W,
respectively. fE returns an element of an edge. G is called
ε-far from a property P if at least εdn edges must be added
or removed to make G satisfy the property P preserving the
property that each element of U,V and W occurs at most d
edges.

2.2 New Reductions and Key Lemmas

We introduce two reductions by adding some restrictions to
known reductions, i.e., a gap-preserving local reduction [1],
that reduces a decision problem and an L-reduction [9], that
reduces an optimization problem. These reductions describe
the relation between the query complexity of a problem and
the query complexity of the reduced problem. For a property
P, let P0 denote a set of instances that satisfy P, and let Pε
denote a set of instances that are ε-far from having P for
ε > 0.

Definition 2.1 (Strong gap-preserving local reduction). Let
A and B be decision problems for properties P and Q,
respectively. We say that a mapping ϕ is a strong gap-
preserving local reduction from A to B if there exist univer-
sal constants c1, c2, c3 > 0 such that the following properties
hold:

1. If X ∈ P0, then ϕ(X) ∈ Q0.
2. If X ∈ Pε , then ϕ(X) ∈ Qε/c1 .
3. The answer to an oracle query to ϕ(X) can be computed

by making at most c2 oracle queries to X.
4. |ϕ(X)| ≤ c3|X| for any X.

The condition (4) is added to the previous definition of
a gap-preserving local reduction.

Definition 2.2 (Strong L-reduction). Let A and B be two op-
timization problems with objective functions gA and gB, re-
spectively. We say that a mapping ϕ is a strong L-reduction
from A to B if there exist universal constants c1, c2, c3, c4 > 0
such that the following properties hold:

1. For any X of an instance of A, OPTB(ϕ(X)) ≤
c1OPTA(X).

2. For every solution xB of ϕ(X) we can find a solution xA

of X such that |OPTA(X) − gA(xA)| ≤ c2|OPTB(ϕ(X)) −
gB(xB)| without any query.

3. The answer to an oracle query to ϕ(X) can be computed
by making c2 oracle queries to X.

4. |ϕ(X)| ≤ c4|X| for any X.

The conditions (3) and (4) are added to the previous
definition of L-reduction. Also, the condition (2) is differ-
ent from that of L-reduction. The solution of X must be
calculated from the solution of ϕ(X) without any query. L-
reductions permit polynomial time calculation for this.

A strong gap-preserving local reduction and a strong L-
reduction preserve a linear lower bound on the query com-
plexity of testing and approximating as shown in the follow-
ing lemmas, which are key lemmas of this paper.

Lemma 2.3. Let A and B be decision problems for prop-
erties P and Q, respectively. Suppose that there is a strong
gap-preserving local reduction ϕ from A to B with constants
c1, c2, c3 > 0. If there exist constants ε and δ such that every
ε-tester for A must have query complexity at least δn where
n is the size of an instance of A, then every ε

c1
-tester for B

must have query complexity at least δn
′

c2c3
, where n′ is the size

of an instance of B.

Proof. From (1) and (2), we can decide whether X is in P0

or in Pε by deciding whether ϕ(X) is in Q0 or Qε/c1 . Suppose
that there is an ε

c1
-tester for B with query complexity at most

f (n′). Since one query to ϕ(X) is simulated by c2 queries to
X, we can decide whether X is in P0 or in Pε by at most
c2 f (n′) queries. From the assumption of the hardness of
testing A, c2 f (n′) ≥ δn must hold. From n′ ≤ c3n, we obtain
that f (n′) ≥ δnc2

≥ δn′
c2c3

. �

Lemma 2.4. Let A and B be optimization problems. Sup-
pose that there is a strong L-reduction ϕ from A to B with
constants c1, c2, c3 > 0. If there exist ε and δ such that every
ε-approximator for A must have query complexity at least
δn where n is the size of an instance of A, then every ε

c1c2
-

approximator for B must have query complexity at least δn
′

c3c4

where n′ is the size of an instance of B.

Proof. Suppose that there is an ε
c1c2

-approximator for B
with query complexity f (n′). We convert the solution xB

of ϕ(X) obtained by this algorithm to the solution xA of X
so that |OPTA(X) − gA(xA)| ≤ c2|OPTB(ϕ(X)) − gB(xB)| ≤
ε
c1

OPTB(ϕ(X)) ≤ εOPTA(X). By considering that one query
to ϕ(X) is simulated by c3 queries to X, it follows that we can
approximate OPTA(X) within ε error with at most c3 f (n′)
queries. From the assumption of the hardness of approx-
imating A, c3 f (n′) ≥ δn must hold. From n′ ≤ c4n, we
obtain that f (n′) ≥ δnc3

≥ δn′
c3c4

. �

A lower bound of the query complexity of testing
3SAT-d and approximating Max-3SAT-d is already known.

Theorem 2.5. [1] For every real number α > 0 there is a
constant d such that every ( 1

8 − α)-tester for 3SAT-d must
have linear query complexity. �

Theorem 2.6. [1] For every real number α, there is a con-
stant d such that every ( 1

7−α)-approximator for Max-3SAT-d
must have linear query complexity. �
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3. A Linear Lower Bound of Testing
3-Edge-Colorability

In this section, we show a linear lower bound of testing 3-
edge-colorability.

We use a slight modification of the reduction intro-
duced by [6] from 3SAT to 3-edge-colorability, and call this
reduction ϕEC . The original reduction aims at creating a 3-
regular graph. Since we do not need to create such a graph,
the reduction described here is simpler. The reduction ϕEC

creates a graph G = ϕEC(X) with maximum degree at most
3 (i.e., an instance of 3EC-3) from an instance X of 3SAT-d.
In the graph G, values (true or false) are conveyed by pairs
of edges. In a 3-edge-coloring of G, such a pair of edges
represents true (resp., false) if the edges have the same color
(resp., different colors),

A gadget shown in Fig. 1 is an inverter. If an inverter is
3-edge-colored, it is easily checked that the one of pairs of
edges a, b or c, d must have the same color and remaining 3
edges c, d, e or a, b, e must have different colors. Thus, it can
be regarded that an inverter takes a value as an input from
a pair of edges a, b, negates it and emits it as an output to a
pair of edges c, d.

The value of a variable in X is represented by a vari-
able setter. An example is depicted in the left side of Fig. 2,
which is constructed for the case d = 4. In general, we con-
struct a variable setter by cyclically placing d pairs of invert-
ers. Thus, a variable setter has 2d inverters and d outputs.
We can verify that all the values (true or false) of outputs of

Fig. 1 An inverter and its symbolic representation.

Fig. 2 Left: A variable setter with 8 inverters and 4 outputs. Right: A
satisfaction tester.

a variable setter are the same if this component is 3-edge-
colored. Each output will be connected to a component that
represents a clause where the variable occurs.

The satisfiability of each clause in X is tested by a sat-
isfaction tester depicted in the right side of Fig. 2. This com-
ponent can be 3-edge-colored if and only if at least one of
the values of the inputs is true.

G is constructed from X as follows. For each variable ui

we create a variable setter Ui with 2d inverters and d outputs,
and for each clause c j we create a satisfaction tester C j. If
the kth clause including ui is c j, then we connect the kth
output of Ui to the input of C j if ui appears as a positive
literal in c j and insert an inverter between the kth output of
Ui and the input of C j if ui appears as a negative literal in
c j. When there are edges unaccounted for, we just remove
them.

Lemma 3.1. Let X be an instance of 3SAT-d with n vari-
ables and n′ be the number of vertices in G = ϕEC(X). Then
n′ < 91dn

3 .

Proof. For each variable in X, there is a variable setter with
2d inverters. For each clause in X, there is a satisfaction-
tester with 3 inverters and 7 vertices. For each occurrence
of a negative literal, there is one more inverter. Since one
inverter have seven vertices, there are at most (7 · 2d)n+ (7 ·
3 + 7) dn

3 + 7 · dn = 91dn
3 vertices in total. �

Lemma 3.2. The reduction ϕEC is a strong gap-preserving
local reduction from 3SAT-d to 3EC-3.

Proof. The conditions (1) and (3) of a strong gap-preserving
local reduction obviously hold. The condition (4) holds
from Lemma 3.1. We show that the condition (2) holds in
the following.

Let X be an ε-far instance of 3SAT-d and G = ϕEC(X).
Let 3ε′n′

2 be the minimum number of edges to be removed in
order to make G 3-edge-colorable where n′ is the number of
vertices in G. Let G′ be the resulting graph obtained by re-
moving such edges. Note that adding edges is meaningless
when considering the minimum number of edge modifica-
tions for 3-edge-colorability.

We define the territory of a clause c j in X as variable-
setters that represent variables occurring in c j, a satisfaction-
tester that represents c j, and inverters inserted between those
variable-setters and the satisfaction-tester. We call a clause
c j alive if no edge deletion occurred at the territory of c j.
Otherwise, we call the clause dead. Removing an edge of a
variable-setter makes at most d clauses dead. Removing an
edge of a satisfaction-tester makes at most one clause dead.
Removing an edge of an inverter makes at most one clause
dead. Thus, at most 3ε′dn′

2 clauses are turned to be dead in
total by removing 3ε′n′

2 edges.
Let H′ be a subgraph of G′ induced by the territories

of living clauses. If 3ε′dn′
2 < εdn

3 , H′ is not 3-edge-colorable,
since H′ equals ϕEC(X′) where X′ is a CNF such that less
than εdn

3 clauses are removed from X. Since a graph is not 3-
edge-colorable when a subgraph is not 3-edge-colorable, G′
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is not 3-edge-colorable. It contradicts the assumption. Thus,
3ε′dn′

2 ≥ εdn
3 holds. From Lemma 3.1, ε′ ≥ 2εdn

9dn′ ≥ 2ε
273d . �

From Lemmas 2.3 and 3.2, and Theorem 2.5, we obtain
the next.

Theorem 3.3. There exist constants ε < 1 and d ≥ 3 such
that every ε-tester for 3EC-d must have liner query com-
plexity. �

4. A Linear Lower Bound of Testing Hamiltonian
Path/Cycle

In this section, we show a linear lower bound of the query
complexity of testing that a directed or undirected graph has
a Hamiltonian path/cycle.

First, we consider DHP. We use the reduction from
3SAT to DHP given by [13], and call the reduction ϕDHP.
Let X be an instance of 3SAT-d and G = ϕDHP(X) be the
graph created by this reduction. In G, a variable ui in X is
represented by a rhombus-shaped component Ui depicted in
the left of Fig. 3. We call this component a variable setter.
A variable setter has an entrance vertex in the upper side and
an exit vertex in the bottom side and 3d+3 auxiliary vertices
in the middle. A proper Hamiltonian path is supposed to
enter from the entrance vertex and pass through the middle
vertices and exit from the exit vertex. If the Hamiltonian
path passes the middle vertices from left to right (resp., right
to left), then it is regarded as representing true (resp., false).
Each clause that includes ui has two consecutive vertices
within the middle vertices as its territory. For each i(1 ≤ i ≤
n − 1), the exit vertex of Ui and the entrance vertex of Ui+1

is connected by an edge.
Each clause c j has a corresponding clause vertex v j.

Assume that c j is the kth clause including ui. If it is a posi-
tive literal, then we connect an edge from the (3k)th vertex
of the middle vertices of Ui to v j and connect an edge from
v j to the (3k + 1)th vertex of them. Otherwise, we connect
an edge from the (3k + 1)th vertex of the middle vertices of
Ui to v j and connect an edge from v j to the (3k)th vertex of
them. The right of Fig. 3 shows a part of a graph reduced
from (u1 ∨ u3 ∨ u4) ∧ (ū1 ∨ ū2 ∨ u3) ∧ (u2 ∨ u4 ∨ u5).

Fig. 3 Left: A variable setter with d = 2. Right: A part of a graph reduced from (u1 ∨u3 ∨u4)∧ (ū1 ∨
ū2 ∨ u3) ∧ (u2 ∨ u4 ∨ u5).

Suppose that there is a variable assignment that satis-
fies X. Then, we can make a Hamiltonian path of G as fol-
lows. The path starts at the entrance vertex of U1. If u1 is
true on the assignment, it passes through the middle vertices
from left to right. If ui is false, it passes through the middle
vertices from right to left. After that, it goes to the exit ver-
tex of U1 and enter the entrance vertex of U2. Repeat this
process until it reaches the exit vertex of Un. Every v j can
be passed while the path goes through the middle vertices of
some Ui such that ui appears in c j.

We can see that if there is no assignment that satisfies
X, then no Hamiltonian path exists in G. See [13] for de-
tailed discussion.

Lemma 4.1. Let X be an instance of 3SAT-d with n vari-
ables and n′ and d′ be the number of vertices and the
maximum degree of G = ϕDHP(X), respectively. Then,
n′ < (10d+5)n

3 and d′ ≤ d.

Proof. There are 3d + 5 vertices for each variable set-
ter. Since there are at most dn

3 clauses in X, there ex-
ist at most dn

3 vertices representing clauses in G. Thus,

n′ ≤ n · (3d + 5) + dn
3 =

(10d+15)n
3 holds. The maximum

degree of a vertex in a variable setter is at most 3. The max-
imum degree of a vertex representing a clause is at most d.
Thus, d′ ≤ d holds. �

Lemma 4.2. The reduction ϕDHP is a strong gap-preserving
local reduction from 3SAT-d to DHP-d.

Proof. The conditions (1) and (4) of a strong gap-preserving
local reduction are verified by the above discussion and
Lemma 4.1. Also, the condition (3) is easily verified. We
show that the condition (2) holds in the following.

Let X be an instance of 3SAT-d and G = ϕDHP(X). Let
n′ and d′ denote the number of vertices of G and the maxi-
mum degree of G, respectively. Let ε′d′n′ be the minimum
number of edges to be added or removed in order to make G
having a Hamiltonian path and let the resulting graph be G′.

We define a territory of a clause c j in X as v j and
variable-setters for variables occurring in c j. We call a
clause c j alive if no edge modification occurred at the ter-
ritory of c j. Otherwise, we call the clause dead. Modifying
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an edge of a variable-setter makes at most d clauses dead.
Modifying an edge of a clause vertex makes at most one
clause dead. Since one edge modification causes at most
two components to be changed, by modifying ε′d′n′ edges,
at most 2ε′dd′n′ clauses are turned to be dead.

We show that a Hamiltonian path in G′ must enter a
living variable setter from its entrance vertex and exit from
its exit vertex, i.e., cannot go to or come from other variable
setters via clause vertices. Suppose there exists a Hamilto-
nian path P such that P goes to a clause vertex via a vertex
v in the middle of a variable setter U and after that P goes
to another variable setter U′ without returning to U. Then,
one of adjacent vertices of v in the middle of U cannot be
passed by P anymore since there is just one vertex adja-
cent to v which is not passed by P. It contradicts that P
is a Hamiltonian path. Thus, if we ignore the route while
passing the territory of dead clauses, the Hamiltonian path
should form a Hamiltonian path of a graph reduced by ϕDHP

from a 3SAT-d instance created by collecting living clauses.
If 2ε′dd′n′ < εdn

3 holds, there is no such Hamilto-
nian path in the reduced graph and contradicts that G′ has a
Hamiltonian path. Thus, 2ε′dd′n′ ≥ εdn

3 . From Lemma 4.1,
it follows that ε′ ≥ εn

6d′n′ ≥ ε
20d+30 . �

From Lemmas 2.3 and 4.2, and Theorem 2.5, we obtain
the next theorem.

Theorem 4.3. There exist constants ε < 1 and d such that
every ε-tester for DHP-d must have linear query complexity.

�

We can make a reduction ϕDHC for DHC-d from ϕDHP

by connecting exit vertex of Un and entrance vertex of U1.
The rest of the proof is the same, and we obtain the follow-
ing result for DHC-d.

Theorem 4.4. There exist constants ε < 1 and d such that
every ε-tester for DHC-d must have linear query complexity.

�

To get an instance of UHP-d and UHC-d from 3SAT-d,
we replace each edge of ϕDHP(X) and ϕDHC(X) by two undi-
rected edges and one vertex that connects them. As long
as we consider Hamiltonian paths and Hamiltonian cycles,
this replacement plays the same role. Thus, this new re-
ductions from 3SAT-d to UHP-d and UHC-d are also strong
gap-preserving local reductions.

Theorem 4.5. There exist constants ε < 1 and d such that
every ε-tester for UHP-d and UHC-d must have linear query
complexity. �

5. A Linear Lower Bound of Testing and Approximat-
ing 3-Dimensional Matching

We argue about a linear lower bound of 3-dimensional
matching problem.

Unlike the previous problems, we cannot use a standard
polynomial reduction such as [8]. To prove that a reduction

satisfies the condition (2) of a strong gap-preserving local
reduction, we used the monotonicity of a property P, i.e.,
“if a subinstance of X does not satisfy P, then the whole X
does not satisfy P either.” 3DM-d, however, does not have
monotonicity. Thus, we must employ another method. For-
tunately, the L-reduction given by [7] used for showing inap-
proximability of maximum 3-dimensional matching is fit for
our purpose. The reduction, called ϕDM , maps an instance of
Max-3SAT-d to an instance of Max-3DM-3. Let X be an in-
stance of Max-3SAT-d and Y = (U,V,W, E) = ϕDM(X). Let
OPT (X),OPT (Y) denote the optimal value of X for Max-
3SAT-d and the optimal value of Y for Max-3SAT-d, respec-
tively. It is shown in [7] that

OPT(Y) = 6Km − 3m + OPT(X), (1)

n′ = 6Km − 2m, (2)

where K = 2�log2( 3
2 d+1)�, m be the number of clauses of X and

n′ = min(|U |, |V |, |W |).
First, we show that ϕDM is a strong L-reduction. The

condition (1) holds since ϕDM is an L-reduction. Using (1),
the condition (2) is also achieved. We can easily verify that
ϕDM satisfies the conditions (3) and (4).

Lemma 5.1. ϕDM is a strong L-reduction from Max-3SAT-d
to Max-3DM-3. �

From Lemmas 2.4 and 5.1, and Theorem 2.6, we get
the following theorem.

Theorem 5.2. There exist some constant ε < 1 and d such
that every ε-approximator for Max-3DM-3 must have linear
query complexity. �

Next, we show that ϕDM is also a strong gap-preserving
local reduction.

Theorem 5.3. The reduction ϕDM is a strong gap-
preserving local reduction from 3SAT-d to 3DM-3.

Proof. The conditions (3) and (4) are the same as those of a
strong L-reduction.

Let X be an instance of 3SAT-d and Y = ϕDM(X). Sup-
pose that X is satisfiable, i.e., OPT(X) = m. By (1) and (2),
OPT (Y) = 6Km − 3m + m = n′ holds. Thus, the condition
(1) of the gap-preserving local reduction follows.

Suppose that X is ε-far, i.e., OPT(X) ≤ (1 − ε)m. By
(1), OPT (Y) ≤ 6Km − 3m + (1 − ε)m = n′ − εm holds.
We modify the minimum number of edges of Y so that the
resulting instance Y ′ has a 3-dimensional matching M′ with
size n′. Let M be edges of Y contained in M′. Since |M| ≤
n′ − εm and (2), we must modify at least n′ − (n′ − εm) =
εm = ε

18K−6 3n′ edges to transform Y into Y ′. Hence Y is an
ε

18K−6 -far instance of 3DM-d. Thus, the condition by (2) of
the gap-preserving local reduction follows. �

From Lemmas 2.3 and 5.3, and Theorem 2.5, we get
the following theorem.

Theorem 5.4. There exist some constant ε < 1 and d such
that every ε-tester for 3DM-3 must have linear query com-
plexity. �
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6. A Linear Lower Bound of Testing NP-Complete
Generalized Satisfiability Problem

A logical relation is defined as a non-empty subset of {0, 1}d
for some d ≥ 1. Let S = {R1,R2, . . . ,Rm} be a finite set
of logical relations. An S -clause is a clause of the form
ri(v1, v2, . . . , vd) where vi is a variable and ri is a relation
symbol representing Ri. S -satisfiability, denoted by Sat(S ),
is the problem of deciding whether a given conjunction of
S -clauses is satisfiable. Let A be a formula. Var(A) denotes
the set of variables occurring in A. Denote by S(A) the set
of all assignments s : Var(A) → {0, 1} that satisfy A. Two
formulas A and B are logically equivalent if Var(A) = Var(B)
and S(A) = S(B)

Schaefer’s dichotomy theorem [12] states a necessary
and sufficient condition for a set of relations S under which
Sat(S ) is polynomially-solvable assuming P � NP.

Theorem 6.1. (Schaefer’s dichotomy theorem) Let S be a
set of relations. If S satisfies one of the conditions (a)-(f),
then Sat(S ) is in P. Otherwise, Sat(S ) is NP-complete.

• every relation in S is satisfied if all variables are as-
signed 0 (0-valid).
• every relation in S is satisfied if all variables are as-

signed 1 (1-valid).
• every relation in S is logically equivalent to a CNF

with at most two literals (bijunctive).
• every relation in S is logically equivalent to a CNF

with at most one positive literal (weakly negative).
• every relation in S is logically equivalent to a CNF

with at most one negative literal (weakly positive).
• every relation in S is logically equivalent to a sys-

tem of linear equations over the two-element field {0, 1}
(affine). �

Schaefer-Sat denotes Sat(S ) such that S satisfies none
of the conditions of Theorem 6.1 or in other words is NP-
complete. Schaefer-3SAT is a Schaefer-Sat in which each
clause contains exactly three variables.

To show a lower bound on Schaefer-3SAT, We use a
reduction from 3SAT to Schaefer-3SAT given by [12]. We
call the reduction ϕssat. Due to the space limit, we cannot
describe the whole process of ϕssat. The most important part
of the reduction is that it has “locality.” Let X be an instance
of 3SAT and Y = ϕssat(X). A clause of X is converted to
a clause of Y without any information of other clauses of
X. Thus, if the number of occurrences of a variable in X
is at most d, then the number of occurrences of a variable
in Y is also bounded by some constant d′. Let n and n′ be
the number of variables in X and Y , respectively. Then, by
the same arguments, there is some constant c such that n′ is
bounded by cn.

Lemma 6.2. For any d there exists some constant d′ such
that ϕssat is a strong gap-preserving local reduction from
3SAT-d to Schaefer-3SAT-d′

Proof. The conditions (1), (3) and (4) are verified by the
locality of ϕssat. We show that the condition (2) actually
holds as follows.

Let X be an ε-far instance of 3SAT-d and Y = ϕssat(X).
Let ε

′d′n′
3 be the minimum number of clauses to be removed

in order to make Y satisfiable where n′ and d′ is the number
of variables and the upper bound of the occurrences of a
variable of Y . Let Y ′ be the resulting instance obtained by
removing such clauses.

We define the territory of a clause c j in X as clauses in
Y that is reduced from c j. We call a clause c j is alive if none
of clauses of the territory of c j is removed. Otherwise, we
call the clause dead.

Since removing a clause of Y makes at most 1 clause
of X dead, at most ε

′d′n′
3 clauses in X are turned to be dead in

total by removing ε
′d′n′

3 clauses of Y . If ε
′d′n′

3 < εdn
3 holds, Y ′

contains clauses that are reduced from an instance created
by removing at most εdn

3 clauses from X. It contradicts the
satisfiability of Y ′. Thus, ε

′d′n′
3 ≥ εdn

3 must hold.
Since there exist some constants c and c4 such that d′ ≤

cd and n′ ≤ c4n, there exists some constant c2 such that
ε′ ≥ ε

c2
holds. �

From Lemmas 2.3 and 6.2, and Theorem 2.5, we obtain
the following theorem.

Theorem 6.3. There exist some constants ε < 1 and d
such that every ε-tester for Schaefer-3SAT-d must have lin-
ear query complexity. �

7. Concluding Remarks

We introduce two reductions to show linear lower bounds
on the query complexity of testing algorithms for various
NP-complete problems. One is a strong gap-preserving lo-
cal reduction used with the monotonicity of the problem it-
self (3EC-d, DHP-d and Schaefer-3SAT-d). The other is a
strong L-reduction (3DM-d). It might be interesting to con-
sider that these techniques can be applied to a wider class
of problems, e.g., NP-hard problems with monotonicity or
MAX SNP-hard problems.

Another problem we want to mention is how large the
query complexity of testing non-Schaefer Sat(S ) is. If all
relations in S are 0-valid or 1-valid, it is trivial since there
is no ε-far instance. Also, we can show that there is a lin-
ear lower bound when S is affine since it is equivalent to
E3LIN-2, which requires linear query [1]. Testing bipartite-
ness of a graph with a bounded degree takes at least Ω(

√
n)

queries [5]. Since it can be reduced to SAT(S ) such that S is
bijunctive, testing such SAT(S ) requires Ω(

√
n) queries.

The dichotomy theorem for maximum generalized sat-
isfiability problems (Max-SAT(S )) is already known [2]. It
gives a necessary and sufficient condition under which Max-
SAT(S ) is polynomially-solvable assuming P � NP. It is
possible to show linear lower bounds of approximations for
such problems using strong L-reductions.
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