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Learning Speech Variability in Discriminative Acoustic Model
Adaptation

Shoei SATO†a), Takahiro OKU†, Shinichi HOMMA†, Members, Akio KOBAYASHI†, Nonmember,
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SUMMARY We present a new discriminative method of acoustic
model adaptation that deals with a task-dependent speech variability. We
have focused on differences of expressions or speaking styles between tasks
and set the objective of this method as improving the recognition accu-
racy of indistinctly pronounced phrases dependent on a speaking style.The
adaptation appends subword models for frequently observable variants of
subwords in the task. To find the task-dependent variants, low-confidence
words are statistically selected from words with higher frequency in the
task’s adaptation data by using their word lattices. HMM parameters of
subword models dependent on the words are discriminatively trained by us-
ing linear transforms with a minimum phoneme error (MPE) criterion. For
the MPE training, subword accuracy discriminating between the variants
and the originals is also investigated. In speech recognition experiments,
the proposed adaptation with the subword variants reduced the word error
rate by 12.0% relative in a Japanese conversational broadcast task.
key words: speech recognition, speech variability, discriminative training,
acoustic model

1. Introduction

The use of automatic speech recognition (ASR) technol-
ogy has continued to grow in recent years. However, the
performance of ASR should be improved for applications
such as closed-captioning services of live TV programs [1]
and metadata production of archived content [2]. An ASR
system that can generate captions in real-time has been
used successfully for broadcast news and sports commen-
taries [1]. However, it has not demonstrated sufficient ac-
curacy under spontaneous or conversational conditions for
practical applications.

In this paper, TV programs consisting of spontaneous
or conversational speech are our targets for speech recog-
nition. In this kind of speech recognition task, there are
phrases and expressions that are specific to a program or
a speaking style. Spontaneous speech with such particular
wording is often verbose and obscure due to the absence of
scripts. Words pronounced indistinctly while figuring out
the next words to be spoken often have statistics of acoustic
features that are different from training data of an acoustic
model. Compared with spontaneous speech, a large amount
of read speech is available for training acoustic models for
broadcast news. It is, therefore, rational to make use of
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such acoustic models for recognition tasks involving broad-
casts that feature conversations. There is a great need for an
acoustic model adaptation method that improves the accu-
racy of recognizing such task-dependent obscure words.

In the literature, the most common approach used with
the pronunciation variants improves recognition accuracy at
lexicon level. There, pronunciation variation is usually mod-
eled by adding pronunciation variants to the lexicon [3]–[6].
On the other hand, pronunciation variation can also be rep-
resented at the subword level in the acoustic model [4], [7],
[8]. Here, a subword is a unit of a hidden Markov model
(HMM) composing a word, and it typically corresponds to
a phoneme or a triphone in speech recognition. This ap-
proach, however, does not obtain a sufficient gain in a large-
vocabulary task, because such word-independent subword
variants affect all the words with the subwords in a lexicon
without regarding the task dependency or its error tendency.

Using word models rather than subword models is a
straightforward approach for pronunciation variants at the
acoustic model level. The word model is an HMM com-
prised of more states than a subword HMM. The states of
the word model are trained from acoustic features of the
word without subword boundaries, so that it can be used
to train various speech aspects such as deletion of vowels
in rapid utterances. This approach, therefore, also settles
the pronunciation issues addressed by the lexical level ap-
proach. Typically, word models are only trained for the
most frequently occurring words, while subword models
can be used for other words in a large vocabulary task [4].
The number of parameters of an acoustic model, however,
tends to be very large because word-dependent subwords,
i.e. word models, are trained for many function words. This
points to the need for an effective means of selecting words
involving variants.

In this paper, we focus on task-dependent variants of
subwords, which is an approach at the acoustic model level.
The method appends HMMs for the variants and directly
estimates their HMM statistics from task-dependent adap-
tation data. HMMs dependent on words involving the sub-
word variants are newly created with this method.

The proposed method selects words that frequently in-
duce recognition errors by using word frequencies and word
posteriors from the recognized word lattices for the adapta-
tion data. Then, subwords dependent on the selected words
are discriminatively trained by using linear transforms. In
the discriminative adaptation, subword accuracy for a mini-
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mum phoneme error (MPE) criterion is obtained while dis-
criminating between the appended subwords and the origi-
nal ones. This method is expected to improve recognition
accuracy for indistinctly pronounced words or phrases that
are dependent on a speaking style specific to the task.

The rest of this paper is organized as follows. Sec-
tion 2 presents the word identification process of the pro-
posed method, and Sect. 3 describes the discriminative lin-
ear transforms we used. Experimental results on a conversa-
tional broadcast task are given in Sect. 4 with a discussion.
Finally, in Sect. 5 we conclude and outline some directions
for the future work.

2. Identification of Speech Variants

A schematic diagram showing the flow of the proposed
method is presented in Fig. 1. From an original acous-
tic model and adaptation data consisting of utterances and
transcriptions, the proposed method yields a task-adapted
acoustic model by using discriminative adaptation. The
adaptation utterances are decoded to produce lattices of
word hypotheses used for the proposed identification of
words including subword variations. Then the word-
dependent subwords are appended to the acoustic model and
discriminatively adapted to the task. The following is a de-
tailed procedure of the proposed method.

First, with the proposed identification method, frequent
words are selected from the adaptation data given for a task.
A set of wordsWf ,

Wf = {w ∈ Wr; N(w) ≥ Nf}, (1)

is selected from transcriptions of the adaptation utterances
by using the lower limit of word frequency Nf , where Wr

is a set of words observed in the adaptation transcriptions,
and N(w) gives word frequency of a word w. Based on only
these counts, function words in common with any broadcast
task are easily selected, and it is hard to find task-specific
words in the most frequent words. Table 1 gives an example
of the most frequent words w and their frequencies N(w)
observed in a Japanese TV talk show called “Today’s Close-
up” described in Sect. 4.1. In this paper, we use gender-
dependent acoustic models and gender-dependent words by
using gender prefixes of “M ” and “F ” which respectively
indicate male and female.

Second, words are selected fromWf if they frequently
induce recognition errors by task-dependent subword vari-
ants. Expectations of word posteriors of hypothesis lat-

Fig. 1 Schematic diagram of proposed task adaptation.

tices are used in this selection. An example of a lattice
of word hypotheses and a sequence of reference words are
schematically presented in Fig. 2. The word lattice con-
sists of a set of nodes representing points in time and a set
of links {i, j, a, b, c} representing reference and hypothesis
words {wi,wj,wa,wb,wc}. All links are also attached with
forward-backward probabilities, i.e. posterior probabilities,
{pi, p j, pa, pb, pc}.

These probabilities are calculated by using a forward-
probability α( j) and a backward-probability β( j). Let
α(B) = 1.0 be the forward-probability of the beginning si-
lence link, β(E) = 1.0 be the backward-probability of the
ending silence link. Ll( j) is the set of preceding links con-
nected to j, Lr( j) is the set of following links connected from
j, and l( j) is the likelihood calculated from the acoustic and
language scores of link j. p j, α( j), and β( j) are calculated
by using a recursive algorithm.

α( j) =
∑

j′∈Ll( j)

α( j′)l( j′), (2)

β( j) =
∑

j′∈Lr( j)

β( j′)l( j′), (3)

Table 1 Example of the 12 most frequent words w and their frequency
N(w) observed in a program.

w N(w) w N(w) w N(w)
M の 11,602 M は 7,243 M いう 5,692
M と 10,361 F の 6,988 M です 5,032
M が 8,803 M に 6,713 M で 4,401
M ね 7,266 M を 6,564 F と 4,303

Fig. 2 Example of a lattice of word hypotheses and a sequence of refer-
ence words.
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p j =
α( j)β( j)l( j)
α(E)l(E)

. (4)

Let LR be a set of links in the reference sequences and
LH represent a set of links in the hypothesis lattices. Then a
posterior probability of a link j ∈ LH at a section occupied
by a link i ∈ LR can be calculated as a posterior probability
weighted by a ratio of the occupations,

Pi( j) =
Ti( j)
T (i)

p j, (5)

where T (i) is the number of frames occupied by reference
link i, Ti( j) is the number of frames of a reference link i
overlapping with a hypothesis link j. For example, the T s
of links shown in Fig. 2 are T (i) = t1, Ti( j) = t1, Ti(a) = t2,
Ti(b) = t1, and Ti(c) = t3.

Weighted sum of posterior probabilities of a hypothe-
sis word h in periods occupied by a reference word r are ac-
cumulated at Cr(h) over all reference links associated with
word r, {i ∈ LR; wi = r}, and all hypothesis links associated
with h, { j ∈ LH; wj = h}, in the training utterances.

Cr(h) =
∑

{i∈LR;wi=r}

∑

{ j∈LH;w j=h}
Pi( j). (6)

Note that Pi( j) is proportional to Ti( j), and Pi( j) = 0 if i
and j have no overlap period.

Expectation C̄r(h) of a word hypothesis h at a period
occupied by a reference word r is calculated by marginal-
izing over a set of words WH observed in the hypothesis
lattices,

C̄r(h) =
Cr(h)∑

w∈WH Cr(w)
. (7)

Now, C̄r(h = r) is calculated as an expectation of word r
correctly recognized at periods occupied by r. Words with
low expectations are regarded as words comprised of sub-
word variations. The proposed method, therefore, selects a
set of wordsWc,

Wc = {w ∈ Wf ; C̄w(w) ≤ Cs}, (8)

where Cs is a higher limit of the expectation C̄w(w) for the
word selection.

Assuming that each of the least accurate words {w ∈
Wc} comprises variants of subwords, word dependent sub-
word models for these words are newly created by copying
HMM parameters of their original subword models.

An example of the least accurate words, i.e. words with
lower C̄w(w), are given in Table 2 with their statistics of ex-
pectations of posteriors C̄w(w) and occurrences N(w). These
words were automatically selected from the same conver-
sational broadcast TV program as Table 1. The acoustic
model used for this selection was trained from read speech
of broadcast news. Therefore, compared to a set of words
Wf listed in Table 1, task-specific words that were distinc-
tive to conversational speech were selected by the proposed
posteriors C̄w(w).

Table 2 Example of the 12 least accurate words w and their statistics of
C̄w(w) and N(w).

w C̄w(w) N(w) w C̄w(w) N(w)
M ま 0.09 1,212 M あの 0.29 1,914
F ま 0.14 639 M いい 0.37 540

F って 0.19 1,101 M こう 0.38 785
M まあ 0.21 603 M よ 0.38 895
M えー 0.22 939 M だ 0.38 631
F あの 0.24 818 F いう 0.41 2,651

Table 3 Example of word dependent subwords. For practical use,
context-dependent subwords of triphones are generated from these subword
sequences.

word subwords word subwords
M ま M m0, M a0 M あの M a6, M n6, M o6
F ま F m1, F a1 M いい M i:7
F って F Q2, F t2, F e2 M こう M k8, M o:8
M まあ M m3, M a:3 M よ M y9, M o9
M えー M e:4 M だ M d10, M a10
F あの F a5, F n5, F o5 F いう F i11, F u11

F y11, F u:11

Examples of the word-dependent subwords newly cre-
ated from the least accurate words are given in Table 3.
In the table, selected words and given subword sequences
are shown in order of their posteriors C̄w(w). The word-
dependent subwords are represented by concatenations of
gender prefixes of “M ” and “F ,” raw phonemes, and word
indices. For a practical use, context-dependent subwords of
triphones are generated from the subword sequences.

Since gender-dependent words are used for the selec-
tion, gender-dependent subword variants are identified by
using the prefixes, “M ” and “F ”, as well as task-dependent
variants. It is noted that the dependence upon gender can
also be easily extended to the dependence upon speaking
styles of speakers by extending the prefixes to those indicat-
ing speakers or attributes of speakers.

3. Discriminative Adaptation

Discriminative criteria such as MPE [9], [10] have recently
been used to improve speech recognition. The subword vari-
ants extracted by the proposed method should be appropri-
ately adapted to the acoustic model trained with the discrim-
inative criteria. Adaptation methods based on maximum
likelihood (ML) criteria often degrade the recognition per-
formance of discriminative acoustic models because the ML
estimations do not consider the relationship between differ-
ent phonemes. On the other hand, the discriminative mod-
els tend to over-fit to the training data, and they may have
poor generalization ability on unseen test data. To prevent
discriminative models from over-fitting to a rather small
amount of adaptation utterances of the task, a transform-
based approach can be used.

The proposed method adopts discriminative linear
transform (DLT) [11], which is a transform of Gaussian pa-
rameters and is estimated based on the discriminative crite-
ria. The same formula as MLLR is used to adapt a Gaussian
mean μkm for m-th Gaussian component of HMM state k,
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μ̂km = Aμkm + b = Wξkm, (9)

where A is an (n × n) mean transform matrix (n is the di-
mension of the feature), b is a bias vector, W = [bA], and
ξkm = [1μ′km]′ is an extended mean vector.

In the DLT, a transform is estimated in order to maxi-
mize the estimate of phoneme accuracy. The objective func-
tion of the estimation is

FMPE(W) =
∑

sh

P(sh|X,W,Λ)A(sh, sr), (10)

where X is an observation sequence of training data, sr is a
reference sequence of subwords, sh is a hypothesis sequence
of subwords, and Λ is a set of model parameters of an orig-
inal acoustic model. Here, A(sh, sr) is the subword accuracy
of hypothesis sh and can be efficiently estimated by using
subword accuracy Asub(q) of subword link q composing hy-
pothesis word link j ∈ LH.

Assuming that the Gaussian covariances are diagonal,
a closed-form solution can be obtained by estimating wn of
n-th row of matrix W:

wn = G−1
n k′n, (11)

where the statistics Gn and kn are given by:

Gn =
∑

km

1

σ2
km(n)

(
γMPE

km + Dkm

)
ξkmξ

′
km, (12)

kn =
∑

km

1

σ2
km(n)

(
θkm(n) + Dkmμ̃km(n)

)
ξ′km. (13)

Here, σ2
km(n) is the n-th element of the diagonal variance,

Dkm is a smoothing factor empirically determined for each
Gaussian component. The required statistics for this estima-
tion are defined as below:

γMPE
km =

∑

q

∑

t

γkm(t)γMPE
q , (14)

θkm(n) =
∑

q

∑

t

γkm(t)γMPE
q on(t), (15)

where on(t) is the n-th element of the feature at time t and
γkm(t) is an occupation probability of Gaussian component
km at time t.

The key quantity required to optimize the objective
function is:

γMPE
q =

1
κ

∂FMPE

∂ log p(q)
(16)

= γq(c(q) − cavg
R ), (17)

which is the differential of the objective function with regard
to the log likelihood log p(q), for the subword link q, scaled
by 1

κ
. The quantity is also related to the posterior “occupa-

tion probability” γq of link q calculated from lattice-based
forward-backward algorithm, c(q) is average subword accu-
racy A(sh, sr) of subword sequences passing through the link

q, and cavg
R is the average subword accuracy of all the sub-

word sequences in the hypothesis lattice for the R-th training
utterance.

The phone accuracy A(sh, sr) required in the calcula-
tion of c(q) ideally equals the number of correct phones mi-
nus insertions. The exact form of the function, therefore,
equivalently expressed as a sum of Ǎsub(q) over all phones q
in hypothesis sequence sh, where Ǎsub(q) is a function giv-
ing 1 if q is a correct phone, 0 if q is a substitution, and −1
if q is an insertion. Since the computation of the above ex-
pression requires alignment of the reference and hypothesis
sequences and this is computationally expensive, Ǎsub(q) is
approximated as follows. Given a hypothesis subword q, a
subword z in the reference script overlapping in time with q
gives the overlapped proportion of the length e(q, z),

Asub(q) = −1 + 2e(q, z), (18)

if z and q are the same subword, and otherwise,

Asub(q) = −1 + e(q, z). (19)

The value of c(q) is calculated from the subword accu-
racy Asub(q) of link q by using an algorithm similar to the
forward-backward algorithm [9].

Context-dependent subwords whose center subwords
are identical may have too close feature distribution to train
discriminatively. Therefore, context-independent subwords,
namely monophones, are generally used for the subword ac-
curacy calculation represented by Eq. (18) and (19) even if
context-dependent subwords are used for decoding. How-
ever, the subword variations extracted and appended by the
proposed method may have feature distributions that are
very different from the original subwords. The subword ac-
curacy that discriminates between the appended subwords
and the original ones may be effective in the discriminative
training. Therefore, two subword accuracies, Agen and Adisc,
are investigated in this paper.

3.1 Subword Accuracy without Discriminating the Vari-
ants from the Original

The subword accuracy Agen is calculated in a general way;
namely, suffixes of word indices of the subword variations
are ignored for the calculation of Asub(q). For example,
Eq. (18) is applied to the calculation of Asub(q) for a link
q associated with the subword “M m0” at a period occupied
by a reference subword “M m”. In this case, Asub(q) makes
γMPE

q larger than that calculated by Eq. (19). Consequently,
the transforms of these subwords are respectively optimized
without discounting the occupations of features commonly
occupied by these subwords. Agen is, therefore, expected to
yield better performance if the proposed subword variants
have feature distributions that are very close to the original
subwords.

3.2 Subword Accuracy by Discriminating the Variants

In this approach, the subword accuracy Adisc is given by dis-



2374
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.9 SEPTEMBER 2010

criminating between the appended subwords and the origi-
nal one. It is calculated from Asub(q) yielded by using suf-
fixes of word indices. In this case, Eq. (19) is applied to
the calculation of Asub(q) for the link q in the example de-
scribed above. In contrast to Agen, the transforms are esti-
mated by discounting the occupations of features commonly
occupied by these subwords so as to increase the discrimi-
nation between these subwords. It is expected that Adisc will
yield better performance if the subword variants have differ-
ent feature distributions.

Because the subword variants are dependent on words
in the error calculation, recognition errors of subword vari-
ants are also regarded as word errors. This method, there-
fore, partially optimizes parameters of an acoustic model
with the minimum word error criteria.

4. Experiments

4.1 Experimental Setup

Experiments were conducted to evaluate the proposed
acoustic model adaptation. A conversational broadcast of
a Japanese TV talk show called “Today’s Close-up,” which
reports informatively various news stories, was evaluated.
The conversation was comprised by reporting of a female
newscaster along with various in-studio guests. The evalua-
tion speech data, obtained from seven episodes that aired in
May 2008, consisted of 12,356 words uttered by ten speak-
ers. Two of the speakers “overlapped” between the evalua-
tion set and the adaptation utterances described below. One
was the female newscaster, who uttered 3,369 words of the
evaluation set. The other was a male reporter, who uttered
385 words.

The n-gram language models used in this experi-
ment were word bigrams for the first pass in the con-
tinuous speech recognition and trigrams for the second
pass. By using linear interpolation, language models trained
from broadcast news (143 M words), informative reporting
(38 M words), and transcriptions of press conferences (44 M
words) were combined into the model used for the evalua-
tion. There were 100 K vocabulary words, and the trigram
language model showed a perplexity of 87, with an out-of-
vocabulary rate of 0.3% against the evaluation data.

Gender-dependent acoustic models as original models
to be adapted were trained from NHK’s Japanese broad-
cast news data consisting of 340 hours of male utterances
and 250 hours of female utterances. Each gender-dependent
model consisted of about 4 K clustered states with 16 Gaus-
sian mixtures for triphone HMMs with three emission states.
Parameters of the models were estimated using MPE crite-
ria gender-dependently. The gender dependent models were
merged by using gender prefixes of the subwords for the
adaptation. From 248 episodes of the task program, 31
hours of utterances were transcribed for the adaptation. The
transcription consisted of word and gender labels. With
these labels and gender prefixes “M ” and “F ” for sub-
words, the gender-dependent acoustic models were merged

into one set of models and were adapted all at once.
The conventional acoustic model was adaptively

trained without adding any HMMs of subword variants. The
shared 7,941 states of triphone HMMs were clustered ac-
cording to their gender-dependent center phonemes. The
linear transforms of the state parameters were estimated for
these regression clusters as well as a shared silence. Specifi-
cally, there were 81 regression clusters consisting of 40 male
phonemes, 40 female phonemes, and a silence.

For the variant words selected by the proposed method,
the triphone HMMs, and the states referred to by the tri-
phones were created by copying the parameters of their orig-
inals. Then, their word indices were given to the labels of
the HMMs and the states as shown in Table 3. Here, state
sharing was kept if some states were shared by the triphone
HMMs composing the same word. The regression clusters
of the variants were also created by clustering the states ac-
cording to their center phonemes, which include word in-
dices, so that the states referred to by triphones with a com-
mon center phoneme were transformed by the same matrix.
The number of additional HMM states was, therefore, not
proportional to the number of additional regression clusters.

The smoothing value Dkm for the DLT estimation was
chosen as follows,

Dkm = 2.5
∑

q

∑

t

γkm(t) max(0,−γMPE
q ). (20)

A continuous speech recognizer [12] with parallel
gender-dependent acoustic models was used for the eval-
uation. The decoder searches a phonetic lexicon tree for
each gender in parallel, but with a common beam threshold.
Search transitions between male and female are allowed in
frames when the gender attribute changes in the preceding
speech detection based on a dual-gender phoneme recog-
nizer.

4.2 Comparison of Adaptation Methods

With the proposed method, the selection parameter of the
lower limit of a word frequency Nf = 1, 000 extracted 50
words of Wf from the adaptation utterances. Numbers of
extracted words (#words), numbers of regression clusters
(#reg), and numbers of HMM states (#states) of the pro-
posed method are given in Table 4. The proposed acous-
tic model generated by the higher limit of the posterior
Cs = 0.7, Cs = 0.8, and Cs = 0.9 are compared with the
conventional acoustic model. By increasing Cs, numbers
of the acoustic model parameters were increased. When Cs

Table 4 Increase in number of parameters due to the proposed method
(Nf = 1, 000).

method #words #reg #states
conventional 0 81 7941

proposed Cs = 0.7 31 153 8166
proposed Cs = 0.8 45 200 8337
proposed Cs = 0.9

50 221 8417
OnlyWf (Cs = 1.0)
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was 0.9, all 50 words ofWf were extracted. The proposed
method with Cs = 0.9 and Cs = 1.0, therefore, created new
476 HMM states.

Figure 3 compares the word error rates (WERs) of the
conventional method, the proposed method based on Agen,
and the proposed method based on Adisc. This figure shows
the result of Cs = 0.7 and the WERs are plotted with it-
erations of parameter updates, since DLTs are estimated in
an iterative manner. A WER plotted at 0 in the iteration
is a result yielded by the acoustic model without adaptation.
The estimation was repeated six times, beyond which no im-
provements were observed.

The proposed method reduced WERs compared with
the conventional method for both subword accuracy Agen

and Adisc. The largest improvement was yielded by the pro-
posed method based on Adisc. In this case, WER was 19.6%
with a word error reduction rate of 10.9% compared to the
WER of 22.0% by the model without adaptation.

As described in Sect. 3, there are two possible reasons
why Adisc showed a slightly lower WER than Agen. One is
the overlap of the feature distributions observed between
the subword variants and the original subwords. Improve-
ment of discriminative ability between them might made
the recognition accuracy better. The other reason is a cri-
teria used for the estimation of the HMM parameters. As
described in Sect. 3.2, the proposed method based on Adisc

partially trains transforms of words likely to be falsely rec-
ognized with minimum word error criteria. Such a criteria
might reduce the word errors.

Recognition results of the proposed method extracting
word variants with Cs = 0.8 and Cs = 0.9 are respectively
given in Fig. 4 and Fig. 5 in a similar manner with Fig. 3.
As Cs was increased from 0.7 to 0.9, more confident words,
which were correctly recognized, were selected for a set of
word variantsWc. By increasing the number of these con-
fident words in Wc, the difference in WER between Agen

and Adisc became smaller. It is expected that the subword
variations appended by these confident words have feature
distributions that were very close to the original subwords
while the subword variants of less confident words had dif-
ferent distributions from the original ones. If the calcula-
tion of subword accuracy had been optimized according to a
word confidence C̄w(w), i.e. Adisc had been applied to falsely
recognized words and Agen had been applied to confident
words, more improvement might be yielded. Further inves-
tigation is necessary to clarify the exact reason of the differ-
ence between Agen and Adisc.

The largest improvement in these experiments was
yielded when Cs = 0.8, and WER was 19.3% with a word
error reduction rate of 12.3%. The Wc for Cs = 0.9 was
identical with the set of words Wf consisting of the 50
words selected by only the lower limit of word frequency
Nf = 1, 000. Subword variants created for the set of words
Wf (Cs = 1.0 and Cs = 0.9) showed WER of 19.6% and did
not reduce WER compared to the proposed word setWc se-
lected by Cs = 0.7 or Cs = 0.8. Decreasing the higher limit
of the posterior Cs = 0.7, the proposed method created only

Fig. 3 Comparison of WER with different adaptation methods (Nf =

1, 000, Cs = 0.7).

Fig. 4 Comparison of WER with different adaptation methods (Nf =

1, 000, Cs = 0.8).

Fig. 5 Comparison of WER with different adaptation methods (Nf =

1, 000, Cs = 0.9 and Cs = 1.0).

225 states and 47% of HMM states (476 states) by only the
lower limit of word frequency Nf = 1, 000, and it efficiently
selected the subword variants to achieve the improvement.
It is also noted that Cs = 0.8 reduced the WER by creat-
ing 83% of additional states of Wf . It is confirmed that
the proposed word selection is effective by introducing the
word confidence C̄w(w) in the discriminative acoustic model
adaptation.

In the following section, Adisc was used for the adap-
tation experiments and iterative parameter estimation was
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Fig. 6 Comparison of WER with different Nf .

Fig. 7 WERs yielded by numbers of HMM states created for subword
variants.

repeated 5 times.

4.3 Comparison of Increased Number of Model Parame-
ters

Figure 6 compares WERs yielded by four different Nfs of
1,500, 1,000, 500, and 200. WERs are plotted against the
value of Cs from 0.6 to 0.9. By decreasing the number
of the lower limit of a word frequency Nf from 1,000 to
200, WERs with Cs = 0.8 were increased because of over
training of newly created HMM states. Since occupation
counts were allocated between additional states and the orig-
inal states, accuracies of estimated parameters of the origi-
nal states might be degraded by an excessive supplement of
subword variants. Subword variants with Nf = 1, 500 and
Cs = 0.8 also increased WERs because smaller numbers of
subword variants were extracted than those of optimal vari-
ant extraction. WERs with Cs = 0.9 except for Nf = 200
were not improved compared with those with Cs = 0.8.
The proposed method, therefore, achieved lower WERs for
Cs = 0.8 with smaller numbers of additional HMM states
than those for Cs = 0.9.

Changing the value of Cs, Fig. 7 plots WERs against
Δ states, which are numbers of HMM states newly cre-
ated for subword variants. When Δ states are less than
400, Nf = 1, 000 achieved almost the lowest WERs in
those achieved by the other Nfs at the same Δ states. It

Fig. 8 Word probabilities P(w) of the 100 most frequent words in the
adaptation data.

is confirmed that the proposed method of Nf = 1, 000 and
Cs = 0.8 efficiently created subword variants. This result
had a statistically significant level of 0.03 in a matched pairs
test [13] in comparison with the result of the word variants
selected without the parameter Cs, which created 20% more
variant states.

Figure 8 shows the word probabilities P(w) of the 100
most frequent words in the adaptation data. In this exper-
iment, Nf = 1, 000 was equivalent to P(w) > 0.003 and
P(Wf) was 0.42. P(Wf) selected by Nf = 500 was 0.5.
Figure 7 shows that the additional HMM states of words se-
lected by Nf = 500 did not reduce the WER because the
P(w)s of the words were rather small. If the distribution of
P(w)s is close to that of Fig. 8, it is an indication that the pro-
posed method improves the recognition as a result of setting
Nf so that P(Wf) is about 0.4.

On the other hand, such an issue of over-training as a
result of Nf = 200 is dependent on the amount of adapta-
tion data and number of parameters composing the acoustic
model. Finding the optimal value of Nf to prevent over-
training requires an effective method for estimating the ade-
quacy of models’ discriminative ability for given adaptation
data.

In this experiment, Adisc in the proposed method was
applied to both subwords, to which Agen or Adisc should have
been applied. The ratio of these sets of subwords is depen-
dent on the speaking style of the given task. The optimal
value of Cs = 0.8, therefore, may change with the ratio.
However, Cs may be easily optimized if the subword accu-
racy Asub is adequately selected according to the discrimina-
tive ability of C̄w(w), as mentioned in Sect. 4.2. The selec-
tion of Asub would also improve recognition accuracy.

4.4 Improvements of Variant Words

The error rates of each adaptation method are listed in Ta-
ble 5 in order to compare the improvements regarding the 45
variant words selected with Cs = 0.8 and the other words.
WERs for all the evaluation data are compared with key-
word error rates (KER) under the assumption that the 45
variant words are our objective keywords. The error reduc-
tions relative to the acoustic model without adaptation are
also shown. Conventional adaptation, which has no addi-
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Table 5 Error rates and error reductions for all evaluation words and
variant words. [%]

Adaptation WER Reduction KER Reduction
w/o adaptation 22.0 0 28.2 0

conventional 20.5 6.8 26.4 6.4
proposed 19.3 12.3 24.4 13.5

Fig. 9 Error reductions of speakers relative to the original acoustic
model.

tional subword variants, achieved a 6.4% keyword error re-
duction. On the other hand, the proposed method achieved
a 13.5% keyword error reduction.

The conventional method achieved 6.8% of word er-
ror reduction for all the evaluation data and the proposed
method reduced 12.3% of error words. This reduction was
close to one calculated by only the keywords. Besides fea-
tures occupied by corresponding subwords of references,
features occupied by subwords of error hypothesis are used
for the discriminative estimation of HMM parameters. It is,
therefore, considered that error words besides errors occur-
ring on the selected 45 words were reduced by the discrimi-
native training of the proposed subword variants.

4.5 Comparison of Improvements of Speakers

As described in Sect. 4.1, two closed evaluated speakers
were also included in the adaptation data. To confirm the
improvement of the open speakers, the error reduction rates
for each speaker are plotted in Fig. 9. This figure shows the
reduction rates relative to the original acoustic model. The
result of the closed speakers are plotted with squares, where
the black ones show the results of the female newscaster, and
the white ones show the result of the male reporter. It was
confirmed that WERs of all the open speakers were reduced
by the proposed acoustic model adaptation by repeating the
discriminative estimation more than four times. The maxi-
mum error reduction rate of 18% was yielded from one of
the open speakers and minimum error reduction rate of 1.4%
was yielded from another open speaker.

Improvements relative to the conventional adaptation
are also confirmed in Fig. 10, which shows the error reduc-
tions for each speaker. Speaker IDs of 1 and 2 are the re-
sult of the closed speakers: the news caster and the reporter,

Fig. 10 Error reductions of speakers relative to the conventional adapta-
tion.

respectively. The maximum error reduction rate of 9.8%
was yielded from one of the open speakers and minimum
error reduction rate of 1.3% was yielded from another open
speaker.

It is confirmed that the proposed method extracted not
only speaker-dependent subword variants but also speaker-
independent subword variants.

5. Conclusion

This paper proposed a new discriminative method of acous-
tic model adaptation that deals with a task-dependent speak-
ing style and acoustic variants. To improve recogni-
tion accuracy against indistinctly pronounced words, the
method newly creates subwords dependent on words induc-
ing recognition errors by using recognized word lattices for
the adaptation data.

A transcription experiment implementing this method
for a Japanese conversational broadcast showed that the pro-
posed adaptation reduced error words by 12.3% relative to
the original acoustic model and 5.9% relative to the con-
ventional adaptation. It is also confirmed that the proposed
method efficiently achieved lower WERs with smaller num-
bers of additional HMM states than those achieved by sub-
word variants with only the lower limit of the word fre-
quency.

Future efforts will involve optimizing discriminative
abilities of subword variants and extending dependencies
of subword variants. As described in Sect. 4.2, the pro-
posed method is expected to yield more improvement if the
method appropriately choose Agen or Adisc as Asub(q) de-
pendently on the corresponding words. The most feasible
method could be to calculate the accuracy Asub(q) accord-
ing to word confidence C̄w(w). While this paper identifies
subword variants observed in words independently of their
context, parameters of HMMs for subword variants are ex-
pected to be estimated more accurately by identifying sub-
word variants dependent on their word context in commonly
observed phrases.
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