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Speaker Recognition by Combining MFCC and Phase Information
in Noisy Conditions
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SUMMARY In this paper, we investigate the effectiveness of phase for
speaker recognition in noisy conditions and combine the phase informa-
tion with mel-frequency cepstral coefficients (MFCCs). To date, almost
speaker recognition methods are based on MFCCs even in noisy condi-
tions. For MFCCs which dominantly capture vocal tract information, only
the magnitude of the Fourier Transform of time-domain speech frames is
used and phase information has been ignored. High complement of the
phase information and MFCCs is expected because the phase information
includes rich voice source information. Furthermore, some researches have
reported that phase based feature was robust to noise. In our previous study,
a phase information extraction method that normalizes the change variation
in the phase depending on the clipping position of the input speech was
proposed, and the performance of the combination of the phase informa-
tion and MFCCs was remarkably better than that of MFCCs. In this paper,
we evaluate the robustness of the proposed phase information for speaker
identification in noisy conditions. Spectral subtraction, a method skipping
frames with low energy/Signal-to-Noise (SN) and noisy speech training
models are used to analyze the effect of the phase information and MFCCs
in noisy conditions. The NTT database and the JNAS (Japanese Newspa-
per Article Sentences) database added with stationary/non-stationary noise
were used to evaluate our proposed method. MFCCs outperformed the
phase information for clean speech. On the other hand, the degradation of
the phase information was significantly smaller than that of MFCCs for
noisy speech. The individual result of the phase information was even
better than that of MFCCs in many cases by clean speech training mod-
els. By deleting unreliable frames (frames having low energy/SN), the
speaker identification performance was improved significantly. By inte-
grating the phase information with MFCCs, the speaker identification error
reduction rate was about 30%–60% compared with the standard MFCC-
based method.
key words: speaker identification, phase information, MFCC, noisy envi-
ronment, GMM

1. Introduction

Speaker recognition performance degrades remarkably in
noisy environments [1]–[9]. Missing feature theory and
spectral subtraction were used in many speaker recogni-
tion task in noisy environments [1]–[4]. In [2], a method
that combined multicondition model training and missing-
feature theory to model noise with temporal-spectral char-
acteristics was proposed. Multicondition training was con-
ducted using simulated noisy data of simple noise charac-
teristics, providing a coarse compensation for the noise, and
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missing-feature theory was applied to refine the compen-
sation by ignoring noise variation outside the given train-
ing conditions, thereby accommodating training and test-
ing mismatch. The speaker identification rate of the pro-
posed method was improved to 85%–94% from 53%–82%
for 20 dB noisy speech and improved to 51%–75% from
12%–43% for 10 dB noisy speech by MFCC-based GMMs
trained on the multicondition data for TIMIT database [2].
Parallel model combination (PMC) technique was also ap-
plied in speaker recognition [5], [6]. The use of microphone
arrays to improve noise robustness for speaker recognition
has been discussed in [7], [8]. A noise-robust multi-stream
speaker verification method using F0 information was pro-
posed and evaluated in [9].

Almost all of above methods were based MFCCs,
which only used the magnitude of the Fourier Transform
of time-domain speech frame, that is, the phase compo-
nent has been ignored. The MFCCs dominantly capture
the speaker-specific vocal tract information. Feature pa-
rameters extracted from excitation source characteristics are
also useful for speaker recognition [10]–[13]. Almost all of
these are based on Linear Predictive Coding (LPC) analysis.
Therefore, the separation between sound source characteris-
tics and vocal tract characteristics is incomplete. Markov
and Nakagawa proposed a GMM-based text-independent
speaker recognition system integrating the pitch and LPC
residual with the LPC derived cepstral coefficients [10].
Their experimental results showed that using pitch infor-
mation was most effective when the correlation between
pitch and the cepstral coefficients was taken into consider-
ation. Zheng et al. proposed a speaker verification system
using complementary acoustic features derived from the vo-
cal source excitation and the vocal tract system [12], [13].

The importance of phase in human speech recognition
has been reported in [14]–[17]. Paliwal and Alsteris also in-
vestigated the relative importance of short-time magnitude
and phase spectra on speech perception [14]. Human per-
ception experiments were conducted to measure intelligibil-
ity of speech tokens synthesized from either the magnitude
or phase spectrum. It was shown in [14] that even for shorter
windows, the phase spectrum can contribute as much as the
magnitude spectrum to speech intelligibility if the shape of
the window function is properly selected. In [15], Shi et al.
analyzed the effects of uncertainty in the phase of speech
signals on the word recognition error rate of human listen-
ers. Their results indicated that a small amount of phase er-
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ror or uncertainty does not affect the recognition rate, but
a large amount of phase uncertainty has a significant ef-
fect on the human speech recognition rate. Therefore, we
expect that the phase may also be important in automatic
speech/speaker recognition. In particular, the phase is im-
portant for speaker recognition, because it can convey voice
source information.

Recently, many speaker recognition studies using
group delay based phase information have been pro-
posed [18]–[20]. Group delay is defined as the negative
derivative of the phase of the Fourier transform of a sig-
nal. So it is very related to our phase information. In [19],
the authors analytically showed why the group delay based
phase are robust to noise. The reader can refer to [19] for
the explanation of noise robustness of modified group delay.
A speaker verification task on the NIST 2003 dataset [21]
resulted in better performance for modified group delay fea-
tures [18] (about 15% EER) when compared to conventional
MFCC features (about 18% EER). In [20], the authors
proposed an alternative complementary feature extraction
method to reduce the variability of group delay features de-
rived from the speech spectrum with least squares regular-
ization. The proposed log compressed least square group
delay achieved 10.01% Equal Error Rate (EER) compared
to 7.64% EER for MFCC, and the fusion of group delay
and MFCC improved to 7.16% EER for NIST 2001 SRE
database. Evaluations on the NIST 2008 SRE databases
showed a relative improvement of 18% EER respectively
when group delay-based system was fused with MFCC-
based system. Actually, the group delay based phase con-
tains both the power spectrum and phase information, so the
complementary nature of power spectrum-based MFCC and
group delay phase was not remarkable.

In this paper, we focus on the investigation whether
or not the phase information without power-spectrum infor-
mation directly extracted from Discrete Fourier Transform
(DFT) of an input speech is effective for speaker recogni-
tion in noisy conditions. In our previous study [22], [23], we
proposed a phase information extraction method that nor-
malizes the change variation in phase {θ̃} or {cos θ̃, sin θ̃} de-
pending on the clipping position of the input speech, even
with the same frequency.

The proposed phase information was very effective
for speaker identification and speaker verification for clean
speech [22], [23]. In this paper, we investigate the robust-
ness of the proposed phase information for speaker iden-
tification in noisy conditions and combine the phase in-
formation with MFCCs. Various speech databases added
with various noise nature and Signal-to-Noise Ratio (SNR)
are used to verify the robustness of phase to noise. Var-
ious noise-robust processing techniques, such as a spe-
cial missing feature theory which skips frames with low
energy/SN, spectral subtraction and noisy speech training
models etc. are used for the phase information based method
or MFCC-based method, which aim to analyze the effect of
the phase information and MFCCs under match and mis-
match conditions in noisy environments. To verify the ro-

bustness of the phase-based method for speaker recognition
in noisy environments, we conducted the speaker recogni-
tion experiments on a small scale NTT database [30] and a
large scale JNAS (Japanese Newspaper Article Sentences)
database [31].

The remainder of this paper is organized as follows:
Sect. 2 formulates the phase information. Section 3 briefly
describes the combination method for speaker recognition.
Some noise-robust techniques, such as noisy speech train-
ing models, spectral subtraction and a special missing fea-
ture theory are introduced in Sect. 4. The experiments for
speaker identification using phase information in noisy con-
ditions are evaluated in Sect. 5. Finally, Sect. 6 summarizes
this paper.

2. Phase Information Extraction [22], [23]

In [22], [23], we investigated the effect of phase on speaker
recognition using both synthesized and human speech. The
conclusion reached was that phase information was effective
for speaker recognition. In this section, a phase information
extraction method is described.

The short-term spectrum S (ω, t) for the t-th frame of
a signal is obtained by the DFT of an input speech signal
sequence

S (ω, t) = X(ω, t) + jY(ω, t)

=
√

X2(ω, t) + Y2(ω, t) × e jθ(ω,t), (1)

where ω is radian frequency, X(ω, t) and Y(ω, t) are the real
part and imaginary part of spectrum, respectively. For con-
ventional MFCCs, power spectrum {X2(ω, t) + Y2(ω, t)} is
used, but the phase information θ(ω, t) is ignored. In this
paper, phase θ(ω, t) is also extracted as one of the feature pa-
rameters for speaker recognition. GMMs used in this paper
are insensitive to the temporal aspects of the speech. Thus,
θ(ω, t) and 2π + θ(ω, t) can express the same speaker char-
acteristics by GMMs by constraining phases extracted from
all frames to [0, 2π] or [−π, π]. In this paper, all the phases
are constrained to [−π, π].

However, the phase θ(ω, t) changes depending on the
clipping position of the input speech even with the same
frequency ω. To help the reader to understand the effective-
ness of our proposed phase processing, an example of the
effect of the clipping position on phase for Japanese vowel
/a/ is illustrated in Fig. 1. As shown in Fig. 1 (b), the un-
normalized wrapped phases of two windows become quite
a bit different because the phases change depending on the
clipping position. X-axis means frequency and y-axis means
phase value from −π to π. In Fig. 1 (b), horizontal axis is fre-
quency in Hz and vertical axis is phase value. It is obvious
that the phase θ(ω, t) differs for different clipping positions.
For speaker recognition using phase information, the phases
extracted from two different windows of the same sentence
from the same people should be as small as possible. Thus,
it is necessary to normalize the phase distortion to decrease
the difference of two phases from two different windows.
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Fig. 1 Example of the effect of clipping position on phase for Japanese
vowel /a/.

A basic processing for the elimination of the dif-
ferent position influences is explained as following. Let
s1, s2, · · · , s128, {s129 = s1} be the sampling sequence for a
cyclic function. The phase of s1, s2, · · · , s128 and the phase
of s2, · · · , s128, s1 are different each other. The difference
for the radian frequency ω is 1/128 × ω/2π. By using this
relation, we can get the normalizing equation.

To overcome this problem, the phase of a certain basis
radian frequency ωb of all frames is converted to constant,
and the phase of the other frequency is estimated relative to
this. In the experiments discussed in this paper, the phase of
basis radian frequency ωb is set to 2π × 1000 Hz. For exam-
ple, setting the phase of the basis radian frequency θ(ωb, t)

to π/4, we have

S
′
(ωb, t) =

√
X2(ωb, t) + Y2(ωb, t)

× e jθ(ωb,t) × e j( π4−θ(ωb,t)). (2)

The difference of unnormalized wrapped phase θ(ωb, t) on
basis frequency ωb in Eq. (1) and the normalized wrapped
phase in Eq. (2) is ( π4 − θ(ωb, t)). With ω = 2π f in the other
frequency (that is, ω � 2π × 1000 Hz), the difference be-
comes ω

ωb
( π4 − θ(ωb, t)). Thus, the spectrum on frequency ω

becomes

S
′
(ω, t) =

√
X2(ω, t) + Y2(ω, t)

× e jθ(ω,t) × e j ωωb
( π4−θ(ωb,t))

=
√

X2(ω, t) + Y2(ω, t) × e jθ̃(ω,t)

= X̃(ω, t) + jỸ(ω, t), (3)

and the phase can be normalized. Then, the real and imagi-
nary parts of Eq. (3) are given by

X̃(ω, t) =
√

X2(ω, t) + Y2(ω, t)

× cos

{
θ(ω, t) +

ω

ωb

(
π

4
− θ(ωb, t)

)}
, (4)

Ỹ(ω, t) =
√

X2(ω, t) + Y2(ω, t)

× sin

{
θ(ω, t) +

ω

ωb

(
π

4
− θ(ωb, t)

)}
, (5)

and the phase information is normalized as

θ̃(ω, t) = θ(ω, t) +
ω

ωb

(
π

4
− θ(ωb, t)

)
, (6)

where it is referred to the proposed original phase or the
original normalized phase.

To reduce the number of feature parameters, we used
only phase information in a sub-band frequency range.
However, there is a problem with this method when com-
paring two phase values. For example, with the two values
π − θ̃1 and θ̃2 = −π + θ̃1, the difference is 2π − 2θ̃1. If
θ̃1 ≈ 0, then the difference ≈ 2π, despite the two phases be-
ing very similar to one another. Therefore, for this research,
we changed the phase into coordinates on a unit circle, that
is,

θ̃ → {cos θ̃, sin θ̃}. (7)

In this paper, the proposed modified phase information
{cos θ̃, sin θ̃} is used to perform speaker identification in
noisy conditions.

The unnormalized wrapped phase obtained from
Eq. (1) and the normalized wrapped phase obtained from
Eq. (6) were compared in Fig. 1 (b) and (c). After normal-
izing the wrapped phase by Eq. (6), the phase values shown
in Fig. 1 (c) become very similar, that is to say, the normal-
ized wrapped phase is more adaptable to speaker recogni-
tion. For this example, the Euclidian distance of unnormal-
ized wrapped phases and normalized wrapped phases of two
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different clipping windows were 21.6 and 8.3, respectively.
Even the wrapped phase was normalized, it has a prob-
lem when comparing two phases which are near π or −π,
the difference was very large despite the two phases being
very similar to one another. For example, two unnormalized
wrapped phases on 390 Hz were 3.130 and −3.1396, respec-
tively. The difference of two original unnormalized wrapped
phases obtained from Eq. (6) were 6.2696 even they should
be similar. If the original unnormalized wrapped phase was
changed to modified normalized wrapped phase {cos θ̃, sin θ̃}
obtained from Eq. (7), the difference became to {0, 0.01}.
Thus, the modified normalized wrapped phase was more ef-
fectively capture the speaker characteristics.

3. Combination Method

A Gaussian Mixture Model (GMM) is widely used as a
speaker model [24]–[27]. The use of GMM for model-
ing speaker identity is motivated by the fact that the Gaus-
sian components represent some general speaker-dependent
spectral shapes and by the capability of Gaussian mixtures
to model arbitrary densities.

In this paper, the GMM based on MFCCs is combined
with the GMM based on phase information. When a combi-
nation of two methods is used to identify/verify the speaker,
the log likelihood of MFCC-based GMM is linearly coupled
with that of the phase information based GMM to produce a
new score Ln

comb given by [26], [27]

Ln
2 = (1 − β)Ln

MFCC + βL
n
phase, n = 1, 2, · · · ,N, (8)

where Ln
MFCC and Ln

phase are the log likelihood produced
by the n-th MFCC-based speaker model and phase infor-
mation based speaker model, respectively. N is the num-
ber of speakers registered and β denote weighting coeffi-
cients. A speaker with maximum score is decided as the
target speaker.

4. Speaker Identification Methods in Noisy Environ-
ment

Speaker identification performance degrades remarkably in
noisy environments [2], [3]. The standard approches are
based on multicondition model training, missing theory [2],
[3] or spectral subtraction. In this paper, we focus on the
investigation whether or not the phase information is effec-
tive for speaker identification in noisy environments. We use
models trained by noisy data, a special technique of missing
feature theory, and spectral subtraction.

4.1 Spectrum Subtraction with Smoothing of Time Direc-
tion

The observation signal x is assumed to be the sum of speech
signal s and noise n, namely, x = s + n. Spectral subtrac-
tion [28] in the power spectral domain is defined as below:

|S̃ i(t)|2 = |Xi(t)|2 − α|Ñi|2, (9)

where |S̃ i(t)|2 and |Xi(t)|2 are the i-th components of the esti-
mated power spectrum of clean speech and the power spec-
trum of observed signals at time t, respectively, while |Ñi|2
is the i-th component of apriori estimated power spectrum
of noise, and α is the overestimation factor. In this pa-
per, the i-th components of the estimated spectrum of clean
speech at time t S̃ i(t) which is calculated from the estimated
power spectrum of clean speech |S̃ i(t)|2 and phase of ob-
served noisy speech at time t, and it is used to reconstruct
the clean speech. We can express |Xi(t)|2 as:

|Xi(t)|2 = |S i(t)|2 + |Ni(t)|2
+ 2|S i(t)||Ni(t)| cos θi(t), (10)

where |S i(t)| and |Ni(t)| are the true values for speech and
noise, and θi(t) is the phase difference between speech and
noise.

Here, we define the smoothing method of time direc-
tion to eliminate the effect of the phase difference between
speech and noise as follows [29]:

|Xi(t)|2 ≈ |S i(t)|2 + |Ni(t)|2. (11)

Replacing |Xi(t)|2 in Eq. (9) with |Xi(t)|2, Eq. (9) becomes

|S̃ i(t)|2 ≈ |S i(t)|2 + |Ni(t)|2 − α|Ñi|2. (12)

Therefore, we can estimate the speech signal more accu-
rately if we can estimate |Ñi| accurately. Here, |Ñi| was esti-
mated by averaging power spectrum of silence speech (noise
only) at beginning of test sentence.

4.2 Skipping Low Energy/SN Frames or Unreliable
Frames

Even if noise is stationary, SN ratio at every frame depends
on the power of speech. For example, the power of vowel
is stronger than that of unvoiced consonants, in other words,
the SN ratio for vowel parts is larger than that for unvoiced
consonant parts. Therefore, we caluclate the likelihood of
speaker models for a given noisy utterance using only a cer-
tain percentage frames having higher energy. This is our
concept of skipping low SN frames. This is a special case
of missing feature theory, that is, all features in a frame are
missed. This approach is suitable for robust speaker identi-
fication.

4.3 Model Training Using Noisy Speech

Multicondition model training is effective for noisy environ-
ments as well as a clean environment. Therefore, we used
a speaker model trained using utterances in noisy environ-
ments.

5. Experiments

5.1 Database and Speech Analysis

We used the NTT database [27], [30] and the JNAS
(Japanese Newspaper Article Sentences) database [31] for
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the experiments.
The NTT database consists of recordings of 35 speak-

ers (22 males and 13 females) collected in 5 sessions over
10 months (1990.8, 1990.9, 1990.12, 1991.3, 1991.6) in a
sound proof room uttered at normal, fast and slow speak-
ing style mode [30]. The content of the sentence utterance
of NTT database is subset of the ATR 503 phonetic bal-
ance sentences. In this paper, only the sentences uttered at a
normal speaking mode were used. Five same sentences for
all speakers from one session (1990.8) were used to train
speaker-specific GMMs. Our former study [26], [27] indi-
cated that the speaker-specific GMM obtained slightly bet-
ter performance than the speaker-adapted GMM in the case
of 20 second training data. The speaker-specific GMM us-
ing small training data worked well because the number of
mixtures of GMMs is relative small and the style of speech
data is read speech. So we used the speaker-specific GMMs
in this paper. Of course, the more the training data size
is, the higher the speaker identification rate becomes. Five
other sentences every from the other four sessions were used
as test data. In other words, the test corpus consisted of
35 × 5 × 4 = 700 trials for speaker identification. The av-
erage duration of the sentences is about 4 seconds. GMMs
with 32 mixtures having diagonal covariance matrices were
used as speaker models.

The scale of the NTT database is relatively small.
The speaker experiment conducted on a large scale JNAS
database [31] was also used to verify the robustness of our
proposed phase-based method for speaker recognition in
noisy environments. For the JNAS dababase, 270 speak-
ers (135 males and 135 females) in the JNAS database were
used for speaker identification. The content of the sentence
utterance of JNAS database is Japanese newspaper article
sentences. The reading text was made up of 150 sets which
consisted of about 100 sentences each. Each speaker read
one of 150 sets. All sentences were collected with headset
microphone. 10 sentences (about 2 seconds†/sentence) were
used for training speaker-specific GMMs, and 90 sentences
(about 5.5 seconds† /sentence) were used for test. The test
corpus consisted of 270 × 90 = 24300 trials for speaker
identification. GMMs with 128 mixtures having diagonal
covariance matrices were used as speaker models.

To obtain the noisy speech, we added stationary noise
(in a computer room) and non-stationary noise (in an exhibi-
tion hall) to the utterance at the average SN ratios of 20 dB
and 10 dB, respectively. The input speech was sampled at
16 kHz. 12 MFCCs for the NTT database††and 25 MFCCs
(12 MFCCs and their first-order derivatives plus the first
derivative of the power component) for the JNAS database
were calculated at every 10 ms with a window of 25 ms †††.
The spectrum with 128 components consisting of magni-
tude and phase was calculated every 5 ms with a window
of 12.5 ms ††††. FFT for 256 sampling points is performed,
and we can get 128 components (128 real components and
128 imaginary components), in other words, 128 magni-
tude and 128 phase components. Literature [23] showed that
the first 12 feature parameters, that is, from the 1st compo-

nent (line spectrum: 8000/128 Hz) to 12th component (line
spectrum: 8000/128 × 12 Hz) of the spectrum (frequency
range: 60 Hz – 700 Hz) achieved the best identification per-
formance of all the other sub-band frequency ranges. In this
frequency range, the phase information has richer speaker
characteristics than the power/magnitude spectrum [22]. In
this paper, the phase information obtained from the lowest
12 components of the sub-band spectrum was used to eval-
uate the robustness of phase in noisy conditions. In our
previous study [23], speaker identification performance of
the modified normalized phase {cos θ̃, sin θ̃} obtained from
Eq. (7) was significantly better than that of the original nor-
malized phase {θ̃} obtained from Eq. (3) for NTT database of
clean speech. On the other hand, as shown in Fig. 2 (b), the
conventional phases without normalization extracted from
two different windows of the same vowel from the same peo-
ple were quite a bit different despite the fact that they should
be very similar. So we think that the speaker recognition
of the conventional phase without normalization would be
very low. Therefore, only the modified phase {cos θ̃, sin θ̃} is
used in this paper. The modified phase {cos θ̃, sin θ̃} means
that the phase values {θ̃} are transformed to coordinates by
Eq. (7), resulting in double the number of parameters com-
pared with phase {θ̃}. So the dimensions of the phase in-
formation corresponding to the lowest 12 components were
24.

5.2 Speaker Identification Results

5.2.1 Speaker Identification on NTT Database

We conducted the speaker identification experiment using
phase information on the NTT database.

The speaker identification results by individual method
and combination method by GMMs trained on clean speech
are shown in Table 1 (a). For clean speech, although the per-
formance of the phase-based method was worse than that
of the MFCC-based method, the method has a basic speaker
identification ability. As such, it is useful to use the phase in-
formation to identify a speaker. The combination of MFCCs
and phase was significantly better than individual MFCC-
based method. For noisy speech, the performance of phase
information was similar to that of MFCC. The individual
phase-based method even outperformed individual MFCC-

†Excluding about 2 seconds silence at beginning and ending of
a sentence.
††In this paper, speaker identification experiment based on NTT

database was used as a preliminary experiment. For the sake of
convenience, 12 MFCCs were used. Of course, the better perfor-
mance may be achieved if 25 MFCCs including ΔMFCCs will be
used for NTT database (refer to Markov’s paper [10]). However,
the trend of our conclusion that the combination of the MFCC-
based method and the phase information based method outper-
forms the MFCC-based method is the same.
†††DFT with 512 samples (400 points of data plus 112 zeros)

was used.
††††DFT with 256 samples (200 points of data plus 56 zeros) was

used.
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(a) non-stationary noisy speech

(b) stationary noisy speech

Fig. 2 Speaker identification results of combination of MFCC with SS-
SMT and Phase by GMMs trained on clean speech for NTT database.

Table 1 Speaker identification result by GMMs trained on clean speech
(%).

test data MFCC Phase comb weight β

(a) NTT database
clean speech 97.7 73.4 99.3 0.2

non-stationary 20 dB 76.7 63.4 91.3 0.5
non-stationary 10 dB 42.4 42.9 66.6 0.5

stationary 20 dB 75.9 65.9 91.9 0.5
stationary 10 dB 36.0 38.7 59.7 0.6

Average 57.8 52.7 77.4

(b) JNAS database
clean speech 98.5 88.7 98.9

non-stationary 20 dB 51.0 60.8 81.6 0.7
non-stationary 10 dB 17.5 19.2 29.4 0.8

stationary 20 dB 36.4 72.0 72.0 1.0
stationary 10 dB 20.8 46.0 46.0 1.0

Average 31.4 49.5 57.3

based method for low SNR (10 dB) speech. By combin-
ing phase and MFCC, the average identification error rate
of stationary and non-stationary noisy speech was reduced
to about 8.4% (100 − (91.3 + 91.6)/2) from 23.7% (100 −

Table 2 Speaker identification result by GMMs trained on noisy speech
(%).

training data test data MFCC Phase comb

(a) NTT database
non-stationary non-stationary 20 95.9 66.0 98.0

noise non-stationary 10 89.3 47.3 93.7
20 dB stationary 20 93.9 65.1 96.4

stationary 10 81.1 43.4 88.7
Average 90.1 55.5 94.2

non-stationary non-stationary 20 90.0 53.7 93.7
noise non-stationary 10 93.1 51.7 95.3
10 dB stationary 20 91.7 53.3 94.9

stationary 10 87.7 49.7 91.3
Average 90.6 52.1 93.8

stationary stationary 20 96.4 66.7 98.4
noise stationary 10 88.6 46.0 93.6
20 dB non-stationary 20 92.6 66.9 96.4

non-stationary 10 89.6 45.6 92.0
Average 91.8 56.3 95.1

stationary stationary 20 85.6 49.9 92.3
noise stationary 10 94.1 45.1 96.0
10 dB non-stationary 20 79.9 53.0 87.3

non-stationary 10 88.3 46.6 92.3
Average 87.0 48.7 92.0
(b) JNAS database

non-stat non-stationary 20 97.6 73.0 97.8
noise non-stationary 10 92.7 36.2 92.7
20 dB stationary 20 21.2 55.1 57.2

stationary 10 13.4 29.7 35.6
Average 56.2 48.5 70.8

non-stat non-stationary 20 90.4 54.0 94.4
noise non-stationary 10 95.7 40.0 95.7
10 dB stationary 20 9.1 37.9 37.9

stationary 10 5.8 23.5 25.4
Average 50.3 38.9 63.4

stationary stationary 20 95.3 88.3 97.4
noise stationary 10 86.0 66.8 90.9
20 dB non-stationary 20 32.9 52.2 61.8

non-stationary 10 16.0 18.8 27.2
Average 57.6 56.5 69.3

stationary stationary 20 86.0 82.6 94.7
noise stationary 10 92.2 81.7 95.4
10 dB non-stationary 20 17.9 59.6 59.6

non-stationary 10 12.1 25.0 25.0
Average 52.1 62.2 68.7

(76.7 + 75.9)/2) using only MFCC for 20 dB (relative error
reduction rate of 64.6%) and to 36.8% (100−(66.6+59.7)/2)
from 60.8% (100 − (42.4 + 36.0)/2) for 10 dB (relative error
reduction rate of 39.5%), respectively. For noisy speech,
optimal weight β was about 0.5. For the following experi-
ments, almost the best combination results were obtained by
setting weight β from 0.3 to 0.7. We did not add all weights
β to Tables 2, 4 and 5 to keep the brevity of the paper.

Table 2 (a) shows the speaker identification results by
GMMs trained on noisy speech. Speaker models trained
on noisy speech were very effective especially for MFCC-
based method and the combination method. For example, by
using stationary noisy speech training data of 20 dB, the av-
erage identification rate was improved to 91.8% from 57.8%
(relative error reduction rate of 80.6%) by clean speech
training data for MFCC-based method. The combination
result by noisy speech training data was also improved re-
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Table 3 Speaker identification result of MFCC with SS-SMT by GMMs
trained on clean speech (%).

α
20 dB 10 dB

non-stat stat non-stat stat
(a) NTT database

0.0 76.7 75.9 42.4 36.0
3.0 77.4 83.1 52.6 61.9

(b) JNAS database
0.0 51.0 36.4 17.5 20.8
3.0 52.1 37.5 21.6 18.3

Table 4 Speaker identification results by deleting low energy frames by
GMMs trained on clean speech (%).

test data MFCC Phase comb

(a) NTT database
non-stat 20 dB-10% 77.4 68.0 89.3
non-stat 10 dB-30% 56.1 54.3 78.0

stationary 20 dB-10% 84.0 69.9 94.9
stationary 10 dB-30% 49.3 54.9 78.1

Average 66.7 61.8 85.1

(b) JNAS database
non-stat 20 dB-40% 81.3 73.3 94.0
non-stat 10 dB-40% 42.3 38.8 61.6

stationary 20 dB-40% 61.5 76.8 89.0
stationary 10 dB-40% 35.0 62.2 68.1

Average 55.0 62.8 78.2

markably compared to that by clean speech training data
even when noise nature and SNR of the test data were mis-
matched to those of the training data.

Table 3 (a) summarizes the identification rates of NTT
database based on MFCC using Spectrum Subtraction with
SMoothing of Time direction (SS-SMT). The improve-
ment was significant especially for low SNR and station-
ary noisy speech. For example, for the case of 10 dB, the
rates were improved to 52.6% from 42.4% (relative error
reduction of 17.7%) for non-stationary speech data, and to
61.9% from 36.0% (relative error reduction of 40.5%) for
stationary speech data, respectively. The combination re-
sults of MFCC with SS-SMT and the phase information of
NTT database are shown in Fig. 2. The combination re-
sults were remarkably better than that of individual MFCC-
based method. By integrating MFCC with phase, the result
with SS-SMT processing outperformed the result without
SS-SMT processing for stationary noisy speech of 10 dB.
However, the improvement was not achieved in other cases.

Table 4 (a) shows speaker identification results of NTT
database by deleting (skipping) frames having low energy
for clean speech training data. The notation of 20 dB-10%
denotes that 10% frames having the lowest energy for 20 dB
noisy speech is deleted. The rate of deleted frames was
determined empirically. The speaker identification perfor-
mance by deleting (skipping) low energy frames achieved
a significant improvement than that using all frames for
MFCC, the phase information and the combination. The
combination result was also significantly better than that
of MFCC-based method. By comparing Table 1 with Ta-
ble 4 (a), we can see that the function of deletion for unreli-

Table 5 Speaker identification results by deleting low energy frames by
GMMs trained on stationary/non-stationary noisy speech of 20 dB (%).

training data test data MFCC Phase comb

(a) NTT database
non-stat non-stat 20 dB-10% 93.7 61.7 96.9

noise non-stat 10 dB-30% 89.3 49.6 91.3
20 dB stat 20 dB-10% 80.6 62.3 89.0

stat 10 dB-30% 81.6 45.7 84.9
Average 86.3 54.8 90.5

stationary stationary 20 dB-10% 96.4 61.7 98.7
noise stationary 10 dB-20% 88.3 47.0 93.4
20 dB non-stat 20 dB-10% 94.9 61.3 98.0

non-stat 10 dB-20% 89.9 48.4 93.7
Average 92.4 54.6 96.0

(b) JNAS database
non-stat 20 dB-40% 97.9 75.8 98.3

non-stat non-stat 10 dB-40% 95.3 54.2 95.3
noise stationary 20 dB-40% 45.7 72.4 83.9
20 dB stationary 10 dB-40% 26.6 55.4 63.0

Average 66.4 64.5 85.2
stationary 20 dB-40% 96.2 79.9 97.9

stationary stationary 10 dB-40% 90.5 71.3 95.1
noise non-stat 20 dB-40% 43.4 70.9 74.9
20 dB non-stat 10 dB-40% 29.7 36.3 47.6

Average 65.0 64.6 78.9

able frames (frames having low energy) improved the aver-
age identification rate of combination result to 85.1% from
77.4%.

Finally, Table 5 (a) shows the speaker identification re-
sults of NTT database by deleting low energy frames for
noisy training data of 20 dB. Using GMMs trained on sta-
tionary noisy speech of 20 dB, we find that the deletion
of unreliable frames improved the identification rate from
96.4% (see Table 2 (a)) to 98.0% for 20 dB non-stationary
noisy speech and from 92.0% (see Table 2 (a)) to 93.7%
for 10 dB non-stationary noisy speech. The rates based
on only MFCC were 76.7% and 42.4% by using clean
speech training data, respectively (see Table 1), that is,
the error reduction rates were 91.4% and 89.1%, repec-
tively. The combination also achieved a relative error reduc-
tion rate of 47.4% compared to the individual MFCC-based
best result (92.4%). The results based on GMMs trained
on non-stationary noisy speech of 20 dB were worse than
those based on GMMs trained on stationary noisy speech of
20 dB. For GMMs trained on non-stationary noisy speech of
20 dB, the results by deleting low energy frames were worse
than those using all frames. We could not find the reason of
degradation. It remains for our future work.

5.2.2 Speaker Identification on Large Sacle JNAS
Database

The speaker identification experiment using phase informa-
tion on a large scale JNAS database [31] was also conducted
in this section.

The speaker identification results on the JNAS database
using clean speech are shown in Table 1 (b). The phase in-
formation was also very effective for the large scale JNAS
database especially for stationary noisy speech. The indi-
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(a) non-stationary noisy speech

(b) stationary noisy speech

Fig. 3 Speaker identification results of combination of MFCC with SS-
SMT and Phase by GMMs trained on clean speech for JNAS database.

vidual results of the phase information outperformed that
of MFCCs under all noisy conditions, and an average rela-
tive error reduction of 26.4% (identification rate of MFCC:
31.4%→ that of phase:49.5%) was achieved. For stationary
noisy speech, the recogniton rate of the phase information
was about 2 times as that of MFCCs. By integrating MFCCs
with the phase information, an average relative error reduc-
tion of 37.8% (31.4%→ 57.3%) was achieved.

Table 2 (b) shows the speaker identification results
on the JNAS database using noisy training data. Using
speaker models trained on noisy speech, the identification
performances of MFCC-based method and the combination
method were improved significantly. For example, by using
non-stationary noisy speech training data of 20 dB, the re-
sult of combination of MFCC and phase (70.8%) achieved
a relative error reduction rate of 33.3% over that of MFCC-
based method (56.2%).

The resultss of individual MFCC with SS-SMT and the
combination results of MFCC with SS-SMT and the phase
information for JNAS database are shown in Table 3 (b) and
Fig. 3, respectively. The combination results were remark-

ably better than that of individual MFCC-based method.
For individual MFCC or combination of MFCC and phase,
the results with SS-SMT processing worked worse than
the results without SS-SMT processing for stationary noisy
speech of 10 dB. On the other hand, MFCC with SS-SMT
outperformed MFCC without SS-SMT in other cases. The
improvement or the degradation between MFCC with SS-
SMT and MFCC without SS-SMT was not very remarkbale.

Table 4 (b) shows speaker identification results of
JNAS database by deleting (skipping) low energy frames
(unreliable frames) for clean speech training data. The
speaker identification performance by deleting low energy
(low SNR) frames achieved a significant improvement than
that using all frames. The result of the phase information
was significantly better than that of MFCC especially for
stationary noisy speech. The combination result (78.2%)
achieved a relative error reduction of more than 50.0% over
the result based on MFCCs (55.0%).

Table 5 (b) shows the speaker identification results of
JNAS database by deleting low energy (low SNR) frames
for stationary/non-stationary noisy training data of 20 dB.
By comparing with Table 2 (b), we find that the deletion
of unreliable frames improved the identification rate from
56.2% to 66.4% for MFCCs, from 48.5% to 64.5% for the
phase information and from 70.8% to 85.2% for the com-
bination result by using 20 dB non-stationary noisy speech
training data. The relative error reduction rate was 78.4%
over MFCC-based method using clean speech training data
(31.4%: see Table 1 (b)→ 85.2%) and 56.0% over the indi-
vidual MFCC-based best result (66.4%→ 85.2%).

6. Conclusion

In this paper, we investigated the robustness of the proposed
phase information for speaker identification in noisy envi-
ronments. A method skipping low energy frames or unre-
liable frames, speaker model trained on noisy speech and
spectral subtraction were used to analyze the effect of the
phase information and MFCCs under match and mismatch
training conditions. To verify the robustness of our proposed
phase-based method, the small scale NTT database and
the large scale JNAS database added with stationary/non-
stationary noise were performed. The experimental results
were summarized in Fig. 4. We have following conclusions:

• The degradation of the phase information was smaller
than that of MFCCs in noisy conditions especially for
mismatch training models. The individual result of the
phase information was even better than that of MFCCs
by clean speech training models in many cases.
• The combination of MFCC and phase information

improved the speaker identification performance re-
markably than MFCC-based method. By combining
MFCCs and the phase information, the relative error
reduction rate was about 50.0% over the individual
MFCC-based best result (see Table 5).
• By deleting unreliable frames (frames having low en-
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(a) NTT database

(b) JNAS database

Fig. 4 Summary of speaker identificaton results of NTT database and
JNAS database in stationary/nonstationary noisy environments (10/20 dB).
Noisy model: speaker models trained on stationary noisy speech of 20 dB
for NTT database and non-stationary noisy speech of 20 dB for JNAS
database. Frame deletion: Deleting unreliable frames (frames having low
energy/SN).

ergy), the speaker identification performance was im-
proved significantly.
• The proposed methods were effective for both of the

NTT database (small-scale, but different recording ses-
sions) and JNAS database (large-scale).

That is to say, phase information is very robust and effective
for speaker recognition in noisy conditions and it is an effec-
tive complementary feature of MFCCs. MFCC feature ex-
tracted from the power spectrum of noisy speech was greatly
degraded by adding the power spectrum of clean speech
with the power spectrum of noise. We assume that the phase
of noise is random and the average of the phase of noise is
near to zero. Thus, the phase was relatively more robust than
the power spectrum based feature such as MFCC in noisy
conditions. We also showed the effectiveness of the com-
bination method of MFCC-based GMM and MFCC-based
HMM [26], [27]. In future, we will investigate the combina-
tion methd of MFCC-based GMM, MFCC-based HMM and
phase-based GMM.
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