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Enhancing the Robustness of the Posterior-Based Confidence
Measures Using Entropy Information for Speech Recognition∗
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and Yonghong YAN†f), Nonmembers

SUMMARY In this paper, the robustness of the posterior-based confi-
dence measures is improved by utilizing entropy information, which is cal-
culated for speech-unit-level posteriors using only the best recognition re-
sult, without requiring a larger computational load than conventional meth-
ods. Using different normalization methods, two posterior-based entropy
confidence measures are proposed. Practical details are discussed for two
typical levels of hidden Markov model (HMM)-based posterior confidence
measures, and both levels are compared in terms of their performances. Ex-
periments show that the entropy information results in significant improve-
ments in the posterior-based confidence measures. The absolute improve-
ments of the out-of-vocabulary (OOV) rejection rate are more than 20% for
both the phoneme-level confidence measures and the state-level confidence
measures for our embedded test sets, without a significant decline of the
in-vocabulary accuracy.
key words: OOV, speech recognition, confidence measure, entropy infor-
mation, phoneme-level posterior

1. Introduction

For many practical speech recognition applications, the re-
jection of out-of-vocabulary (OOV) words is an important
issue. In this research, automatic speech recognition tech-
nology is used to recognize the user’s speech from words in
a word list. A user not familiar with the system may utter
OOV words, which are not included in the system’s lexi-
con or in the specific word list. If no measures are taken,
the system will always output a recognition result given any
input, which may cause incorrect reactions or incur a high
cost. To avoid this problem, confidence measures, such as
the posterior which has been widely used for speech recog-
nition [1], [2], are computed to make the rejection decision.
In case the condition of the test data matches with the condi-
tion of the training data, the speech recognition system per-
forms well, as do the posterior-based confidence measures.
However, the training and the test data sometimes differ, and
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the performances of recognition may decline owing to the
mismatch, as do the performances of hidden Markov model
(HMM)-based confidence measures, such as the posterior.
In our research, the training data is well-pronounced English
speech, while the test data varies considerably and some-
times contains dialect words or non-native English speech.
As a result, the posterior calculated for the training model
may not provide a reliable confidence measure for all the
test speech, particularly when the training and test data are
seriously mismatched. This is why robust confidence mea-
sures are needed in this research.

To improve the robustness of the posterior-based con-
fidence measures, many methods utilizing the N best can-
didate recognition results have been developed, such as the
lattice- and confusion-network-based confidence measures
in [3] and [4], respectively. By utilizing all the other candi-
date word arcs with similar time boundaries [5], the gener-
ated entropy information can be used to weigh the conven-
tional confidence measures. These improvements have been
proven to be complementary and may benefit the posterior-
based confidence measures. However, there are some lim-
itations in these methods. For example, when there are
few candidate results generated by decoding, sometimes
only the best result is available and the performances of the
lattice- and the confusion-network-based confidence mea-
sures are very poor.

In this study, background information such as the en-
tropy is directly investigated at the speech-unit level. This
method shares similar information to the lattice-based con-
fidence measures but may be more comprehensive and is
not affected by the recognition. In our research, two levels
of speech units are investigated, i.e., senones/states [6] and
phonemes [7], although the calculation of entropy does not
rely on the levels of the posteriors. To normalize the en-
tropy information to make it comparable with the posterior-
based confidence measures, two kinds of entropy-based con-
fidence measures are proposed. Details of the calculations,
such as the combination domains, averaging methods used
to form higher-level confidence measures, and maximum
approximations for practical use, are also discussed. Al-
though this study is focused on experiments on the OOV
rejection problems based on a word recognition task, the
performances of the confidence measures are improved in
a general criterion measured by the equal error rate (EER).
Therefore, our proposed algorithm is promising for enhanc-
ing the robustness of general confidence measures consist-
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ing of the posterior, particularly when the test data does not
match the training very well in some practical applications.

This paper is organized as follows. In Sect. 2, the pro-
posed system, as well as a conventional one, is described.
The practical details of the posterior calculations are also
discussed, including the logarithms, the averaging methods,
and the combination domains. In Sect. 3, the two levels of
speech units and their confidence measures are introduced.
The mining of corresponding entropies is also discussed,
which will be used together with the posterior-based con-
fidence measures. The results of experiments carried out
separately on the two levels are reported in Sect. 4, with the
different combination methods discussed in detail. Conclu-
sions are given in Sect. 5.

2. Entropy Information in the Posterior-Based Confi-
dence Measures

2.1 Proposed Algorithm for Enhancing Posterior-Based
Confidence Measures

The algorithm used to enhance the robustness of the
posterior-based confidence measures is shown in Fig. 1. For
the common posterior-based confidence measures, the like-
lihoods of all the speech units are calculated and summed
to obtain a single posterior for the recognized speech unit.
In fact, the posteriors of the other speech units can also be
obtained without increasing the complexity compared with
that of the calculation of likelihoods, and the posteriors can
form background information such as the entropy. As en-
tropy can provide a measure of uncertainty, it is expected by
combining it with a single posterior, the robustness of con-
fidence measures can be improved. Details will be given in
the following subsections.

2.2 Common Model and Practical Uses in the Calculations
of the Posterior-Based Confidence Measures

We assume that there are a total of Nu speech units, which
can be phonemes or states. Given an observation O, which
is a feature sample used for speech recognition, the poste-
rior probability of being the jth speech unit u j from the best
recognition result is defined as

Fig. 1 Algorithm for enhancing the robustness of the posterior-based
confidence measures using background information such as the entropy.

p(u j|O) =
p(u j,O)

p(O)
=

p(O|u j)p(u j)∑Nu

i=1 p(O|ui)p(ui)
, (1)

where p(O|u j) is the likelihood of seeing the observation O
given the jth speech unit. Generally, all the speech units are
assumed to have equal a priori probability; thus, the terms
p(u j) and p(ui) can be removed from the numerator and de-
nominator simultaneously. For practical uses, when only the
logarithms of the likelihoods are available, we write

logl(u j) = log(p(O|u j)) (2)

logp(u j) = log(p(u j|O)), (3)

then the logarithm of the posterior can be calculated as

logp(u j) = logl(u j) − logadd(u1, . . . , uNu ) (4)

logadd(u1, . . . , uNu ) = log(
Nu∑
i=1

exp(logl(ui))) (5)

= loglmax + log(
Nu∑
i=1

exp(logl(ui) − loglmax))

≈ loglmax.

We write loglmax = logl(um), which is the maximum of the
logl(ui), and if logl(ui) − loglmax << 0 when i � m, the
approximation is reasonable.

The posterior can give a direct measure of the probabil-
ity of a speech unit when the observation is given. However,
it does not made good use of the background information,
except for in the summation of likelihoods.

2.3 Conventional N-Best-Based Entropy

Instead of simply using the best recognition results, using
other candidates in the N best recognition results might pro-
vide useful information for enhancing the performance of
posterior-based confidence measures in [5], such as

Centropy = CM ∗ (1 − Eavg), (6)

where CM denotes the conventional posterior-based con-
fidence measures and Eavg is the entropy information cal-
culated using other candidates. Because it is convenient
for implementation, Eavg is calculated using confusion net-
works as [4]

Eavg = − 1
log2 N

N∑
i=1

P(Ci|O) log2 P(Ci|O), (7)

where N is the number of candidates, Ci is the ith candi-
date word recognized, and P(Ci|O) is its posterior given the
observation O.

2.4 Proposed Speech-Unit-Level Entropy Confidence
Measures

When the posteriors of all the speech units are available, the
speech-unit-level entropy is defined as
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H(u) = −
Nu∑
i=1

p(ui|O) log(p(ui|O))

= −
Nu∑
i=1

logp(ui) exp(logp(ui)). (8)

According to the property of entropy, the lower bound
can be reached when only one speech unit takes the posterior
of 1 while that of the others is 0, then H(u) = 0+1∗ log(1) =
0. The upper bound can be reached when all the speech units
have an equal posterior, which is 1

Nu
, then H(u) = −Nu ∗ 1

Nu
∗

log( 1
Nu

) = log(Nu). Reaching the lower bound indicates that
the maximum amount of information is provided and that a
certain speech unit can be determined. Reaching the upper
bound indicates that the minimum amount of information
or no information is provided, and no speech unit can be
determined. As H(u) is increased from 0 to log(Nu), the
uncertainty of attributing the observation to a certain speech
unit increases.

From the above analysis, H(u) can be used to measure
the value of uncertainty. To be comparable to the posterior,
with the original range [0, log(Nu)] of the entropy normal-
ized to [0, 1], two kinds of entropy-based confidence mea-
sures are defined as

cmH1 =

Nu

exp(H(u)) − 1

Nu − 1
(9)

cmH2 = 1 − H(u)
log(Nu)

, (10)

where cmH1 and cmH2 are also referred to as the first entropy
and second entropy, respectively. As log(cmH1 +

1
Nu−1 ) =

log(Nu)− log(Nu − 1)−H(u), for consistency with the loga-
rithm of the posterior, which is often used, the logarithm of
cmH1 is simplified to −H(u) to facilitate computation, which
means that the negative entropy is equivalent to the loga-
rithm of the posterior. For cmH2 , given in Eq. (10), which
is equivalent to the negative entropy, it appears that these
two kinds of entropy-based confidence measures have a log-
arithmic relationship. The performances of these two kinds
of entropy-based confidence measures will be compared by
performing experiments.

Although entropy information can provide the uncer-
tainty of attributing an observation to a certain speech unit,
it is not specifically attributed to a concrete unit but to an
abstract unit. Thus, it is impossible to integrate the entropy
information with the recognition information at the speech-
unit level, and the entropy information can only be referred
to as a general confidence measure.

2.5 Normalization and Averaging Methods

Confidence measures are usually calculated for a segment,
such as a phoneme segment. As the durations of segments
differ from each other, confidence measure is often normal-
ized by the duration to remove its effect. The confidence
measure of each frame is considered to be independent, thus,

the average of their logarithms over the time range [ts, te]
is often used as the final confidence measure as follows to
avoid overflow in the computation:

cmg = exp

⎛⎜⎜⎜⎜⎜⎝
∑te

t=ts
log(cm(t))

te − ts

⎞⎟⎟⎟⎟⎟⎠ . (11)

This is actually the geometric mean of the per-frame con-
fidence measures. For the entropy-based confidence mea-
sures, the arithmetic mean is also utilized to convert the per-
frame entropies to higher levels of entropy, which are then
compared with the geometric mean:

cma =

∑te
t=ts

cm(t)

te − ts
. (12)

2.6 Integration of Entropy Information with the Posterior-
Based Confidence Measures

As analyzed in the above sections, both the posterior and en-
tropy information provide useful information for confidence
measures. Their combination can provide more information
and is expected to achieve a better performance.

Let us reconsider the limitations of the posterior. In
most cases, the posterior of a certain speech unit can reflect
the confidence of a given observation when the model and
speech match. However, in the case of mismatch, the poste-
rior is not sufficiently reliable. The degree of matching can
be judged using the entropy information, which can provide
a measure of the reliability of the posterior confidence.

A linear combination of posterior and entropy is very
simple to use and can be applied in the logarithm domain as
well as in the original domain:

cm1(u j) = α1 ∗ p(u j|O) + (1 − α1)cmH (13)

cm2(u j) = α2 ∗ logp(u j) + (1 − α2) log(cmH)

= log(p(u j|O)α2 ∗ cm1−α2
H ), (14)

where α1, α2 ∈ [0, 1] are always selected using the devel-
opment sets and are not changed during the experiments.
In particular, the combination in the logarithm domain is
a form of nonlinear combination in the original domain,
which is similar to the method in [5], where α2 = 0.5. Ex-
periments will be carried out to compare the performances
in the two domains by combining the posterior with the pro-
posed entropy confidence measures.

3. Two Levels of Speech Units and Their Posterior-
Based Confidence Measures

There are many speech-unit-based posteriors that can be
used for confidence measures. Among them, two posterior-
based confidence measures can be calculated using the same
HMM-based acoustic model, i.e., the state-level posterior
and the phoneme-level posterior, which are widely used
in speech recognition and pronunciation evaluation. From
these posteriors, entropy information can be calculated sep-
arately. Details will be discussed in the following subsec-
tions.
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3.1 State-Level Posterior

When states are the basic speech units in the HMM model,
the state-level posterior is very commonly used and can be
calculated directly. First, the per-frame log-likelihood of
each state is calculated using the probability density func-
tions of each state’s multivariate Gaussian mixture model
(GMM) as

N(x|μ,Σ) =
1

(2π)
N
2 |Σ| 12 e[− 1

2 (x−μ)TΣ−1(x−μ)] (15)

p(ot |ui) =
M∑

k=1

pk ∗ N(ot |μk,Σk) (16)

logls(ui) = logadd( (17)

log

(
p1

(2π)
N
2 |Σ1| 12

)
− 1

2
(ot − μ1)TΣ−1

1 (ot − μ1), . . . ,

log

(
pM

(2π)
N
2 |ΣM | 12

)
− 1

2
(ot − μM)TΣ−1

M (ot − μM)),

where ot is the observation for the tth frame, pk, μk, and Σk

are the weight, mean vector, and covariance matrix for the
kth (k ∈ 1..M) component of the GMM model for the ith
state, and N(x|μ,Σ) is the probability density function of the
multivariate Gaussian distribution, respectively.

Second, the logarithms of the per-frame posteriors are
calculated for each frame given the state-level time labels
using Eq. (4). Here, Nu is the number of states in the HMM
model, which is on the order of 102 or 103, and may be much
larger than the number of phonemes. Third, the logarithms
of the per-frame posteriors are converted to the phoneme-
level confidence measures or higher levels such as that of a
whole utterance, using Eq. (11) or Eq. (12).

To calculate the entropy for the state-level posteriors,
the logarithm of likelihood summation is calculated using
Eq. (5) as the first step. Then the logarithm of all the state
posteriors can be simply derived by subtraction as suggested
in Eq. (4). Then the state-level posterior-based entropy is
finally calculated using Eq. (8), Eq. (9), or Eq. (10).

There are other methods of utilizing the state-level like-
lihoods for entropy calculation, for example, using the like-
lihoods of longer segments instead of the likelihoods per
frame, such as per state, per phoneme, or per word. Longer
segments appear to be more robust. However, they may also
lead to a loss of information when combining the likeli-
hoods of shorter segments. The performance of each seg-
ment length will be compared by performing experiments.

3.2 Phoneme-Level Posterior

The phoneme-level posterior was proposed in [8], [9]. To
calculate the phoneme-level posterior directly for a segment
using the same state-based HMM model, a phoneme loop
should be constructed first. Then each phoneme should be
represented by the corresponding states for the posterior cal-
culation. As the triphone is the basic speech unit for most

Fig. 2 Construction of triphone loop with context phonemes for the
phoneme-level posterior calculation.

state-based HMM models, the context phonemes obtained
from the recognition of the current phoneme should be uti-
lized for triphone expansions, as demonstrated in Fig. 2. For
example, the triphone expansion for phk at the current po-
sition is ph(t − 1) − phk − ph(t + 1). A special phoneme
‘silence’ is used as the context phoneme for the first and last
phonemes in a sentence.

To determine the time boundaries of the substates
within each triphone expansion, Viterbi decoding was per-
formed for each triphone to map the phoneme segment into
its corresponding state sequences and obtain the maximum
log-likelihood of each triphone. After the log-likelihood of
each triphone is obtained, the posterior of each phoneme
can be calculated using Eq. (4). Here, Nu is the number of
phonemes in the phoneme set, which is approximately 50.

4. Experiments

From the above analysis, two kinds of entropy confidence
measures are proposed for speech-unit-level posteriors, and
each of them is combined with the posterior to form the fi-
nal confidence measure. As they are not specific to a certain
speech-unit level, experiments are carried out on two typical
levels, i.e., the phoneme-level and state-level, to obtain the
performances and their improvements relative to that of the
posterior-based confidence measures. The phoneme-level
posterior, which is faster in practical embedded systems,
will be used principally to obtain our conclusions, which
will be verified using the other posterior.

4.1 Experimental Setup

The evaluations involve the recognition of English words in
a word list in an embedded device. The THINKIT (speech
lab) embedded speech recognition system [10] is utilized,
which is based on the HMM model, tree-searching algo-
rithm for a given grammar, and its word list [11]. The acous-
tic model is triphone based and contains about 3500 states,
each modeled by eight Gaussian mixtures. Its features are
the 12 dimensions of perceptual linear prediction (PLP) cep-
stras plus their first-order deltas. The phoneme set is from
the CMU pronouncing dictionary, containing 39 phonemes,
without counting ‘short pause’ and ‘silence’. Five test sets
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Table 1 Construction of the sets used in the experiments and their over-
all information without any confidence measures, including 5 IV sets and
3 OOV sets, where ‘*Dev’ signifies ‘used as development sets’, ‘list’ sig-
nifies which word list the test set belongs to, ‘size’ signifies the number of
utterances in the sets, and ‘accuracy’ signifies the recognition accuracy for
the IV set and the correct rejection rate for the OOV set.

type id list size speakers accuracy (%) date
Test

IV

1 2 1340 9 90.75 10.05
Test 2 3 400 8 94.50 10.31
Test 3 1 291 9 88.32 11.01
*Dev 4 1 272 8 91.54 11.02
Test 5 1 476 14 91.81 11.04
*Dev

OOV
1 2 947 - 0 -

Test 2 3 1907 - 0 -
Test 3 1 1736 - 0 -

are recorded using the board over several days using three
different word lists (labeled ‘1’, ‘2’, and ‘3’) at a sam-
pling rate of 8 kHz. When a test set is recognized using a
grammar compiled with its corresponding word list, five in-
vocabulary (IV) sets are constructed from the five test sets.
Given a word list, an OOV set is constructed by selecting all
the utterances whose transcriptions do not exist in the word
list. Three OOV sets are constructed for the three word lists.
The confidence measure’s performance is evaluated in terms
of both the recognition accuracy for the IV set and the cor-
rect rejection rate for the OOV set.

Among these sets, one IV set and one OOV set are
picked as development sets to determine the threshold and
combination parameters for each confidence measure sys-
tem. The performances of the development sets are also in-
cluded to account for the performance of each confidence
measure or combination.

Overall information without any confidence measures
for all sets is given in Table 1. The accuracy for the IV set is
approximately 90%; however, the recognition system has no
ability to reject the OOV set. Using confidence measures, it
is hoped that the system can reject as much of the OOV input
as possible, while maintaining almost the same accuracy for
the IV set.

4.2 Phoneme-Level Confidence Measures

The phoneme-level posterior is calculated in accordance
with Sect. 3.2. From the result in Fig. 3, we can see that
the EER is about 22.4% for the baseline posterior-based
confidence measures, which may cause many false accepta-
tions of utterances from the OOV set. Then the entropy in-
formation is utilized to enhance the posterior performance.
Two kinds of entropy applied at the speech-unit level (cmH1

in Eq. (9) and cmH2 in Eq. (10)), and different combination
domains (Eq. (13) for the original domain and Eq. (14) for
the logarithm domain) are compared with the conventional
method using the N-best-based entropy (Eq. (6) and Eq. (7)).
The detection error trade-off (DET) curves are shown in
Fig. 3.

From the above figures, it can be seen that cmH2 per-
forms better than cmH1 (after combination with posterior
entropy, the EER decreases from 6.9% to 6.7% in the loga-

(a) N-best entropy

(b) cmH1

(c) cmH2

Fig. 3 DET curves of different entropies as well as different combina-
tion domains. While the proposed entropies calculated at the speech-unit
level show significant improvements in terms of the EER, the two kinds of
entropy cmH1 (first entropy) and cmH2 (second entropy) have comparable
performance. While the combination of cmH1 and the posterior has a better
performance in the logarithm domain (left), the combination of cmH2 and
the posterior has a better performance in the original domain (right).

rithm domain (shown on the left of Fig. 3), and from 7.3%
to 6.4% in the original domain). Both cmH1 and cmH2 per-
form much better than the traditional N-best-based entropy
(19.8%). Only the combination of the posterior and cmH1 in
the logarithm domain (Eq. (14)) is chosen in the subsequent
experiments for the following reasons:

• cmH1 has fewer logarithm operations than cmH2 , and
the combination of cmH1 and the posterior in the loga-
rithm domain is easier to calculate when using −H(u)
as an approximation of its logarithm.
• Combining cmH1 and the posterior in the logarithm do-

main gives better performance than their combination
in the original domain; the combination weight is 0.524
for each confidence measures, which is almost unbi-
ased.
• This combination allows a comparison with the method

proposed in [5] as stated at the end of Sect. 2.6.

For practical uses, the maximum approximation in
Eq. (5) is often used to increase the speed of the system but
with a certain decrease in performance. The DET curves
for the maximum approximation as well as for different av-
eraging methods (Eq. (11) and Eq. (12)) are shown in Fig. 4



2436
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.9 SEPTEMBER 2010

(a) No approximation

(b) Max approximation

Fig. 4 Comparison of performances of the entropy calculation for the
phoneme-level posterior. No obvious differences are observed between the
performances using geometric mean and arithmetic mean, using maximum
approximation or not. Thus, for the phoneme-level posterior-based entropy,
the effects of both the averaging methods and the maximum approximation
are not obvious.

using only the first entropy (cmH1 ) to visualize the effects
of the maximum approximation and the different averaging
methods.

From Fig. 4, it can be seen that the EERs are simi-
lar for entropy confidence measures both with and without
the maximum approximation (both 11.5% for the geomet-
ric mean and approximately 12% for the arithmetic mean);
thus, the effects of both the maximum approximation and
the different averaging methods can be omitted. Therefore,
to facilitate computation, both the combination of the max-
imum approximation and the arithmetic mean are used for
the final phoneme-level posterior-based entropy. For each
confidence measure system using different calculation de-
tails, the threshold and the combination parameter are tuned
for the development sets so that the absolute decline of ac-
curacy for the IV set is less than 1% using the grid search
method, and the parameters with the highest correct rejec-
tion rate of the OOV set are obtained. The parameters are
then applied to the other sets. The detailed performances for
all the sets are given in Table 2.

From Table 2 and the above observations, two conclu-
sions can be drawn. First, from the last two columns in Ta-
ble 2, it can be seen that by combining entropy information
with phoneme-level posterior-based confidence measures,
the correct rejection rate of the OOV set is increased signifi-
cantly (more than 25–30% in absolute terms), while the de-
crease in accuracy for the IV set is negligible (from 90.24%
to 90.04% for cmH2 ). Second, the two kinds of entropy-
based confidence measures are comparable in performance.
As cmH2 requires more calculations such as the logarithm
which is time-consuming, only cmH1 will be used in the fol-
lowing experiments to increase the speed of calculation.

Table 2 Comparison of phoneme-level confidence measures for devel-
opment and test sets: posterior and combinations with the two kinds of
entropy confidence measures. ‘Av’ signifies ‘average’, ‘no cm’ means that
no confidence measure is used, ‘+H1’ means combination with cmH1 , and
‘+H2’ means combination with cmH2 .

type id
accuracy or rejection rate(%)

no cm posterior +H1 +H2

Test

IV

1 90.07 89.55 89.92 89.78
Test 2 94.50 94.00 94.25 94.25
Test 3 88.32 86.94 86.60 85.91
*Dev 4 91.54 90.81 90.81 90.81
Test 5 91.81 89.92 89.92 89.50

Av 91.25 90.24 90.30 90.05
Test

OOV

1 0 9.00 36.54 47.10
*Dev 2 0 10.98 48.61 57.89
Test 3 0 22.13 40.84 51.27

Av 0 15.78 42.00 52.09

(a) No approximation

(b) Maximum approximation

Fig. 5 Comparison of performances of the entropy calculations for state-
level posterior and its entropy using cmH1 . It is clearly shown that the max-
imum approximation deteriorates the performance, while the two averaging
methods do not have a significant effort on performance, although the geo-
metric mean appears to be more robust. Thus, for the state-level posterior-
based entropy, the geometric mean and no approximation are subsequently
used.

4.3 State-Level Confidence Measures

Although it is time-consuming, the state-level posterior,
which is used widely and is believed to yield better per-
formance, is calculated in accordance with section 3.1. As
shown in Fig. 5, the EER is about 13.7% for the state-
level posterior-based confidence measures, which is much
lower than that of the phoneme-level posterior. To deter-
mine whether the consideration of entropy improves perfor-
mance and whether the maximum approximation affects the
performance, the performances of different averaging meth-
ods and the maximum approximation are also compared in
Fig. 5.

From Fig. 5, it can be seen that the effect of the max-
imum approximation cannot be disregarded. The perfor-
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Table 3 Comparison of state-level confidence measures for the devel-
opment and test sets: the posterior and the combination of cmH1 with and
without the maximum approximation. ‘Av’ signifies ‘average’, ‘no cm’
means that no confidence measure’s method is used, ‘+H1’ means combi-
nation with cmH1 , and ‘H1maxa ’ means the combination of cmH1 with the
maximum approximation.

type id
accuracy or rejection rate(%)

no cm posterior +H1 +H1maxa

Test

IV

1 90.07 88.81 89.55 89.63
Test 2 94.50 93.25 93.50 94.00
Test 3 88.32 86.25 85.57 86.25
*Dev 4 91.54 90.81 90.81 90.81
Test 5 91.81 89.71 90.76 90.97

Av 91.25 89.77 90.04 90.33
Test

OOV

1 0 33.47 60.72 57.55
*Dev 2 0 56.17 76.66 68.59
Test 3 0 46.37 64.23 59.33

Av 0 45.34 67.20 61.82

mances of the different averaging methods are different
when using the maximum approximation, and the perfor-
mance is better using the geometric mean. Thus, for the
state-level posterior-based entropy, only the geometric mean
is subsequently used. The threshold is tuned similarly to
that for the phoneme-based confidence measures. As the
maximum approximation (Eq. (5)) affects the performance,
performances both with and without the maximum approxi-
mation are given in Table 3.

In Table 3, from the last two columns it can be seen
that the performances of the combination of posterior and
entropy information both with and without the maximum
approximation are comparable, and both give much bet-
ter performance than the posterior-based confidence mea-
sures as shown in the last three columns. For the state-level
posterior-based calculation, since the number of speech
units is so large that the maximum approximation can sig-
nificantly reduce the number of logarithm addition calcula-
tions, the maximum approximation may be adopted if the
degradation of performance is limited.

The above state-level posterior is calculated for each
frame, although it can also be calculated for longer seg-
ments. To obtain posteriors for longer segments, the per-
frame state-level likelihoods are converted to the likelihoods
of three longer segments, i.e., the per-state segment, per-
phoneme segment, and per-word segment. As entropy can
be calculated for any posterior, DET curves are drawn in
Fig. 6 to compare the quantity of information provided by
different levels of entropy.

It can be seen in Fig. 6, as the segment length in-
creases, information is lost. The performances of the per-
frame entropy and per-state entropy are comparable. The
per-phoneme entropy can still provide some information for
the per-frame posterior-based confidence measures although
its performance is greatly inferior to those of the above two
segment lengths. However, the per-word entropy provides
no information. To obtain quantitative results, the parame-
ters are tuned for each confidence measure system, and the
performances are given in Table 4 except for that of the per-
word entropy, which causes a major degradation in perfor-

(a) per-frame entropy (b) per-state entropy

(c) per-phoneme entropy (d) per-word entropy

Fig. 6 DET curves showing comparison of the posterior-based entropy
derived from different segments of likelihoods: per-frame entropy, per-state
entropy, per-phoneme entropy, and per-word entropy. It is clear that the
per-frame entropy provides the most information and highest performance,
followed by the per-state entropy, with the other two kinds of entropy hav-
ing almost no information, particularly the per-word entropy.

Table 4 Performance comparison of the posterior-based entropy de-
rived from the likelihoods of different segments: per-frame entropy, per-
state entropy, and per-phoneme entropy. ‘+H f ’ means using per-frame
entropy, ‘+Hs’ means using per-state entropy, and ‘+Hph’ means using
per-phoneme entropy. It is clear that the per-phoneme entropy results in
a greater information loss than the per-state entropy.

type id
accuracy or rejection rate(%)

no cm posterior +H f +Hs +Hph

Test

IV

1 90.07 88.81 89.55 90.07 89.40
Test 2 94.50 93.25 93.50 94.25 94.00
Test 3 88.32 86.25 85.57 87.63 86.60
*Dev 4 91.54 90.81 90.81 90.81 90.81
Test 5 91.81 89.71 90.76 91.60 90.34

Av 91.25 89.77 90.04 90.87 90.23
Test

OOV

1 0 33.47 60.72 38.86 30.20
*Dev 2 0 56.17 76.66 54.17 50.87
Test 3 0 46.37 64.23 46.54 41.30

Av 0 45.34 67.20 46.52 40.79

mance.
From Table 4, it can be seen that the per-frame likeli-

hoods provide the most information on entropy. As the seg-
ment length increases, more information is lost. The per-
phoneme entropy clearly gives an inferior performance to
the per-state entropy.

From the above observations, several conclusions can
be drawn. First, combining entropy information with a state-
level posterior-based confidence measure, the correct rejec-
tion rate of the OOV set is increased significantly (more than
15–20% in absolute terms), with the accuracy of the IV set
increased slightly. Second, although the maximum approx-
imation in the state-level posterior entropy calculation af-
fects the performance slightly, it may be adopted to increase
the speed of the system. Third, using the entropy informa-
tion, the phoneme-level confidence measures are compara-
ble to the state-level posterior-based confidence measures
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and can be used for fast implementation. However, after
using the entropy information, the performance of the state-
level confidence measures is still much better than that of
the phoneme-level confidence measures (as shown in the last
two columns of Table 2 and Table 3, for the same accuracy
of the IV set, the difference between the OOV rejection rate
is more than 15%).

5. Conclusions

Entropy information, which can provide a measure of the
uncertainty of speech, is utilized to improve the robustness
of the posterior-based confidence measures. Using two nor-
malization methods, two posterior-based entropy confidence
measures are proposed, and their logarithm forms, which
are particularly suitable in combination with the logarithm
of posterior for practical use, are discussed. On the basis
of the HMM framework, two levels of posteriors are ana-
lyzed for their calculations of entropy. The experimental re-
sults show that the entropy information contributes to typical
posterior-based confidence measures, and the improvement
is reasonably similar for the development and test sets. The
effects of two different averaging methods and the maximum
approximation in the entropy calculation are investigated,
and no significant effects were observed. However, the sys-
tem without the maximum approximation is believed to be
more robust in combination with posterior and such com-
binations require more calculations such as logarithm addi-
tions. For the state-level confidence measures, the use of the
likelihoods of longer segments for the entropy calculation is
discussed, and a loss of information is observed as the seg-
ment length increases. Using the entropy information, the
state-level confidence measures have a better performance
than the phoneme-level confidence measures. However, for
practical use, the phoneme-level posterior integrated with
entropy information is expected to be comparable in perfor-
mance to the state-level posterior. The proposed confidence
measure’s framework integrated with entropy is believed to
be more robust for practical use, particularly when the train-
ing and test sets are mismatched.
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