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SUMMARY In this work, spatial information consisting of the posi-
tion and orientation angle of an acoustic source is estimated by an artificial
neural network (ANN). The estimated position of a speaker in an enclosed
space is used to refine the estimated time delays for a delay-and-sum beam-
former, thus enhancing the output signal. On the other hand, the orientation
angle is used to restrict the lexicon used in the recognition phase, assuming
that the speaker faces a particular direction while speaking. To compensate
the effect of the transmission channel inside a short frame analysis window,
a new cepstral mean normalization (CMN) method based on a Gaussian
mixture model (GMM) is investigated and shows better performance than
the conventional CMN for short utterances. The performance of the pro-
posed method is evaluated through Japanese digit/command recognition
experiments.
key words: distant speech recognition, microphone array network, GMM-
based CMN, speaker’s position and orientation estimation

1. Introduction

Microphone arrays [1] have received increased attention in
the past few years, particularly for spatial filtering (beam-
forming) and sound source localization. Compared with a
single microphone, a microphone array has a clear advan-
tage in exploiting the spatial characteristics of the sound
field. This is the main reason for using a distributed micro-
phone array network to estimate the position and orientation
(the facing angle relative to a coordinate system) of a direc-
tional acoustic source in an actual enclosed environment for
use in distant speech recognition tasks.

Automatic speech recognition (ASR) systems are
known to perform well when the speech signal is recorded
by a nearby microphone. However, with the increasing de-
mand for hands-free applications, distant microphones must
be considered. For distant microphones, the effect of the en-
vironment (reverberation and noise) can markedly degrade
the speech recognition performance due to a mismatch be-
tween the characteristics of the test environment and those
of the training environment for the system [2]. Compensat-
ing the features used in the recognition system is a way
of reducing the mismatch. Cepstral mean normalization
(CMN) [3] is a simple method for normalizing the feature
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space, thereby reducing the channel distortion. The per-
formance of conventional CMN depends mainly on two as-
sumptions: first, the channel effect is within the short frame
analysis window used in ASR, and second, the spoken ut-
terance is sufficiently long to model the channel effect reli-
ably. Although the first assumption is rarely true under real
conditions, the CMN method provides some improvement
even if the reverberation effect is long. Wang et al. [4] used
a long window to process the reverberation effect for the
stationary part of speech. They confirmed the effectiveness
of this method for utterances sufficiently long to model the
channel effect; however, for short utterances no significant
improvement was observed. We focus on the second as-
sumption in this work: that the speaker moves at every short
utterance. When the spoken utterance is short, the normal-
ization factor provided by CMN is highly dependent on the
utterance itself and has a negative effect on the normaliza-
tion procedure; for instance, the cepstral mean of a short
utterance composed of a vowel sound distorts the vowel
characteristics [5], [6]. To avoid such an effect, we propose
a new Gaussian mixture model (GMM)-based CMN based
on codeword-dependent cepstral normalization (CDCN) [7].
In our proposed method, the unnormalized training feature
space is clustered by a GMM and used to find the nearest
mean feature vector to the input testing feature vector. In the
next step, the mean feature vector of a training data set nor-
malized by the mean is found. The difference between the
input feature vector and the normalized mean feature vector
represents the channel effect. Taking the average over the
short utterance, the new mean vector for CMN is found. Ex-
periments on a digit recognition task show the efficiency of
this method for short-utterance recognition.

Spatial information is defined here as the position (lo-
cation) and orientation (facing angle) of an acoustic source
in an enclosed space. The method proposed in [8], which
relies on an artificial neural network (ANN), is employed.
In this method, a set of input features describing the posi-
tion and orientation of the source is used as a direct map-
ping to the true source position and true source orienta-
tion. Then, the spatial information is used to improve the
performance of the ASR system. The aim of this research
is not to cover all strategies employing spatial information
in speech recognition, but to present some practical ideas
in this regard, which involves spatial information estima-
tion using ANNs, speech enhancement using delay-and-
sum beamformers, transmission-channel-effect compensa-
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tion using GMM-based CMN, and lexicon selection using
the estimated orientation angles.

We aim to develop an application similar to those de-
veloped in the DICIT (Distant-talking Interfaces for Con-
trol of Interactive TV) project†; however, in our research the
goal is to control different devices spatially distributed in a
room using speech commands. We use the spatial informa-
tion estimated by a distributed microphone array network,
that is, the estimated speaker’s position and facing angle.
Using the estimated position information, we enhance the
recorded signals by a simple delay-and-sum beamformer,
and using the estimated facing angle information we can re-
strict the recognized vocabulary, assuming that the speaker
faces the desired direction before speaking a command.

The outline of this paper is as follows: In Sect. 2, we
give a description of the system. In Sect. 3, the conventional
CMN and the new GMM-based CMN are described. In
Sect. 4, we present the experimental conditions and results,
while the last two sections are devoted to a discussion and
conclusions.

2. Background

2.1 System Description

Figure 1 illustrates the acquisition process of xpm (t) signals
comprising a spectral subtraction stage (“SS”) to remove
stationary noise, resulting in x̃pm (t) signals, a phase align-
ment stage (“Delay”) using time lags estimated by the ro-
bust version of the generalized cross-correlation with phase
transform (GCC-PHAT) function, and a combination stage
(“
⊕

”) to obtain a signal x̃BF
p (t) for array p in a distributed

microphone array network consisting of P arrays. Finally,
x̃BF

p (t) is used in the automatic recognition system.

2.2 Signal Model

Consider P identical arrays, each one having Q micro-
phones, where each microphone is denoted as m, for m =
1, . . . ,Q. Given a signal source s(t), the signal at each mi-
crophone can be represented as

xpm (t) = hpm (t) ∗ s(t) + npm (t), (1)

where p ∈ {1, . . . , P}, m ∈ {1, 2, . . . ,Q}, “∗” denotes con-
volution, hpm (t) is the reverberation impulse response that

Fig. 1 Illustration of a delay-and-sum beamformer for array p with a
prior spectral subtraction (SS) stage applied to each microphone signal
xpm (t).

describes the propagation path between the source s(t) and
the mth microphone of the pth array, and npm (t) is the addi-
tive background noise. Here, the noise component npm (t) is
assumed to be different in each microphone.

2.3 Signal Enhancement

2.3.1 Spectral Subtraction

Spectral subtraction (SS) [9] is an efficient method for re-
ducing the spectral effects of acoustically added noise in
speech. The method suppresses stationary noise in speech
by subtracting the spectral noise bias calculated during non-
speech periods. In practical applications, a voice activity
detector (VAD) is necessary to detect speech/nonspeech seg-
ments to prevent speech cancellation. In this work, each
manually cut test utterance contained a noisy-only segment
at the beginning and end of the utterance, which was used
to estimate the noise level. We did not use any VAD tech-
niques; this is left as a future problem. As expressed by

xpm (t)
S S→ x̃pm (t) ≈ hpm (t) ∗ s(t), (2)

the component npm (t) in Eq. (1) can be attenuated by spec-
tral subtraction, giving x̃pm (t) as the enhanced version of the
signal xpm (t).

2.3.2 Delay-and-Sum Beamformer

The purpose of a beamformer [1], [10] is to enhance signals
propagated from the desired direction and attenuate interfer-
ence from other directions. The delay-and-sum beamformer
is the simplest example of a beamformer, and is based on
the assumption that signals recorded by a microphone array
are attenuated and delayed versions of the signal arriving
from the desired direction. Using one microphone signal as
the reference, appropriate time delays can be estimated be-
tween the reference and other signals. Applying these time
delays, all signals can be added together in phase and, as
a result, phase alignment signals from the desired direction
are enhanced whereas signals from other directions are at-
tenuated. That is, for a microphone array p, x̃BF

p (t) is the
summed signal when appropriate delays are used to phase-
align microphone signals, as expressed by

x̃BF
p (t) =

Q∑

n�m

x̃pn (t + τ̂pmn ), (3)

where τ̂pmn is the time delay between the reference mth mi-
crophone and the nth microphone. Although the delay-
and-sum method is not a state-of-the-art beamformer tech-
nique, it is sufficiently useful to illustrate our proposed dis-
tant speech recognition experiments. Here, the delay-and-
sum beamformer is applied after a spectral subtraction stage
as an additional signal enhancement stage.

†http://dicit.fbk.eu/
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2.4 Time Delay Estimation

The time delay of arrival (TDOA) is the time lag due to the
propagation of a signal to various microphones spatially dis-
tributed in a space. In this work, a robust version of the
GCC-PHAT function is used for time delay estimation [11],
[12]. The proposed method consists of two basic steps; in
the first, a binary mask is used to select only high-energy
bands in the cross-power spectrum function in the frequency
domain (which corresponds to a more prominent peak in the
generalized cross-correlation function in the time domain),
and in the second step, only frames that yield physically
possible delays are combined to generated a robust cross-
correlation function. The time delay is estimated by

τ̂pmn = max
τpmn

{
R(τpmn )

}
, (4)

where τ̂pmn is the time delay estimate (TDE) and R(τpmn ) is
the robust GCC-PHAT function. To simplify the notation,
the index p in τ̂pmn will be omitted; thus, the TDE is hereafter
expressed by τ̂mn.

2.5 Spatial Information Estimation — Speaker’s Position
and Orientation Estimation Method

An ANN is used for the position and orientation estima-
tion [8]. ANNs have the ability to learn from and adapt
to certain conditions, and can model assumptions about
nonlinear/complex physical phenomena, which cannot be
solved analytically, responsible for the generation of the
given input data of a given process. By employing an ANN,
it is expected that combining the parameters estimated by
the recorded signals of every array of the network will be
sufficient to predict the source orientation and give a more
accurate source position than that estimated by a single ar-
ray.

The estimation of the position and orientation was per-
formed with a different ANN configuration from that used
in [8]. The modifications consist of reducing the two-stage
ANN in [8] (by first estimating the orientation and then us-
ing this information to select a previously trained ANN to
estimate the position) to a one-stage ANN (that can estimate
the position and orientation simultaneously), and estimating
the orientation of the speaker in eight different orientations
equally shifted by 45◦ [north (N), northwest (NW), west
(W), southwest (SW), south (S), southeast (SE), east (E),
and northeast (NE), relative to a defined coordinate system
(see Fig. 5)]. We verify experimentally that the two-stage
ANN is slightly better than the one-stage ANN, whereas the
latter is easier to implement and is sufficient to demonstrate
our method†. The one-stage ANN is illustrated in Fig. 2 and
consists of a simple fully connected feedforward configura-
tion with one hidden layer. The ANN maps a set of features
describing the position of the source to the true source posi-
tion and the true source orientation. The input layer features
are composed of energy-related features consisting of the

Fig. 2 One-stage ANN. INPUT={power + correlation + microphone
positions + TDEs}. OUTPUTS={one of eight different orientations; posi-
tion in 3D space (x̃, ỹ, z̃)}.

power values of microphone signals and correlation values
between pairs of microphone signals, the TDEs obtained by
the robust GCC-PHAT function, and the microphone posi-
tions of every array in the array network. The output layer
features consist of the true position in three-dimensional
(3D) space together with the true speaker orientation, which
is one of eight different directions. The power of an array is
defined as the highest power value estimated for all micro-
phone signals in the array, while the correlation of an array
is defined as the highest correlation value between pairs of
microphone signals in the array.

2.6 Exploring Spatial Information

2.6.1 Reestimation of Time Delay Using the ANN Output
(Position in 3D Space)

The TDEs τ̂mn in Sect. 2.4 can be used in a delay-and-sum
beamformer to generate an enhanced speech signal through
the process illustrated in Fig. 1. However, the TDE values
are degraded by the environment with the result that the sig-
nals are not summed correctly in phase. Thus, reliable time
delay values, robust to any environmental effect, are neces-
sary.

In this work, the ANN is employed to estimate the po-
sition. Once the estimate has been obtained, the time delays
are reestimated using the true microphone position. The new
values of the time delay τ̂′mn are then used in the delay-and-
sum beamformer.

2.6.2 Resource Management

Processing all the microphone signals of a microphone array
network has a high computational cost. Strategies to select
a reasonable number of microphone signals are thus nec-
essary. The spatial information of the speaker, in our case
the position and orientation, can be used to select the arrays
closest to the speaker (assuming that these have a higher
signal-to-noise ratio (SNR) than other more distant micro-
phone arrays).

2.6.3 Improving Speech Recognition

Using the estimated orientation, the proposed system explic-
†Under the conditions in [12], the two-stage ANN and one-

stage ANN respectively yielded 99.5% and 99.4% for the correct
orientation ratio, and 23.2 (20.5) and 25.0 (20.5) cm in 3D (2D)
space for the average position error.
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itly selects a specific lexicon for the application that a per-
son (i.e., a user of the system) is trying to control under the
assumption that he or she faces the application when con-
trolling it by speech.

3. Automatic Speech Recognition

Basically, the key to obtaining good recognition perfor-
mance relies on two factors: (A) a large quantity of speech
training data to create reliable acoustic and language mod-
els, and (B) a reduction in the mismatch between training
and testing conditions. While (A) can be solved with suffi-
cient data, (B) caused us the most difficulty. In most cases,
training data consist of clean speech data (data recorded
with a nearby microphone in a quiet environment), whereas
testing data are recorded under adverse conditions (a noisy
and reverberant environment with both near and distant mi-
crophones). In this section, we present the conventional
CMN method and a new CMN method based on GMM to
reduce the effects of a reverberant environment.

3.1 Conventional CMN

Conventional CMN is useful in reducing the effect of the
early part of reverberation within a frame. For notational
simplicity, consider a generic model that illustrates the effect
of the environment h(t) on the speech signal s(t) generating
the corrupted signal x(t) as

x(t) = s(t) ∗ h(t), (5)

where “∗” is the convolution operator. The representation
of Eq. (5) in the cepstral domain is obtained by the discrete
cosine transform (DCT) of the logarithm of the power spec-
trum of x(t), under which the convolution operator becomes
a simple addition operator,

Cx = Cs +Ch, (6)

where Cx, Cs, and Ch are the cepstra of x(t), s(t), and h(t),
respectively. According to Eq. (6), the effect of h(t) in the
cepstral domain is that of an additive bias.

In practice, signals are sampled and acoustic features
are estimated within a short-term analysis window assum-
ing quasi-stationarity inside frames. Thus, Cx can be rep-
resented by the set of feature vectors {C1, . . . ,Ct, . . . ,CT },
where t = 1, . . . ,T is the time frame index. For a given
utterance, the conventional CMN is used to approximately
compensate the bias due to the channel distortion as

C̃t = Ct − C̄, (7)

C̄ =
1
T

T∑

t=1

Ct, (8)

where C̃t, Ct, and C̄, are, respectively, the compensated fea-
ture vector, the original feature vector, and the average of
Ct.

3.2 GMM-Based CMN

3.2.1 Gaussian Mixture Model

A GMM is the weighted sum of MD-dimensional Gaussian
densities expressed by

P(x; λ) =
M∑

i=1

cibi(x), (9)

where x is a D-dimensional random vector; λ = {ci, μi,Σi}
denotes the GMM parametric model with mixture weights
ci, mean vector μi, and covariance matrix Σi; and

bi(x) = N(x; μi,Σi) (10)

are the densities, for i = 1, . . . ,M.
The mixture weight is constrained by

M∑

i=1

ci = 1. (11)

In our experiment, speaker-independent GMMs were
trained by the expectation-maximization (EM) algorithm us-
ing the adult male part of the Japanese newspaper article
sentence (JNAS) corpus [13] with the HTK toolkit†.

3.2.2 Compensation Method

An accurate cepstral mean cannot be estimated using
Eq. (8), particularly when the utterance is short, because
the estimated value is highly dependent on the utterance it-
self, giving a negative effect on the compensation procedure.
For example, the cepstral mean of a short utterance contain-
ing a vowel removes the characteristics of the vowel in the
normalization procedure. To avoid such a negative effect,
the distribution of the non-normalized training data Ctrain is
modeled by a GMM of M mixtures, where each mean vec-
tor of the GMM is expressed by μi, for i = 1, . . . ,M. This
process divides Ctrain into M different clusters.

The proposed compensation method, illustrated in
Fig. 3, consists of finding the nearest mean vector of the
GMM to Ct by calculating the likelihood

î(t) = arg max
i
{bi(Ct)} , (12)

where μi is the mean vector of mixture bi(·) and μî(t) is the
nearest mean vector of the GMM to Ct. On the other hand,
the corresponding data set of cluster i is used to determine
μ̃i, which is the mean vector of the data of cluster i after
normalization by the cepstrum mean of cluster i. Using μ̃i,
the following normalization operation is performed for each
frame t:

Ct − μ̃î(t) , (13)

or Ct − μî(t) , (14)
†http://htk.eng.cam.ac.uk/
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Fig. 3 New GMM-based CMN method.

and taking the expectation of Eqs. (13) and (14) for all input
frames T ,

ΔC1 =
1
T

T∑

t=1

(
Ct − μ̃î(t)

)
, (15)

or ΔC2 =
1
T

T∑

t=1

(
Ct − μî(t)

)
, (16)

the new channel-effect normalization vector is determined.
The normalization is performed as

C̃t = Ct − ΔC1, (17)

or C̃t = Ct − ΔC2 − C̄train, (18)

where C̄train is the mean of all training data.

4. Experiments

4.1 Experimental Setup

All experiments were conducted in a 5 m × 6.4 m × 2.65 m
room containing eight T-shaped microphone arrays (see
Fig. 4), with one array fixed to each wall (arrays A, B, C,
and D) and four arrays fixed to the ceiling (arrays E, F, G,
and H). To estimate the 3D location it is necessary to use
at least four microphones [14], and the T-shaped array is a
popular array of four microphones. The computers in the
human interaction loop (CHIL)† project and [15] also used
the T-shaped array. In [12], we compared the position and
orientation estimation method based on an ANN with two
conventional methods: a TDOA-based position estimation
method and the steered response power with phase trans-
form (SRP-PHAT) method, both of which use the T-shaped
array. Here we decided to recognize speech using the same
microphone array.

Each array was mounted on a structure composed of
an acoustic absorber to reduce the effects of reflection near
the microphones. The position of the center microphone in
each array is fixed and is given in centimeters as follows: A
(236.5, 619.0, 206.0), B (497.0, 354.5, 200.0), C (3.0, 354.5,
200.0), D (98.5, 105.0, 200.0), E (130.0, 423.5, 255.0), F
(370.0, 423.5, 255.0), G (370.0, 273.5, 255.0), H (130.0,
273.5, 255.0). The distance d between pairs of microphones
in each array was set to 20 cm††. Five speaking positions
(P1 (244, 215.5), P2 (244, 365.5), P3 (144, 415.5), P4 (344,
415.5), P5 (244, 465.5)) were chosen for our experiment.

Fig. 4 T-shaped microphone array comprising microphones {q1, q2, q3,
q4}. d is the distance between adjacent microphones.

Fig. 5 View of the room from above showing the five speaker positions
(P1, P2, P3, P4, P5 – “	”), the directions faced (arrows) in the experiment,
the microphone array positions (A, B, C, D, E, F, G, H), and the reverber-
ation impulse response measurement position (RIR – “�”). The origin of
the coordinate system and the relative orientation are shown at the bottom
left.

The array positions and speaker positions are depicted in
Fig. 5.

Ten male speakers stood at each position and uttered
a list of words in Japanese facing each of the three direc-
tions (television, radio/CD/DVD, and air-con/blind). Ta-

†http://chil.server.de/servlet/is/101/
††Spatial aliasing occurs when the distance between the micro-

phones of an array is greater then half the wavelength of the ob-
served signal in the frequency range of interest (to avoid spatial
aliasing at a sampling frequency of 16 kHz considering the entire
8 kHz band, the distance between the microphones must be ap-
proximately 2.1 cm; however, the smaller the distance between the
microphone pairs, the more difficult it becomes to estimate time
delays. The distance of 20 cm was used in [15] and yielded good
results in terms of time delay estimation). In practice, spatial alias-
ing modifies the array beam pattern, such as by reducing the gain
in the direction of interest, and creates nulls in the beam pattern
where a gain is expected (and vice versa). As a result, the output
signal of the beamformer is degraded by the contribution of inter-
ference that is not cancelled in the combination process. However,
we consider that the main part of the desired signal is still present
in the beamformer output, which is used in our experiment.
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Table 1 List of words used in our experiment. The left column indicates the type of list (general,
television, radio/CD/DVD, air-con/blind), while the right column gives the English translation of the
list of words uttered in Japanese.

Purpose List of words
General (22 words) one, two, three, four, five, six, seven, eight, nine, zero, yes, no, turn on, turn off, up, down,

more/lessa, volume, ok, sleep, open, close
Television (16 words) next, previous, channel, change, brightness, color, contrast, mute, television, [NHK education,

NHK general, Chūkyō TV, Tōkai TV, Nagoya TV, TV Aichi, CBC TV]b

Radio/CD/DVD (21 words) station, tuner, music, music name, radio, [NHK 1, NHK 2, Tōkai radio, CBC radio]c, DVD, CD,
cancel, start, stop, play, pause, random, track, deck, record music, record movie

Air-con/Blind (8 words) air conditioner, blind, temperature, heating, cooling, dehumidify, up, down

aIn Japanese a prefix before a word indicates an increased/decreased effect. But in English a suffix indicates an increased/decreased effect. For
example, in English the suffix ‘up’ in level-up indicates an increased effect.

bListed in brackets are seven Japanese television channels.
cListed in brackets are four Japanese radio stations.

ble 1 gives the list of words translated into English for refer-
ence. Each speaker uttered the general list of words plus the
specific list related to the direction faced; in other words, if
the speaker was facing the television, he would utter words
in the general list plus those in the television list; if he was
facing the radio/CD/DVD, he would utter words in the gen-
eral list plus those in the radio/CD/DVD list; and finally, if
he was facing the air conditioner/blind, he would utter words
in the general list plus those in the air-con/blind list. The
procedure was performed twice, resulting in each speaker
uttering a total of 222 words per position.

Utterances were recorded at 48 kHz by a 32-channel
acquisition system and downsampled to 16 kHz. The acqui-
sition board was manufactured by Tokyo Electron Device
Ltd., while the microphones used are the ECM-C10 model
produced by Sony Corporation. In the GCC-PHAT analysis,
a frame length of 256 samples, a frame shift of 128 samples,
and the Hamming window were considered. For each array,
a set of three TDOAs {τ̂12, τ̂13, τ̂14} was estimated per utter-
ance for pairs {1, 2}, {1, 3}, and {1, 4}, taking microphone 1
as the reference. The measured reverberation time was ap-
proximately 330 ms and the background noise level was ap-
proximately 35 dBA. The SNR estimated from the recorded
signals was approximately 15 dB.

For the speech recognition, a frame size of 25 ms (400
points), a frame shift of 10 ms (160 points), and a Ham-
ming window were used. Then, 27992 utterances read
by 175 male speakers (from the JNAS corpus) were used
to train 116 Japanese context-independent syllable HMMs
including short pauses and silence. Using the context-
independent HMMs as base models, 928 context-dependent
syllable HMMs with eight left contexts (five vowels, si-
lence, /N/, and the short pause /q/) were obtained [16]. Each
continuous-density HMM had five states, with four of them
having pdfs of output probability. Each pdf consisted of four
Gaussians with full-covariance matrices. The feature space
comprised 12 MFCCs, the first and second derivatives of
these coefficients plus the first and second derivatives of the
power components, generating a total of 38 feature parame-
ters.

For the ANN analysis, a fully connected feedforward
ANN was implemented using the Stuttgart Neural Network

Simulator (SNNS)†. We considered the position estimation
in 3D space (x̃, ỹ, z̃), with eight speaker orientations: N, NW,
W, SW, S, SE, E, and NE. The ANN topology used in this
study is illustrated in Fig. 2.

For the digit recognition task, the input set comprised
the TDE values (three values per array) and microphone po-
sitions (three coordinate values per microphone) for all the
arrays (a total of 120 input units). Furthermore, in the digit
recognition task, the hidden layers had 240 units, and the
output layer had 11 units (eight orientations and three val-
ues representing the space). In the specific command recog-
nition task, 136 input values (eight power values + eight
correlation values + TDEs + microphone position values)
and 272 hidden units were used. In the digit recognition
task, where the orientation information was not used, the
TDEs and microphone positions were sufficient to estimate
the position information used to reestimate time delays for
the delay-and-sum beamformer. In the command recogni-
tion task, the reason for including energy-related features
in the estimation method was to obtain better estimates of
position and orientation (which were effectively used in the
lexicon selection).

The GMMs were trained using male speakers and the
JNAS corpus with a sampling frequency of 16 kHz, a frame
size of 25 ms, a frame shift of 10 ms, and the Hamming win-
dow. The training parameters were 12 MFCCs, with the
number of mixtures set to 16, 32, or 64.

4.2 First Task — Digit Recognition

4.2.1 Position and Orientation Estimation by ANN

For the ANN training/testing phase, all recorded data were
divided into two sets: nondigits for training (about 73%) and
digits for testing (about 27%). As the input for the ANN,
the TDE set (3 × 8 = 24 values) and microphone positions
(3 × 4 × 8 = 96 values) were used, while energy-related
features were not used. In the training phase, both the cor-
rect orientation and the true source position were used as
target values. For the true source position, the height of the

†http://www.ra.cs.uni-tuebingen.de/SNNS/
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mouth of each speaker was used as the z-coordinate. The
results in Table 2 are presented in terms of the correct orien-
tation ratio (%) and the average position error (cm), where
the correct orientation ratio is the ratio of the total number
of correct estimates by the ANN to the total number of in-
put patterns, and the position error is the Euclidean distance
between the estimated position and the actual source posi-
tion. In [8] it was shown that the position estimate obtained
by the ANN approach is better than that by a state-of-the-art
position localization algorithm such as the SRP-PHAT [1].
The estimated position value in 3D space was used to rees-
timate τ̂mn, i.e., the TDEs between microphone pairs in each
array, and the reestimated values τ̂′mn were then used in the
delay-and-sum beamformer.

4.2.2 Using Conventional CMN

Table 3 gives the digit recognition results for all speakers.
In all cases ((a) to (f)), the conventional CMN was used.
Experiments without CMN (that is, without cepstral nor-
malization) were not performed because it was shown in
[15] that the conventional CMN performed better even for
short utterances. In (a), the center microphone in each array
was used in the recognition experiment. In (b), the spectral
subtraction method was applied to the signal of microphone
1, resulting in a significant improvement in recognition ra-
tio. In (c), the delay-and-sum beamformer was implemented
using the time delays estimated by the robust GCC-PHAT
function, resulting in a lower recognition ratio than (b). This
may be due to the noise level, which degrades the time delay
estimation, and thus the signals were not summed in phase.
In (d), spectral subtraction was applied to signal (c) resulting
in an improvement in the recognition ratio. In (e), spectral

Table 2 ANN results for the average over all speaker positions and the
correct orientation ratio in the case of digits.

Measure Value
Average position error in 3D space (cm) 34.3
Average position error in 2D space (cm) 29.4
Correct orientation ratio (%) 92.8

Table 3 Digit recognition results by array (A, B, C, D, E, F, G, H) as percentages (%) using the
conventional CMN. In “only micro. q1”, only the center microphone of each array was used without
any processing; in “SS → only micro. q1”, spectral subtraction is applied to the center microphone
of each array; in “beam. [τ̂mn]”, beamforming is carried out using time delays calculated by the robust
GCC-PHAT function; in “beam. [τ̂mn]→ SS”, spectral subtraction is applied to the “beam. [τ̂mn]” signal;
in “SS → beam. [τ̂mn]”, spectral subtraction is applied to each signal and beamforming is carried out
using time delays calculated by the robust GCC-PHAT function; in “SS→ beam. [τ̂′mn]”, beamforming
is carried out using reestimated time delays τ̂′mn. In the “AVG.” column, the average over all arrays was
calculated; in the “ALL” column, the likelihoods of all arrays were combined.

SIGNAL ARRAYS
A B C D E F G H AVG. ALL

(a) only micro. q1 66.10 62.53 62.70 64.37 68.43 71.70 67.50 66.97 66.29 69.00
(b) SS→ only micro. q1 79.40 77.77 78.40 77.93 81.47 83.43 80.20 79.93 79.82 84.96
(c) beam. [τ̂mn] 60.77 61.73 62.20 62.93 66.37 68.37 65.80 64.87 64.13 67.06
(d) beam. [τ̂mn]→ SS 76.63 76.07 78.30 77.93 79.00 80.57 77.40 76.87 77.85 84.16
(e) SS→ beam. [τ̂mn] 79.37 80.07 80.57 79.60 82.90 84.13 81.23 80.73 81.08 85.67
(f) SS→ beam. [τ̂′mn] 81.40 81.60 82.10 81.33 84.27 84.63 82.97 84.20 82.81 86.13

subtraction was applied to each signal of the array a pri-
ori, which were then summed in phase in accordance with
the time delay calculated by the robust GCC-PHAT func-
tion. The results show that the noise reduction at the begin-
ning of the process has a strong impact on the recognition
ratio. In (f), using τ̂mn in the ANN position and the orienta-
tion estimation method, the estimated position was used to
reestimate time delays τ̂′mn between microphone pairs, these
delays were used in a delay-and-sum beamformer. Using
τ̂′mn, a slight improvement relative to (e) was obtained. The
“AVG.” column gives the average for all arrays. In “ALL”
column, all microphones were used to choose the best re-
sult by summing the likelihoods generated in the recogni-
tion process of all array signals. The recognized candidate
with the highest summed likelihood was chosen as the cor-
rect value.

The ceiling arrays (E, F, G, H) tend to yield better re-
sults than the wall arrays (A, B, C, D). According to Table 3,
array F yields the best results. This is to be expected be-
cause the ceiling arrays can perceive signals directly above
the speaker and it is more difficult to physically block the
ceiling arrays than the wall arrays. Figure 6 depicts the
recognition results using only array F for different speaker
positions in the six cases, ((a) to (f) in Table 3) and the 32-
mixture case (32 Mix. in Table 5). The values in parentheses
on the x-axis denote the average distances from the speaker
at each position (P1, P2, P3, P4, P5) to array F. It can be
seen that position P3 has a lower digit recognition ratio than
P1 due to the reflective surfaces (shelves) near P3, whereas
there are no obstructions near P1. Signals (a) and (c) have
the lowest recognition results for all positions. For P1, sig-
nals (e) and (f) yielded recognition ratios greater than 87%.
The recognition ratios of signals (b), (e), (f), and (32 Mix.),
where spectral subtraction was employed a priori, appear to
be independent of the distance. Finally, the signal (32 Mix.)
yielded the best results for all considered positions.
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Table 4 Digit recognition results by array (A, B, C, D, E, F, G, H) as percentages (%) using the
cepstral mean calculated over all digits in a given position and orientation. “SS→ beam. [τ̂′mn]” means
beamforming using reestimated delays.

SIGNAL ARRAYS
A B C D E F G H AVG. ALL

SS→ beam. [τ̂′mn] 85.53 85.73 86.60 86.13 86.70 88.17 86.37 86.77 86.50 89.70

Table 5 Digit recognition results by array (A, B, C, D, E, F, G, H) as percentages (%) using the
new GMM-based CMN for the digit recognition task. “SS→ beam. [τ̂′mn]” means beamforming using
reestimated delays.

SIGNAL ARRAYS
SS→ beam. [τ̂′mn] A B C D E F G H AVG. ALL
16 Mix. 82.03 82.10 83.13 81.83 84.83 86.33 84.30 84.53 83.64 87.06
32 Mix. 83.30 83.30 84.03 82.80 85.60 86.93 85.53 85.43 84.62 87.90
64 Mix. 83.13 83.20 84.33 82.97 86.17 86.83 85.27 85.63 84.69 87.86

Fig. 6 Digit recognition results considering the distance between the
speakers and array F.

4.2.3 Using the Cepstral Mean Calculated over Many Ut-
terances in CMN

Table 4 gives the digit recognition results for signal (f) when
the cepstral mean is calculated over all digits (ten utterances,
about four seconds) for each position and orientation ob-
tained using Eq. (8). It can be seen that the longer the signal
is, the better the calculated cepstral mean will be, and there-
fore, the better the modeling of the channel effect will be.

4.2.4 Using the GMM-Based CMN

The experiment in this section utilizes signal (f), the signal
giving the best results according to Table 3. Table 5 gives
the results using the new GMM-based CMN method for 16,
32, and 64 mixtures using Eq. (17). Initially, improvements
were observed compared with the baselines in Table 3. The
GMM with 32 mixtures is sufficient to model voice clusters
and yields better results than that with 16 or 64 mixtures,
which can be explained by the fact that 16 mixtures are too
few whereas 64 mixtures are too many to model voice clus-
ters such as phonemes in mismatched environments. Using
Eq. (18), the averages “AVG.” were 83.32%, 84.37%, and

Fig. 7 Number of digit utterances used to calculate the cepstral mean
versus the average recognition results over all arrays.

84.32%, for the GMM with 16, 32, and 64 mixtures, respec-
tively, which are almost the same performances as those ob-
tained by Eq. (17). Although the results are inferior to those
in Table 4, where the cepstral mean was calculated using all
digits, in Table 5 only the short utterance itself is used in the
recognition. In Fig. 7, we present the relationship between
the number of digit utterances used to calculated the cepstral
mean and the average recognition result over all arrays. We
find that three short utterances are sufficient to yield a better
performance than the GMM-based CMN.

4.3 Second Task — Specific Command Recognition

The specific commands comprise longer utterances than the
digits. For the ANN training/testing phase five different sets
were created. All the data from eight speakers were used for
training (80%), while all the data from two speakers (20%)
were used in the testing phase. Each testing set included
utterances from different speakers. There was no overlap
between the training and testing sets. As the input for the
ANN, the set of TDOAs (24 values), the microphone posi-
tions (96 values), the powers (eight values), and the correla-
tion (eight values) were used. In the training phase, both the
correct orientation and the true source position were used as
target values. For the true source position, the height of the
mouth of each speaker was used as the z-coordinate. The
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ANN results are presented in Table 6 and only specific com-
mands were used in this experiment.

The estimated position and orientation information was
used to improve recognition results. Assuming that the
speaker faced the desired direction before speaking a com-
mand, a different dictionary was created for each direction.
The process was as follows:

1. Estimate the position and orientation.
2. Using the information from Step 1, use a specific dic-

tionary in the recognition task; for instance, if the
speaker turns towards the television, use the dictionary
that contains only television commands.

3. If the direction faced by the speaker is not directly to-
wards one of the specified directions, use the ANN out-
put to choose the nearest adjacent direction, which has
the highest score, to be the estimated orientation.

4. If the strategy in Step 3 does not work, use a dictionary
that contains all the specific words.

Table 6 ANN results for the average over all speaker positions and the
correct orientation ratio in the case of specific commands.

Measure Value
Average position error in 3D space (cm) 30.7
Average position error in 2D space (cm) 25.9
Correct orientation ratio (%) 96.0

Table 7 Command recognition results using a dictionary with all words. In the “AVG.” column, the
average over all arrays was calculated, in the “CL” column, the results obtained by the closest array to
the speaker are given, in the “ALL” column, the likelihoods of all arrays were combined.

ARRAYS
SIGNAL A B C D E F G H AVG. CL ALL

(a) SS→ only micro. q1 82.18 79.40 82.67 82.09 84.98 8378 80.40 83.73 82.40 83.97 91.02
(b) SS→ beam. [τ̂mn] 83.62 83.13 85.86 85.53 86.75 85.11 82.40 84.77 84.65 85.75 92.37
(c) SS→ beam. [τ̂′mn] 84.31 84.08 86.57 85.88 86.80 85.02 83.46 85.44 85.20 85.89 92.35
(d) SS→ beam. [τ̂′mn]32Mix. 85.33 85.11 87.57 86.40 88.37 86.02 85.17 86.80 86.35 87.15 92.62

Table 8 Command recognition results using dictionaries depending on the orientation (assuming
100% correct orientation estimation). In the “AVG.” column, the average over all arrays was calculated,
in the “CL” column, the results obtained by the closest array to the speaker are given, in the “ALL”
column, the likelihoods of all arrays were combined.

ARRAYS
SIGNAL A B C D E F G H AVG. CL ALL

(a) SS→ only micro. q1 89.06 88.08 89.95 90.11 91.06 89.91 88.44 90.93 89.69 90.33 92.15
(b) SS→ beam. [τ̂mn] 90.15 90.26 92.15 91.91 91.75 91.37 89.53 91.44 91.07 91.22 93.13
(c) SS→ beam. [τ̂′mn] 90.66 90.86 92.00 92.08 92.06 91.31 90.06 91.88 91.36 91.62 93.06
(d) SS→ beam. [τ̂′mn]32Mix. 90.84 91.33 92.15 91.95 92.51 91.57 90.84 92.35 91.69 91.86 93.22

Table 9 Command recognition results using dictionaries depending on the orientation (using the
orientation estimated by the ANN). In the “AVG.” column, the average over all arrays was calculated,
in the “CL” column, the results obtained by the closest array to the speaker are given; In the “ALL”
column, the likelihoods of all arrays were combined.

ARRAYS
SIGNAL A B C D E F G H AVG. CL ALL

(a) SS→ only micro. q1 88.95 88.04 89.84 90.04 91.06 89.82 88.33 90.77 89.61 90.20 92.13
(b) SS→ beam. [τ̂mn] 90.08 90.17 92.11 91.82 91.71 91.28 89.37 91.31 90.98 91.15 93.11
(c) SS→ beam. [τ̂′mn] 90.55 90.80 91.97 91.97 91.97 91.26 89.95 91.77 91.28 91.55 93.06
(d) SS→ beam. [τ̂′mn]32Mix. 90.68 91.24 92.15 91.88 92.44 91.48 90.71 92.24 91.60 91.80 93.22

The strategy in Step 3 does not work when an error occurs
in the orientation estimation at positions far from the center
of the room. For instance, the speaker at P1 utters a com-
mand to the television (N) but the estimated orientation is
south (S). The adjacent directions to S are SE or SW. How-
ever, SE or SW are not directed to the television (N), Ra-
dio/CD/DVD (NW), or air conditioner/blind (NE). Thus, we
cannot state the correct orientation with confidence, there-
fore, we opted to use the entire dictionary in this case.

To evaluate this method, three cases were analyzed:

I. Using a dictionary containing a list of all specific words
with the estimated position information.

II. Selecting the list of words depending on the speech di-
rection, assuming a 100% correct orientation estima-
tion, with the estimated position information.

III. Selecting the list of words depending on the speech di-
rection, using the spatial information (the position and
orientation) estimated by the ANN.

Tables 7, 8, and 9 give the results for cases I, II, and III,
respectively. Table 7 shows the results by array when a uni-
fied dictionary was used in the recognition process, resulting
in an average recognition ratio of approximately 85%. Ta-
ble 8 shows the results by array when a specific dictionary
was used for each specific direction. Here, it is assumed
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Fig. 8 Command recognition results considering the distance between
the speakers and array E.

that the orientation estimation is 100% correct. An average
recognition ratio of approximately 91% was obtained. Fi-
nally, Table 9 shows the results using the orientation infor-
mation automatically estimated by the ANN. The average
recognition ratio was almost the same as that in Table 8.

Figure 8 illustrates the results of the command recog-
nition task from Tables 7 and 9 using only array E for dif-
ferent speaker positions. Two sets are clearly visible: the
upper (Table 9 (a–d)) and lower (Table 7 (a–d)) sets. The
upper set, formed by the recognition results using separate
dictionaries, is independent of the distance and has a smaller
recognition ratio range. The lower set, formed by the recog-
nition results using the dictionary containing all the words,
is more dependent on distance and has a larger recognition
ratio range. The difference between the upper and lower sets
indicates the improvement as a result of restricting the dic-
tionary used on the basis of the orientation information in
the recognition process.

5. Discussion

5.1 Comparing the Results of the Digit Recognition Task

Statistical test

To compare the performance of the system for the different
approaches adopted in this work, the sign test for matched
pairs is used to compare four compensated signals based on
the same test data: (b), (e), and (f) in Table 3; and the signal
“32 Mix.” in Table 5. To compare two methods M1 and
M2 using the sign test, let n1 be the number of times that
M1 is true and M2 is false, and n2 be the number of times
that M2 is true and M1 is false. Modeling this process by a
binomial distribution with averages p1 = p2 =

1
2 , we test the

null hypothesis (i.e., no difference between methods M1 and
M2). Writing N = n1 + n2, we have

Z =
n2 − N/2√

N/4
, (19)

upon approximating a binomial distribution by the normal
distribution N(0, 1). Comparing (b) ↔ (e), (e) ↔ (f), and

(f) ↔ (f)32Mix., we have |Z|e,b = 6.10, |Z|f,e = 10.7, and
|Z|f32Mix. ,f = 11.4, respectively. For a significance level of 1%
we have

p({|Z| ≥ 2.65}) = 0.01, (20)

which means that the initial hypothesis can be rejected and
the improvements are statistically significant. Thus, |Z|e,b
and |Z|f,e validate the improvements shown in Table 3. We
can thus conclude that the reestimated τ̂′mn-based delay-and-
sum beamformer is superior to the original τ̂mn-based delay-
and-sum beamformer.

5.2 GMM-Based CMN

Statistical test

Comparing Tables 3 and 5, the proposed GMM-based CMN
shows an improvement over the conventional CMN for short
utterances, validated by the sign test (|Z|f32Mix. ,f = 11.4). We
can therefore conclude that the GMM-based CMN is su-
perior to the conventional CMN for short utterances (Both
methods compensate the distortion due to noise reduction in
the same way.). The recognition ratio is, however, inferior
to that obtained in Table 4. This may be due to the effect
of reverberation in the mapping process (Ct ↔ μi) to the
unnormalized GMM mean vector and the influence of the
too short utterances. This suggests that a dereverberation
method must be applied at the front end before the feature
extraction stage.

5.3 Spatial Information

The estimated position and orientation information of the
speaker is shown to be effective in improving the perfor-
mance of the ASR system.

5.3.1 Reestimation of Time Delay

According to Tables 3 and 7, using the reestimated time de-
lays τ̂′mn derived from the position estimate obtained by the
ANN method appropriate for use in a delay-and-sum beam-
former to improve the recognition performance.

5.3.2 Decision Methods and Resource Management

In our experiments, we obtained recognition results for each
of the eight T-shaped microphone arrays (with a total of 32
microphones). Using all the available results, the best re-
sults were obtained by an integration method which com-
bined the results of all arrays. It was verified that the “ALL”
column in tables of digit and command recognition results
has larger recognition ratios than those of individual arrays
and those in the “AVG.” column.

However, sometimes not all resources are available at
the same time owing to the high computational cost of the
microphone array network; thus, a selection method to se-
lect only the necessary number of arrays is suggested. An
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example of a selection method is given in Tables 7, 8, and 9
for the command recognition task, where the “CL” column
represents the results of the closest array to the estimated
speaker’s position. The values in the “CL” column are still
smaller than the “ALL” column results and those of the best
array, array “E”, showing that different criteria for the selec-
tion method should be suggested and tested. For instance,
an approach selecting/integrating the results of two or three
of the closest arrays to the estimated speaker’s position.

5.3.3 Orientation Information

Restricting the list of commands depending on the speech
direction was shown to be efficient in improving the recogni-
tion system performance. Instead of using a dictionary of 45
commands, three different dictionaries with 16 (television),
21 (radio/CD/DVD), and eight (air-con/blind) commands
were used. Comparing the results in Table 7 with those in
Tables 8 and 9, where the orientation information is used,
an improvement of approximately 6% is obtained for the
“AVG.” values. Comparing Tables 8 and 9, no degradation
due to orientation errors is observed. Note that, when the
recognized lexicon is restricted by the orientation, the dif-
ference between the performances of each array and “ALL”
(combining the results of all arrays) is smaller in Tables 8
and 9 than in Table 7. For example, in Table 7 the results
of array “E” and “ALL” are 88.37% and 92.62% and in Ta-
ble 9, those of array “E” and “ALL” are 92.44% and 93.22%,
respectively.

6. Conclusions and Future Works

Spatial information estimated by a microphone array net-
work using an ANN was used to improve recognition results
in digit and command recognition tasks. In this work, spa-
tial information was used in a simple delay-and-sum beam-
former for signal enhancement, in the reestimation of time
delays for the delay-and-sum beamformer, and to restrict the
recognized vocabulary depending on the estimated source
orientation. The results illustrate the potential of using a dis-
tributed microphone network in recognition tasks in a real
environment, for instance, hands-free and voice command
applications. A study on short utterances (digits) was pre-
sented, in which a new GMM-based CMN method showed
an improvement over the conventional CMN method.

This paper reports an initial study in which a user de-
sires to control a given device using voice commands. To
improve the recognition results we combined different meth-
ods to deal with the effect of the environment (background
noise and the reverberation). In this work, we presented ex-
periments using TV and audio devices, which are typical
devices in a living room. However, these devices gener-
ate nonstationary disturbances; thus, this task may lead to a
misunderstanding but simpler applications such as dimmers,
fan heaters, ceiling fans, blinds, and air conditioners in quiet
rooms should also be explored. To cope with nonstationary
disturbances such as TV and audio devices, more research

must be performed such as on an echo cancellation stage
that reduces the effect of the nonstationary disturbance.

In our future work, we aim to improve the performance
of our system by implementing a dereverberation method
and more efficient beamforming techniques [2], [10] such as
the minimum variance distortionless response (MVDR) in
its adaptive version. We also plan to study echo cancellation
methods to cancel nonstationary disturbances at the micro-
phones and to explore the spatial information required for
array selection. Resource management will be explored so
that only the necessary number of arrays is used aiming at
a reduction in power consumption and the amount of data
processing.
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