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Least Absolute Policy Iteration—A Robust Approach to Value

Function Approximation
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SUMMARY  Least-squares policy iteration is a useful reinforcement
learning method in robotics due to its computational efficiency. However,
it tends to be sensitive to outliers in observed rewards. In this paper, we
propose an alternative method that employs the absolute loss for enhanc-
ing robustness and reliability. The proposed method is formulated as a
linear programming problem which can be solved efficiently by standard
optimization software, so the computational advantage is not sacrificed for
gaining robustness and reliability. We demonstrate the usefulness of the
proposed approach through a simulated robot-control task.
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1. Introduction

One of the popular reinforcement learning frameworks for
obtaining the optimal policy is policy iteration, which
performs policy evaluation and improvement steps itera-
tively [4], [28]. The computational cost of naive implemen-
tation of policy iteration is dominated by the number of
states and actions, so it is not scalable to real-world robotics
problems with large state/action space. To cope with this
problem, an alternative method called least-squares policy
iteration (LSPI) has been proposed[16]. In LSPI, value
functions of policies are approximated using linear archi-
tecture, so its computational cost is governed by the number
of parameters in the linear model. Thus, if the number of
parameters is kept reasonably small, LSPI is applicable to
large-scale robot-control tasks.

A basic idea of LSPI is to learn the parameters of the
linear model so that the temporal-difference (TD) error is
minimized under the squared loss. On the other hand, in
this paper, we propose to minimize the TD error under the
absolute loss (see Fig. 1). This is just a replacement of the
loss function, but we argue that this modification brings
about highly useful advantages in practical robotics prob-
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Fig.1 The absolute and squared loss functions for reducing the
temporal-difference error.

lems. More specifically, the rationale behind the use of the
absolute loss lies in robustness and reliability.

1.1 Robustness

In many robotics applications, immediate rewards are ob-
tained through measurement such as distance sensors or
computer vision. Due to intrinsic measurement noise or
recognition error, the obtained rewards often deviate from
the true value; in particular, the rewards occasionally con-
tain outliers, which are significantly different from regular
values.

Residual minimization under the squared loss amounts

to obtaining the mean of samples {x;} :

argmin [Z(x,- - c)z] = mean({x;}i,) = l Z Xj.
¢ i=1

M
If one of the values is very large, the mean would be strongly
affected by this outlier sample. Thus all the values {x;}!", are
responsible for the mean, and therefore even a single outlier
observation can significantly damage the learned result.
On the other hand, residual minimization under the ab-
solute loss amounts to obtaining the median.

2n+1

argmin [Z |x; = ¢l
c

= median({x;}?ﬂl) = Xp+l,

i=1

where x; < x» < -+ < x2,41. The median is influenced
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not by the magnitude of the values {x;}>"' but only by their
order. Thus, as long as the order is kept unchanged, the me-
dian is not affected by outliers—in fact, the median is known
to be the most robust estimator in the light of breakdown-
point analysis [13], [26].

Therefore, the use of the absolute loss would remedy
the problem of robustness in policy iteration.

1.2 Reliability

In practical robot-control tasks, we often want to attain a
stable performance, rather than to achieve a “dream” perfor-
mance with a little chance; for example, in the acquisition
of a humanoid gait, we may want the robot to walk forward
in a stable manner with high probability of success, rather
than to rush very fast in a chance level.

On the other hand, we do not want to be too conserva-
tive when training robots—if we are overly concerned with
unrealistic failure, no practically useful control policy will
be obtained. For example, any robots can be broken in prin-
ciple if activated for long time. However, if we fear this
fact too much, we may end up in a control policy that does
not activate the robots at all—obviously this is non-sense in
practice.

Since the squared loss solution is not robust against
outliers, it is sensitive to rare events with either positively
or negatively very large immediate rewards. Consequently,
the squared loss prefers an extraordinarily successful mo-
tion even if the success probability is very low; similarly, it
dislikes an unrealistic trouble even if such a terrible event
may not happen in practice. On the other hand, the abso-
lute loss solution is not easily affected by such rare events
due to robustness. Therefore, the use of the absolute loss
would produce a reliable control policy even in the presence
of such extreme events.

1.3 Goal of This Paper

As shown above, the use of the absolute loss in value func-
tion approximation would bring about robustness and relia-
bility, which are preferable properties in real-world robotics
problems. This modification is very simple, but to the best
of our knowledge, such an idea has never been incorporated
in value function approximation.

Another important advantage of the proposed approach
is that scalability to massive data is not sacrificed for en-
hancing robustness and reliability. Indeed, the absolute-loss
solution can be obtained by solving a linear programming
problem; this can be carried out very efficiently by a stan-
dard optimization software. We demonstrate the usefulness
of the absolute-loss approach through robotics simulations.

1.4 Related Work
In the seminal paper [10], the a-value criterion was intro-

duced as an alternative to the expected discounted reward.
This criterion is essentially identical to the value-at-risk of
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the discounted reward, which is a popular risk measure in
finance [25]. However, the resulted optimization problem
is not convex, and therefore it is difficult to obtain a good
solution efficiently [3]. A soft risk aversion method [19]
emphasizes actions whose rewards are less than expected.
Although the idea of this approach is intuitive, it is rather
heuristic and does not have a clear interpretation as risk
minimization. In the paper [27], an approach that optimizes
a linear combination of the mean and the variance of dis-
counted rewards was proposed. This approach is based on
the mean-variance model, which is popular modeling also
in finance [18]. The assumption behind the mean-variance
model is that the discounted rewards follow the Gaussian
distribution, which may not be true in practice. On the other
hand, the method proposed in this paper has a clear interpre-
tation as median risk minimization and no strong assump-
tion is imposed on the rewards. Furthermore, the resulting
optimization problem is a linear program, which is convex
and can be solved efficiently using standard optimization
software.

In the area of optimal control, robust control theory was
used to design stable controllers [2],[15],[20]. Although
this approach is also sometimes referred to as robust re-
inforcement learning, its aim is different from the current
paper—robust control aims at enhancing robustness against
uncertainties in the environment, while our goal is to en-
hance robustness against outliers in the rewards.

2. Problem Formulation

In this section, we formulate the reinforcement learning
problem using a Markov decision process (MDP), and
briefly review the core ideas of policy iteration and value
function approximation.

2.1 Markov Decision Process

Let us consider an MDP specified by
(S’ ﬂs PTs R3 7),

where S is a set of states, A is a set of actions, Pr(s’|s,a) (€
[0, 1]) is the conditional transition probability-density from
state s to next state s’ when action a is taken, R(s, a, s”) (€ R)
is a reward for transition from s to s” by taking action a, and
v (€ (0, 1]) is the discount factor for future rewards.

Let (als) (€ [0, 1]) be a stochastic policy which is the
conditional probability density of taking action a given state
s. The state-action value function Q(s,a) (€ R) for policy
7t is the expected discounted sum of rewards the agent will
receive when taking action a in state s and following policy
7 thereafter, i.e.,

n—1
” = R n» ns VN
0(s,a) KET[;y (Sns Ans Sus1)

§1 =95,41 = a], (D
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where FE,p, denotes the expectation over trajectory
{Sn, an}y | following m(a,ls,) and Pr(s,+1ls,, a,). The goal
of reinforcement learning is to obtain the policy that maxi-
mizes the discounted sum of future rewards.

Computing the value function Q(s,a) is called policy
evaluation since this corresponds to evaluating the value of
policy mr. Using Q(s, a), we may find a better policy as

n(als) « 6(a — argmax Q(s, a")),

where 6(+) is Dirac’s delta function. This is called policy im-
provement. It is known that repeating policy evaluation and
policy improvement leads to the optimal policy under some
condition [28]. This entire process is called policy iteration.

2.2 Value Function Approximation

Although policy iteration is guaranteed to produce the opti-
mal policy, it is computationally intractable when the num-
ber of state-action pairs |S| X [A| is very large; |S| or |A| be-
comes infinity when the state space or action space is con-
tinuous. To overcome this problem, the state-action value
function Q(s,a) may be approximated using the following
linear model:

B
O(s,a) = ) Oypi(s,a) = 07 §(s, ),
b=1

where

¢(S7 Cl) = (¢1(S, CZ), ¢2(S, Cl), ) ¢B(S’ a))T

are the fixed basis functions, T denotes the transpose, B is
the number of basis functions, and

0= (619027""03)T

are model parameters. Note that B is usually chosen to be
much smaller than |S| X |A|.

Suppose we have an N-step data sample, i.e., the agent
initially starts from a randomly selected state s; following
the initial-state probability density Pi(s;) and chooses an
action based on the current policy n(a,|s,). Then the agent
makes a transition following Pt(s,+1|s., a,) and receives an
immediate reward r, (= R(sy, ay,, Sp+1))—thus the training
dataset D is expressed as

— N
D= {(sm Ap, 'y, Sn+l)}n:1 .

The temporal-difference (TD) error for the n-th sample is
defined by

oT;/;(Sns ) = Tn, 2)
where E(s, a) is a B-dimensional column vector defined by

Y
|D(s,a)|

[¢(s",a)].

n(a’'|s")

W(s,a) = ¢(s,a) -

5" €D s,a)

Ds.a) 1s a set of 4-tuple elements (s, a, r, s) containing state
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s and action a in the training data D, Y ¢cp, denotes the
summation over s’ in the set Dy ,), and Ex|yv) denotes the
conditional expectation with respect to a’ over n(a’|s") given
s’

The issue we would like to address in this paper is the
choice of the loss function when evaluating the TD error (2);
more specifically, we argue that the use of the absolute loss
is more advantageous than the popular squared loss [16],
[23],[28]. We note that our results could be easily ex-
tended to various settings—for example, multiple sequences
of episodic training samples can be employed without es-
sentially changing the framework. The off-policy scenarios
where the sampling policy is different from the evaluation
policy can also be incorporated by applying importance-
weighting techniques [9], [24], [28]. However, we do not go
into the details of such generalization for keeping the pre-
sentation of the current paper simple.

3. Loss Functions for TD-Error Minimization

In this section, we first review a squared-loss method for
TD-error minimization, and then introduce an absolute-loss
method.

3.1 Least-Squares Policy Iteration (LSPI)

A standard choice of the loss function for minimizing the
residual error would be the squared loss [16], [23], [28]. The
least-squares TD-error solution ;g is defined as

N
G5 = arg(r)nin B Z (gT’l/;(sn, a,) — r,,)z}-

n=1

The solution 6  can be analytically computed as

N 1 N
ELS = ( Z ;Z(Sm an)‘//;(sm an)T) 1 Z rn;;(sm an).
n=1

n=1

The value-function approximation method based on the
above least-squares formulation is called least-squares TDQ
(LSTDQ) of the Bellman residual and the policy iteration
method based on LSTDQ is called least-squares policy iter-
ation (LSPI) [16].

3.2 Least Absolute Policy Iteration (LAPI)

As explained in the introduction, LSPI suffers from exces-
sive sensitivity to outliers and less reliability. Here, we intro-
duce an alternative approach to value function approxima-
tion, which we refer to as least absolute TDQ (LATDQ)—
we propose to employ the absolute loss instead of the
squared loss (Fig. 1):

N
?5LA = arg;nin [ nz:; |9T$(sn, ap) — 1y ] 3)

This minimization problem looks cumbersome due to
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the absolute value operator which is non-differentiable, but
the following mathematical trick mitigates this issue.

Proposition 1: [5]

[ x] =mgn b subjectto —b<x<b. 4

Since Eq. (4) is a linear programming problem, it can
be solved efficiently using a standard optimization software.
Using this proposition, we can reduce the minimization
problem (3) to the following linear program:

N
min Z b,
6.(by}

=1 n=1

subject to  —b, < 0T Y(sn, ay) — 1y < by, Vn.

The number of constraints is N in the above linear pro-
gram. When N is large, we may employ sophisticated op-
timization techniques such as column generation [7] for ef-
ficiently solving the linear programming problem. Alterna-
tively, an approximate solution can be obtained by gradient
descent or the (quasi)-Newton methods if the absolute loss
is approximated by a smooth loss (see e.g., Sect. 5.2).

We refer to the policy iteration method based on
LATDQ as least absolute policy iteration (LAPI).

3.3 Numerical Examples of LATDQ

For illustration purposes, let us consider the 4-state MDP
problem described in Fig.2. The agent is initially located
at state s(© and the actions the agent is allowed to take are
moving to the left or right state. If the left-movement action
is chosen, the agent always receives small positive reward
+0.1 at s, On the other hand, if the right-movement action
is chosen, the agent receives negative reward —1 with prob-
ability 0.9999 at s® or it receives very large positive re-
ward +20000 with probability 0.0001 at s®. The mean and
median rewards for left movement are both +0.1, while the
mean and median rewards for right movement are +1.0001
and —1, respectively.

If O(s©, ‘Left’) and Q(s), ‘Right’) are approximated

Start
()
Left  \__/  Right

movement movement

p=1 p=0.9999 p=0.0001

r=40.1 r=—-1 r = +20000
v
() ()

mean(r) = +1.0001
median(r) = —1

mean(r) = +0.1
median(r) = 40.1

Fig.2  Illustrative MDP problem.
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by LSTDQ, it returns the mean rewards, i.e., +0.1 and
+1.0001, respectively. Thus, LSTDQ prefers right move-
ment, which is a ‘gambling’ policy that negative reward —1
is almost always obtained at s®1, but it is possible to obtain
very high reward +20000 with a very small probability at
s On the other hand, if Q(s, ‘Left’) and Q(s, ‘Right’)
are approximated by LATDQ, it returns the median rewards,
i.e., +0.1 and —1, respectively. Thus LATDQ prefers left
movement, which is a stable policy that the agent can al-
ways receive small positive reward +0.1 at 50,

If all the rewards in Fig. 2 are negated, the value func-
tions are also negated and we obtain different interpretation:
LSTDAQ is afraid of the risk of receiving very large negative
reward —20000 at s®) with a very low probability, and con-
sequently it ends up in a very conservative policy that the
agent always receives negative reward —0.1 at s’. On the
other hand, LATDQ tries to receive positive reward +1 at
s®D without being afraid of visiting s®? too much.

As illustrated above, LATDQ tends to provide qualita-
tively different solutions from LSTDQ. We argue that the ro-
bust and reliable behavior of LATDQ would be more prefer-
able in practical robotics tasks, as discussed in the intro-
duction. In the next section, we experimentally show the
usefulness of the proposed method in robot-control tasks.

3.4 Properties of LATDQ

We have illustrated a robust property of LATDQ above.
Here, we investigate its properties when the model Q(s, a)
is correctly specified, i.e., there exists a parameter 8" such
that

for all s and a.

0(s,a) = O(s, a)

Under the correct model assumption, when the number of
samples N tends to infinity, the LATDQ solution # would
satisfy the following equation [14]:

0 y(s,a)= M [R(s,a,5)] forallsanda,  (5)
Pr(s'|s,a)

where Mp,(y|s,q) denotes the conditional median of s” over
Pr(s’|s,a) given s and a. (s, a) is defined by

Y, a)=¢(s,a)-y E E [#(s,a)],

Py(s’|s,a) n(a’ls’)

where Ep,(y|s,) denotes the conditional expectation of s’
over Pr(s’ls,a) given s and a, and Ey|y) denotes the con-
ditional expectation of a’ over n(a’|s’) given s’.

From Eq. (5), we can obtain the following Bellman-like
recursive expression:

a(s,a) = M [R(s,a,s)]
Pr(s'|s.a)

E E [0(.a)] (©6)

Pr(s'|s,a) n(a’ls’)

Note that in the case of LSTDQ where

0 ysa= E
Pr(s']s,a)

[R(s,a,s")]
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is satisfied in the limit under the correct model assumption,
we have

0(s.a)= E [R(s,a,5)]
Pr(s'|s,a)

+y E E [0, (7
Pr(s'|s,a) m(a’ls")
This is the ordinary Bellman equation [28]. Thus, Eq. (6)
could be regarded as an extension of the Bellman equation
to the absolute loss.

From the ordinary Bellman equation (7), we can re-
cover Eq. (1), the original definition of the state-value func-
tion Q(s,a) [28]. In contrast, from the absolute-loss Bell-
man equation (6), we have

[R(sn, Ay, sn+l)]

Pr(sp+118n,an)

’s,a = E n—1 M
Q'(s,a) P[Z;y

S1=8,d1 = a],

where E, p, denotes the expectation over {s,, a,}, | follow-
ing m(ay,ls,) and Pr(s,+1|sy,a,). This is the value function
LATDAQ is trying to approximate, which is different from
the ordinary value function. Since the discounted sum of
median rewards—not the expected rewards—is maximized,
LATDQ would be less sensitive to outliers than LSTDQ.

4. Experimental Evaluation

In this section, we apply LAPI to simulated robot-control
problems and evaluate its practical performance.

Here, we use an acrobot illustrated in Fig.3. The ac-
robot is an under-actuated system and consists of two links,
two joints, and an end effector. The length of each link is 0.3
[m], and the diameter of each joint is 0.15 [m]. The diameter
of the end effector is 0.10 [m] and the height of the horizon-
tal bar is 1.2 [m]. The first joint connects the first link to
the horizontal bar and is not controllable. The second joint
connects the first link to the second link and is controllable.
The end effector is attached to the tip of the second link.
The control command (action) we can choose is applying
positive torque +50 [N - m], no torque O [N - m], or negative
torque —50 [N - m] to the second joint. Note that the acrobot
moves only within a plane orthogonal to the horizontal bar.

The goal is to acquire a control policy such that the end
effector is swung up as high as possible. The state space
consists of the angle 6; [rad] and angular velocity éi [rad]s]
of the first and second joints (i = 1,2). The immediate re-
ward is given according to the height 4 of the center of the
end effector as follows:

10 if h > 1.75,
R(s,a,s') = Jexp (4382 if 15 <n <175,
0.001 otherwise.

Note that 0.55 < & < 1.85 in the current setting.
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Bar ~

/F ] «—15tlink

Fig.3  TIllustration of the acrobot. The goal is to swing up the end effector
by only controlling the second joint.

Here, we suppose that the length of the links is un-
known; thus the height / cannot be directly computed from
state information. The height of the end effector is supposed
to be estimated from an image taken by a camera—the end
effector is detected in the image and then its vertical coor-
dinate is computed. Due to recognition error, the estimated
height is highly noisy and could contain outliers.

In each policy iteration step, 20 episodic training sam-
ples of length 150 are gathered. The performance of the ob-
tained policy is evaluated using 50 episodic test samples of
length 300. Note that the test samples are not used for learn-
ing policies; they are used only for the purpose of evaluat-
ing learned policies. The policies are updated in a soft-max
manner:

exp(Q(s, a)/n)
Yaenexp(Q(s,a’)/m)’

where 7 = 10 — ¢ + 1 with ¢ being the iteration number. The
discounted factor is set to y = 1, i.e., no discount. As ba-
sis functions for value function approximation, we use the
Gaussian kernel with standard deviation 7—the Gaussian
centers are located at

n(als) «—

®)

(61’02’ 91592) € {_ﬂ5 _%’O’ %9”} X {_ﬂ-’ O’ﬂ}

X {-m, 0,7} X {-m,0, r}.

The above 135 (= 5% 3 x 3 x3) Gaussian kernels are defined
for each of the three actions; thus 405 (= 135 x 3) kernels
are used in total.

‘We consider two noise environments; one is the case
where no noise is added to the rewards and the other case is
where Laplacian noise with mean zero and standard devia-
tion 2 is added to the rewards with probability 0.1. Note that
the tail of the Laplacian density is heavier than that of the
Gaussian density (see Fig. 4), implying that a small number
of outliers tend to be included in the Laplacian noise envi-
ronment. An example of the noisy training samples is shown
in Fig. 5. For each noise environment, the experiment is re-
peated 50 times with different random seeds and the average
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Gaussian density
— — - Laplacian density
0.81
A
0.6 1\
I\
I\
0.4}
0.2}
0 ‘ ‘ ‘
-4 -2 0 2 4
Fig.4  Probability density functions of Gaussian and Laplacian distribu-
tions.
100 — True o
. O Sample with noise
T e
IS
=
)
(O]
=
©
(]
IS
E
_af O . o
0.55 15 1.751.85

Height of end—effector

Fig.5 Anexample of training samples with Laplace noise. The horizon-
tal axis is the height of the end effector. The solid line denotes the noiseless
immediate reward and the ‘o’ denotes a noisy training sample.

of the sum of rewards obtained by LAPI and LSPI are sum-
marized in Fig. 6. The best method in terms of the mean
value and comparable methods according to the ¢-fest [11]
at the significance level 5% are specified by ‘o’.

In the noise-less case (see Fig.6(a)), both LAPI and
LSPI improve the performance over iterations in a compara-
ble way. On the other hand, in the noisy case (see Fig. 6(b)),
the performance of LSPI is not improved much due to out-
liers, while LAPI still produces a good control policy.

Figures 7 and 8 depict motion examples of the acrobot
learned by LAPI and LSPI in the Laplacian-noise environ-
ment. A demo movie is available from

‘http://sugiyama-www.cs.titech.ac.jp/
“sugi/2010/LAPIvsLSPI.mp4’.

When LSPI is used (Fig. 7), the second joint is swung hard
in order to lift the end effector. However, the end effector
tends to stay below the horizontal bar, and therefore only
a small amount of rewards can be obtained by LSPI. This
would be due to the existence of outliers. On the other hand,
when LAPI is used (Fig. 8), the end effector goes beyond the
bar, and therefore a large amount of rewards can be obtained

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.9 SEPTEMBER 2010

14r

—_
N

-
o

Sum of rewards

2r ---LSPI
—LAPI
1 2 3 4 5 6 7 8 9 10
Iteration
(a) No noise

121

10f

Sum of rewards

1 2 3 4 5 6 7 8 9 10
lteration
(b) Laplacian noise

Fig.6  Average and standard deviation of the sum of rewards over 50
runs for the acrobot swinging-up simulation. The best method in terms
of the mean value and comparable methods according to the #-fest at the
significance level 5% are specified by ‘o’.

even in the presence of outliers.
5. Possible Extension and Variation

In this section, we show possible extension and variation of
the proposed approach.

5.1 Regularization

When the number of training samples is small, approx-
imated functions tend to overfit. To alleviate this prob-
lem, it is common to regularize the solution, i.e., impos-
ing a penalty on the solution when it is too ‘large’ [8], [12],
[32]. Here we introduce regularized variants of LSTDQ and
LATDQ which do not sacrifice computational efficiency.

Given that the LSTDQ objective function is in a
quadratic form, it is convenient to use the squared penalty
term as follows [12], [22]:

N B
> (0 swan) — ) + > ei],
n=1

N =

§LS = argmin[
6
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Frame 1 Frame 4 Frame 7 Frame 10 Frame 13 Frame 16
= = = = e = == = == = — ‘ —
Frame 19 Frame 22 Frame 25 Frame 28 Frame 31 Frame 34
= = — = : —— - m——— E e ] ‘ -~ =
Frame 37 Frame 40 Frame 43 . Frame 46 . Frame 49 . ~
a— — = = . = = = = —— =

Frame 55 Frame 58 Frame 61 Frame 64 Frame 67 Frame 70

Fig.7 A motion example of the acrobot learned by LSPI in the Laplacian-noise environment. The
frame rate is 50 [ms/ frame].

where « (> 0) the regularization parameter that controls the )
strength of regularization. The above solution is still given o6 }Il}llf{lcb}g
analytically as u=r{Cb by

B
bn"'KZCb

n=1 b=1

M=

subjectto  —b, < OTE(sn,an) — 1y < by, Yn.
— L —~ T -1 —cp <0, < cp, Vb
0LS = ( Z ‘/’(sn, an)‘/’(sm an) + KI)
n=1 An additional advantage of using the absolute penalty
N is that the solution tends to be sparse, i.e., most of {91,}5=1
x Z T (S, @n), become zero. This highly contributes to reducing the com-
n=1 putation time in the test phase.

where I is the identity matrix.

Since LATDQ is formulated as a linear programming
problem, it is convenient to use the absolute penalty as fol-
lows [6], [30], [33]:

5.2 Huber Loss

Minimizing the TD error under the Huber loss corresponds
to making a compromise between the squared and absolute
loss functions [13]:

N B
Oa = arg;nin [ Z |0T‘/’(sna an) = ra| + KZ |0b|]

N
n=1 b=1 aHB = arg;nln [ ZP?B (OT"/;(Sm an) - rn) ]’
n=1

The solution ELA can be obtained by solving the following
optimization problem, which is still a linear program: where ¢ (> 0) is a threshold parameter and p!'® is the Huber
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Frame 1 Frame 4 Frame 7

Frame 22 Frame 25

Frame 19

Frame 37 Frame 40 Frame 43

Frame 61
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Frame 16

Frame 10 Frame 13
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Fig.8 A motion example of the acrobot learned by LAPI in the Laplacian-noise environment. The

frame rate is 50 [ms/ frame].

loss defined as follows (see Fig. 9):

1 .
Exz if |x| <t,

HB, \ _
P = 12
ta = 527 if |x] > ¢.

The Huber loss converges to the absolute loss as ¢ tends to
zero, and it converges to the squared loss as ¢ tends to infin-
ity.

T/h\e Huber loss function is rather intricate, but the so-
lution Ayp can be obtained by solving the following convex
quadratic program [17]:

1 N N
min — Z b+ tz c
OlbrcaY, 244" !

subjectto  —c, < 0T$(s,,,an) —r,—b, < ¢y, Y

Another way to obtain the solution 5HB is to use a gra-
dient descent method—the parameter 6 is updated as follows
until convergence:

N
0—0-¢ Z AP?B(OTJ(SVL, a) — rn)"/;(sn’ a),

n=1

where & (> 0) is a learning-rate parameter and Ap!P is the
derivative of p!'8 given by

x if x| <y,
Ap®(x) = 3t
-t ifx< -t

if x > 1t,

In practice, the following stochastic gradient method [1]
would be more convenient—for a randomly chosen index
n (1 < n < N) in each iteration, repeat the following update
until convergence:

0 — 60— NSO Y (5. ) — P (Sns ).

The plain/stochastic gradient methods also come in
handy when approximating the LATDQ solution—the Hu-
ber loss function with small 7 could be regarded as a smooth
approximation to the absolute loss.



SUGIYAMA et al.: LEAST ABSOLUTE POLICY ITERATION

5 : : :

Huber loss
— — — Pinball loss
Deadzone-linear loss |1

3

Fig.9 The Huber loss function (with ¢+ = 1), the pinball loss function
(with 7 = 0.3), and the deadzone-linear loss function (with € = 1).

5.3 Pinball Loss

We have seen that the absolute loss induces the median,
which corresponds to the 50-percentile point. A similar
discussion is also possible for an arbitrary percentile 1007
(0 < 7 < 1) based on the pinball loss [14]:

N
EPB = argmin [ ZpEB(aTTp\(sm an) - rn) B
6

n=1
where pPB(x) is the pinball loss defined by

2tx if x >0,
pro(x) = :
2(r—=1Dx ifx<O0.

The profile of the pinball loss is depicted in Fig. 9. When
7 = 0.5, the pinball loss is reduced to the absolute loss.

The solutionﬁpB can be obtained by solving the follow-
ing linear program:

N
min Z b,
0.(bulY.,

n=1

b, — b,
subject to <O Y (s, a,) — 1y < 7 Yn.
T

2r-1) =

5.4 Deadzone-Linear Loss

Another variant of the absolute loss is the deadzone-linear
loss (see Fig.9):

N
IHNDL = argmin [ ZPEL(OT;/-;(SH’ an) - rn) 5
6 n=1

where pPt(x) is the deadzone-linear loss defined by

0 if x| <€

DL, .\ _ ,
X) =

pe @) {le —€ iflx>e
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Fig.10  The conditional value-at-risk (CVaR).

That is, if the magnitude of the TD error is less than €, no
error is assessed. This loss is also called the e-insensitive
loss and used in support vector regression [31].

When € = 0, the deadzone-linear loss is reduced to the
absolute loss. Thus the deadzone-linear loss and the abso-
lute loss are highly related to each other. However, the effect
of the deadzone-linear loss is completely opposite to the ab-
solute loss when € > O—the influence of ‘good’ samples
(with small TD-error) are deemphasized in the deadzone-
linear loss, while the absolute loss tends to suppress the
influence of ‘bad’ samples (with large TD-error) compared
with the squared loss.

The solution fp;. can be obtained by solving the fol-
lowing linear program [5]:

N
min Z by
0.(buly, =

—b,—€< HT;/;(S,,, a,) —r, <b, +¢,
b, >0, Vn.

subject to

5.5 Chebyshev Approximation

The Chebyshev approximation minimizes the error for the
‘worst’ sample:

Ocs = argmin [max |07 Y (s, a,) — 1| .
0 n

This is also called the minimax approximation.
The solution f¢g can be obtained by solving the follow-
ing linear program [5]:
min b
0.
subjectto  —b < 0T (s,,a,) — 1y < b, Vn.
5.6 Conditional Value-at-Risk

In the area of finance, the conditional value-at-risk (CVaR)
is a popular risk measure [25]. The CVaR corresponds to the
mean of the error for a set of ‘bad’ samples (see Fig. 10).
More specifically, let us consider the distribution of the
absolute TD-error over all training samples {(s,, a,, i’n)}nN:11
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D(16) = P{($, ans 1) © 107 (Snr ) = 1l < @)

For g € [0, 1), let ap(@) be the 1008-percentile of the abso-
lute TD-error distribution:

ap(0) = min{a | D(10) > B).

Thus only the fraction (1 — ) of the absolute TD-error
IOTE(S,,, a,) — 1| exceeds the threshold ag(8). ap(@) is also
referred to as the value-at-risk (VaR).

Let us consider the B-tail distribution of the absolute
TD-error:

0 if @ < ag(),
Op(alf) = { D(al6) - 8
1-p
Let ¢3(8) be the mean of the §-tail distribution of the abso-
lute TD-error:

$5(8) = Ea, [1079 (50, @) = 12|,

where Eq, denotes the expectation over the distribution ®pg.
¢p(0) is called the CVaR. By definition, the CVaR of the
absolute TD-error is reduced to the mean absolute TD-error
if B = 0 and it converges to the worst absolute TD-error as
B tends to 1. Thus the CVaR smoothly bridges the proposed
least-absolute approach and the Chebyshev approximation
method. CVaR is also referred to as the expected shortfall.

The CVaR minimization problem in the current context
is formulated as

Ooy = arg;nin [E% [|0T,’/,\(sn, a) — rﬂl]] .

if @ > ag(d).

This optimization problem looks complicated, but the so-
lution Ocy can be obtained by solving the following linear
program [25]:

N
min N -Bla+ Y ¢,
=1

0.1 el

=17 n=
subject to  —b, < 0TY(sy, ay) — 1y < by,

¢, >2b,—a, ¢,>0, VYn.

Note that if the definition of the absolute TD-error is slightly
changed, the CVaR minimization method amounts to mini-
mizing the deadzone-linear loss [29]:

6. Conclusions and Future Work

In this paper, we proposed to use the absolute loss in value
function approximation for enhancing robustness and reli-
ability. The change of loss functions resulted in a linear
programming formulation which can be solved efficiently
by a standard optimization software. We experimentally
investigated the usefulness of the proposed method, LAPI,
in a simulated robot-control task, and confirmed the advan-
tages of LAPI,; the good performance of the existing method,
LSPI, is maintained in the noise-less case and higher toler-
ance to outliers than LSPI is exhibited in the noisy case.
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The state-action value function Q(s, a) is defined as the
expectation of the discounted sum of rewards (see Eq. (1)),
which is to be maximized in the standard reinforcement
learning framework. On the other hand, one may want to
be more risk-sensitive, and maximize other quantities such
as the median or a quantile of the discounted sum of re-
wards. However, such risk-sensitive reinforcement learning
is not straightforward since the Bellman-like simple recur-
sive expression is not available for quantiles of rewards. In
the paper [21], it was shown that a Bellman-like recursive
equation holds for the distribution of the discounted sum
of rewards. Based on this preliminary theoretical result, it
may be possible to derive a TDQ algorithm that directly op-
timizes the median or a quantile of the discounted sum of
rewards. However, this seems to be an open research issue
currently, and would be a promising future direction to pur-
sue.

Another important issue to be further discussed along
the current line of research would be the statistical effi-
ciency of the LATDQ estimator. The least-absolute estima-
tor was shown to be more robust against outliers than the
least-squares estimator, e.g., under breakdown point analy-
sis [13]. However, the least-absolute estimator may be sta-
tistically less efficient (i.e., having a larger variance) than the
least-squares estimator under the Gaussian noise assump-
tion. Thus loss of efficiency would be the price we have to
pay for gaining robustness in LATDQ. We believe that ro-
bustness is more important in practice than (asymptotic) ef-
ficiency since we seldom have so many data samples that
asymptotics matter and the noise distribution may not be
Gaussian. Nevertheless, the trade-off between robustness
and efficiency in the context of value function approxima-
tion or policy iteration would be an important theoretical
research issue to be investigated.

Finally, we provided various possibilities for further
extending the proposed method in Sect.5. Experimentally
evaluating these variations is left open as future work.
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