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PAPER

Computing Spatio-Temporal Multiple View Geometry from Mutual
Projections of Multiple Cameras

Cheng WAN†a), Student Member and Jun SATO†, Member

SUMMARY The spatio-temporal multiple view geometry can repre-
sent the geometry of multiple images in the case where non-rigid ar-
bitrary motions are viewed from multiple translational cameras. How-
ever, it requires many corresponding points and is sensitive to the im-
age noise. In this paper, we investigate mutual projections of cameras in
four-dimensional space and show that it enables us to reduce the number
of corresponding points required for computing the spatio-temporal mul-
tiple view geometry. Surprisingly, take three views for instance, we no
longer need any corresponding point to calculate the spatio-temporal mul-
tiple view geometry, if all the cameras are projected to the other cameras
mutually for two time intervals. We also show that the stability of the com-
putation of spatio-temporal multiple view geometry is drastically improved
by considering the mutual projections of cameras.
key words: multiple view geometry, spatio-temporal, mutual projections,
multifocal tensor, multiple cameras, camera calibration

1. Introduction

Over the past two decades there has been a significant de-
velopment in the understanding and modeling of the geom-
etry of multiple views in computer vision, which is very im-
portant for describing the relationship among images taken
from multiple cameras and for recovering 3D geometry
from images. Based on the classical analysis on multi-
ple views [1], multiple view geometries under more gen-
eral point-camera configurations have been studied in recent
years [2]–[7].

Wolf et al. [6] and Wan et al. [7] showed that by con-
sidering the projections in higher-dimensional space such as
a 4D space-time, the multiple view geometry for dynamic
configurations can be derived, in which a single multifo-
cal tensor describes camera motions as well as camera posi-
tions and orientations. These multiple view geometries are
very useful for recovering non-rigid object motions from
moving cameras and for generating arbitrary views of dy-
namic scenes. However, one disadvantage of such general-
ized multiple view geometry in higher-dimensional space is
that it requires more corresponding points than the classi-
cal multiple view geometry. For example, 26 corresponding
points are required for computing trifocal tensors in [6], and
13 corresponding points are required for computing trifocal
tensors in [7]. They are also more sensitive to the image
noise than the classical one. For the real use of these gener-
alized multiple view geometries, it is necessary to cope with
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these problems.
Recently, it has been shown that if some cameras are

projected to the other cameras, the multiple view geome-
try can be computed more stably from fewer correspond-
ing points [8]. This is called mutual projections of cameras.
However, the existing mutual projection method is only ap-
plicable to the classical multiple view geometry, in which all
the cameras are assumed to be static and epipoles are single
points in images. Whereas in [7], the spatio-temporal multi-
ple view geometry describes the relationship among images
viewed from multiple translational cameras. In this case,
a set of epipoles derived from a translational camera is no
longer a single point but a line. We call it “epipole line”.
Note that the epipole line is different from an epipolar line.

In this paper, we investigate mutual projections of cam-
eras in four-dimensional space, and show that these epipole
lines enable us to reduce the number of corresponding points
required for computing the spatio-temporal multiple view
geometry. Surprisingly, take three views for instance, we
no longer need any corresponding points for computing the
spatio-temporal multiple view geometry, if all the cameras
are projected to the other cameras mutually for two time in-
tervals. We also show that the stability of the computation
of multiple view geometry in space-time is drastically im-
proved by using the epipole lines under mutual projections.

2. Spatio-Temporal Multiple View Geometry

Let us consider five translational cameras with constant
speed and with no rotation, which observe a moving
point X(t) as shown in Fig. 1. Suppose the point X(t)
is projected to these five cameras as x(t) = [x1, x2, x3]�,
x′(t) = [x′1, x′2, x′3]�, x′′(t) = [x′′1, x′′2, x′′3]�, x′′′(t) =
[x′′′1, x′′′2, x′′′3]� and x′′′′(t) = [x′′′′1, x′′′′2, x′′′′3]� at time
t. Then, Wan et al. showed that the following trilinear,
quadrilinear and quintilinear relationships hold under ex-
tended camera projections from 4D space to 2D images [7]:

xi(t)x′ j(t)x′′k(t)εkraT r
i j = 0a (1)

xi(t)x′ j(t)x′′k(t)x′′′l(t)ε jpaεkqbεlrcQpqr
i = 0abc (2)

xi(t)x′ j(t)x′′k(t)x′′′l(t)x′′′′m(t)

εipaε jqbεkrcεlsdεmteRpqrst = 0abcde (3)

where εipa denotes a tensor, which represents a sign based on
permutation from {i, p, a} to {1, 2, 3}. It takes 1 if it is even
permutation and takes −1, if it is odd permutation. It takes 0
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Fig. 1 A moving point in 3D space and its projections on the image
planes of five translational cameras.

in the other cases. T r
i j, Qlmn

i and Rlmn f g denote trifocal ten-
sor, quadrifocal tensor and quintifocal tensor respectively.
These tensors represent relative camera positions as well as
camera motions, and are invariant, even if the cameras are
moving with different velocities and directions. The devel-
oped theory can be applied to the cases of non-rigid arbitrary
motions viewed from multiple independently translational
cameras.

Since corresponding points with time marks induce lin-
ear constraints, for computing multifocal tensors, for in-
stance, trifocal tensor T r

i j, we reformulate (1) as follows:

M(t)t = 0 (4)

where t = [T 1
11, · · · ,T 3

33]�, and M(t) is a 3×27 matrix whose
elements are calculated from the corresponding points x(t),
x′(t) and x′′(t). Then, t can be computed by solving the
following linear equations.

[M(t1)�, · · · ,M(tN)�]�t = 0 (5)

where N ≥ 13. It has been shown that minimum of 13,
10 and 9 corresponding points are required to compute T r

i j,

Qlmn
i and Rlmn f g linearly [7].

3. Computing Spatio-Temporal Multiple View Geome-
try from Mutual Projections

Although there are three types of multilinear relationships
under the projection from 4D space to 2D space as shown
in (1), (2) and (3), we only consider trilinear relationship
in this paper, since basic properties of mutual projections of
moving cameras can be analyzed in the trilinear relationship.

In (1),T r
i j is the trifocal tensor for the extended cameras

and has the following form:

T r
i j = εilmε jqu det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

al

am

bq

bu

cr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where ai, bi and ci denote the ith row of the three camera
matrices respectively. The trifocal tensor T r

i j is 3×3×3 and
has 27 entries. Except a scale ambiguity, we have only 26
free parameters in T r

i j. In addition, (1) provides us 3 linear
equations on T r

i j, but only 2 of them are linearly indepen-
dent. Thus, at least 13 corresponding points are required
to compute T r

i j from images linearly. We call it 13 point
method.

On the other hand, when we have three moving cam-
eras, we can derive at most 3 pairs of epipoles, {e21, e31},
{e12, e32} and {e13, e23}, at an instance. Here, {e21, e31}, for
example, denotes a pair of epipoles which can be regarded
as the projections of camera 1 to camera 2 and 3.

At time t, the epipole e21(t) is a point in view 2, which
corresponds to any point in view 1. Also, the epipole e31(t)
at time t is a point in view 3, which corresponds to any point
in view 1. This means, by substituting e21(t) and e31(t) into
x′ and x′′ in (1), we have the following trilinear relationship
which must hold for any point m in view 1:

mie j
21(t)ek

31(t)εkrvT r
i j = 0v

∀m. (7)

Since (7) must hold for any m, the remaining part,
e j

21(t)ek
31(t)εkrvT r

i j, must be zero tensor. The similar discus-
sions hold for the pairs of epipoles {e12, e32} and {e13, e23}.
Thus, we have the following relationships between epipoles
and trifocal tensors:

e j
21(t)ek

31(t)εkrvT r
i j = 0iv (8)

ei
12(t)ek

32(t)εkrvT r
i j = 0 jv (9)

ei
13(t)e j

23(t)T r
i j = 0r. (10)

These equations can be combined with (1) for computing
T r

i j from given epipoles and corresponding points. The im-
portant point here is that the trifocal tensor T r

i j is constant,
and thus we can use epipoles {e21, e31} at N1 different time
for computing a single trifocal tensor T r

i j. From (8), we have
the following equations on t.

[M1(t1)�, · · · ,M1(tN1 )�]�t = 0 (11)

where M1(t) denotes 9 × 27 matrix calculated from e21 and
e31. Similarly, if we have epipoles {e12, e32} at N2 time in-
stants and epipoles {e13, e23} at N3 time instants, (9) and (10)
provide us the following constraints on t:

[M2(t1)�, · · · ,M2(tN2 )�]�t = 0 (12)

[M3(t1)�, · · · ,M3(tN3 )�]�t = 0 (13)

where M2(t) denotes 9×27 matrix depending on e12 and e32,
and M3(t) denotes 3 × 27 matrix lying on e13 and e23. Then,
(11), (12) and (13) can be combined with (5) for computing
T r

i j as follows:
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[M(t1)�, · · · ,M(tN)�,M1(t1)�, · · · ,M1(tN1 )�,M2(t1)�,

· · · ,M2(tN2 )�,M3(t1)�, · · · ,M3(tN3 )�]�t = 0. (14)

Here, we make use of Least Squares Method to solve the
entries of trifocal tensor in t. Rewrite (14) as Et = 0. The
solution on t is the eigenvector which corresponds to the
smallest eigenvalue of E�E. By using such combination, we
can compute T r

i j linearly from fewer corresponding points.
Although (8) provides us 9 linear equations on trifocal

tensor, only 6 of them are linearly independent. However, if
we use {e21, e31} at N different time, the number of indepen-
dent equations derived from (8) is not always 6N. The same
thing happens to other two pairs of epipoles. Furthermore,
if we combine some pairs of epipoles and use N of them
respectively to compute trifocal tensor, the results are very
different.

In the following sections, we consider the number of
independent equations and the minimum number of corre-
sponding points required for computing spatio-temporal tri-
focal tensors under mutual projection of cameras by using
one, two and all three epipole pairs respectively when these
cameras have translational motions.

4. Using One Epipole Pair

4.1 Using Epipole Pair {e21, e31} or {e12, e32}

We first consider why (8) has only 6 independent equations.
In general, a tensor miεi jk represents three lines which go
through a point m. Thus ek

31(t)εkrv in (8) represents three
epipolar lines in view 3, which go through an epipole e31(t).
So, (8) describes relationships between epipole e21(t) in
view 2 and epipolar lines l′′(t) which go through e31(t) in
view 3 as follows:

e j
21(t)l′′k (t)T k

i j = 0i (15)

Since (15) must hold for any point m in view 1, (15) is con-
sidered as a point-point-line incidence on any point m in
view 1, epipole e21(t) in view 2 and any epipolar line l′′(t)
which goes through e31(t) in view 3 as follows:

mie j
21(t)l′′k (t)T k

i j = 0 (16)

For finding the number of independent equations in (8)
in sequential images, we need to count the number of inde-
pendent incidence relations described by (16) when we use
N pairs of {e21(t), e31(t)}, (t = t1, · · · , tN).

We note that any point m in view 1 can be described
by a linear combination of three basis points m1, m2 and
m3. And any epipolar line l′′(t) which goes through e31(t) in
view 3 can be described by a linear combination of two basis
lines. Since e31(t) of any t are collinear†, one of these two
basis lines can be a line which goes through all the epipoles
e31(t) (t = t1, · · · , tN) as shown in Fig. 2. We call the line
“epipole line” and denote it by l′′0 . Suppose l′′1 , l′′2 and l′′3 go
through e31(t1), e31(t2) and e31(t3) respectively as shown in
Fig. 2. Then, if we have one pair of epipoles {e21(t), e31(t)}
at t1, any incidence relation represented by (15) at time t1

Fig. 2 The basis points, basis lines and epipole lines for representing
incidence relations in three views. {m1,m2,m3} show three basis points in
view 1. l′0 shows epipole line which goes through e21 in view 2. l′′0 shows
epipole line going through e31 in view 3. {l′′1 , l

′′
2 , l
′′
3 } show three basis lines

in view 3.

can be described by a linear combination of the following 6
basis incidence relations:

mi
1e j

21(t1)l′′0kT
k
i j = 0 mi

1e j
21(t1)l′′1kT

k
i j = 0

mi
2e j

21(t1)l′′0kT
k
i j = 0 mi

2e j
21(t1)l′′1kT

k
i j = 0 (17)

mi
3e j

21(t1)l′′0kT
k
i j = 0 mi

3e j
21(t1)l′′1kT

k
i j = 0

Therefore, we have only 6 linearly independent equations in
(8).

For simplification in (17), we define a new notation for
describing all the 6 equations as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)}
{

l′′0
l′′1

}
(18)

The number of equations is the product of the number of
rows of each column. So, the number of equations in (18) is
3 × 1 × 2 = 6.

Thus, if we have a pair of epipoles {e21(t), e31(t)} at two
different time, t1 and t2, then we can derive the following
equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)}
{

l′′0
l′′1

}
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t2)}
{

l′′0
l′′2

}
(19)

Then, the number of equations in (19) is 3×1×2+3×1×2 =
12. It means that by using a pair of epipoles {e21(t), e31(t)}
at two different time, there exist 12 independent equations.

How about the case of 3 different time, t1, t2 and t3? At
time t3, we have:⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t3)}
{

l′′0
l′′3

}
(20)

†Suppose the motions of C1 and C3 in X, Y , Z axes are
[ΔX1,ΔY1,ΔZ1]� and [ΔX3,ΔY3,ΔZ3]� respectively. Since the
translational motion is constant in each camera, ΔX1, ΔY1, ΔZ1,
ΔX3, ΔY3, ΔZ3 are invariable. Then, view 3 observes the motion
of C1 as [ΔX1 − ΔX3,ΔY1 − ΔY3,ΔZ1 − ΔZ3]�, which is still a
translational motion on a line in the 3D space. Since a line in 3D is
projected to a line in the 2D image, the projection of the trajectory
of C1 to C3 is a line.
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Since e21(t1), e21(t2) and e21(t3) are collinear, e21(t3) can be
written by the linear combination of e21(t1) and e21(t2) as:

e21(t3) = c1e21(t1) + c2e21(t2) (21)

Then (20) can be described as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {c1e21(t1) + c2e21(t2)}
{

l′′0
l′′3

}
(22)

Now, since⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {c1e21(t1) + c2e21(t2)} {l′′0 } (23)

can be described by a linear combination of⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)} {l′′0 } and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t2)} {l′′0 }, it is linearly de-

pendent with (19). Therefore, only
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {c1e21(t1) + c2e21(t2)} {l′′3 } (24)

is linearly independent, and then we have only 3 indepen-
dent equations in (20). Thus, we find that from a pair of
{e21(t), e31(t)} at 3 different time, 15 independent equations
can be derived.

At time t4, it seems that we have another independent
equation as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t4)} {l′′4 } (25)

However, this is not the case. Since any line on the plane can
be described by a set of three basis lines, l′′3 can be described
by l′′0 , l′′1 and l′′2 as follows:

l′′3 = d1l′′0 + d2l′′1 + d3l′′2

Then, at t3, (24) can be represented as:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {c1e21(t1) + c2e21(t2)} {d1l′′0 + d2l′′1 + d3l′′2 } (26)

Simplifying (26), we have:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

e21(t2)l′′1 +
c1d3

c2d2
e21(t1)l′′2

}
(27)

Similarly, at t4, (25) can also be described as:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {c3e21(t1) + c4e21(t2)} {d4l′′0 + d5l′′1 + d6l′′2 } (28)

and their simplified forms are:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

e21(t2)l′′1 +
c3d6

c4d5
e21(t1)l′′2

}
(29)

We find that (27) and (29) are same, except the coefficient
c1d3
c2d2

and c3d6
c4d5

, but in fact they are equal and relate to the initial
position of camera 1, camera motions, camera matrices, t1
and t2, all of which are constants. As a result, there is no in-
dependent equation at t4. The same thing happens at time t5,
t6, · · · . Thus when we use 3 or more pairs of {e21(t), e31(t)},
the number of independent equations we can derive is 15.

So far, we find that 6, 12 and 15 independent equa-
tions are available from one pair of epipoles at 1, 2 and 3
time. Since N sets of corresponding points provide us 2N
linearly independent equations from (1), the following in-
equality must hold for computing 26 free parameters of the
trifocal tensor T k

i j, by using a pair of epipoles {e21(t), e31(t)}
at time t1:

2N + 6 ≥ 26

Thus we require 10 corresponding points except epipoles for
computing the trifocal tensor. Similarly, if we have a pair of
{e21(t), e31(t)} at time t1 and t2, the number of corresponding
points required for computing T k

i j is (26 − 12)/2 = 7, and
if we have a pair of {e21(t), e31(t)} at time t1, t2 and t3, we
require 6 corresponding points.

The case of epipole pair {e12, e32} is exactly the same as
that of {e21, e31}. We summarize the number of correspond-
ing points required for computing trifocal tensors in each
case of mutual projections of cameras in Table 1.

4.2 Using Epipole Pair {e13, e23}

The case of epipole pair {e13, e23} is much simpler than that
of other two epipole pairs and the analysis can refer to the
previous section. The number of independent equations by
using N pairs of {e13, e23}, and the number of corresponding
points required for computing trifocal tensors in each case
of mutual projections of cameras are summarized in Table 2.

Table 1 The number of independent equations derived by using
{e21(t), e31(t)} for N1 time (t = t1, · · · , tN1 ) or {e12(t), e32(t)} for N2 time
(t = t1, · · · , tN2 ), and the number of corresponding points required for com-
puting trifocal tensors in each case of mutual projections of cameras. Note,
3� denotes 3 or greater than 3.

N1 or N2 # of Eq. # of points
1 6 10
2 12 7

3� 15 6

Table 2 The number of independent equations derived by using
{e13(t), e23(t)} for N3 time (t = t1, · · · , tN3 ), and the number of correspond-
ing points required for computing trifocal tensors in each case of mutual
projections of cameras. Note, 3� denotes 3 or greater than 3.

N3 # of Eq. # of points
1 3 12
2 6 10

3� 9 9
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5. Using Two Epipole Pairs

We next consider the number of corresponding points re-
quired for computing T r

i j by using two pairs of epipoles ob-
served during N time intervals.

5.1 Using Epipole Pair {e21, e31} and {e12, e32}

5.1.1 1 × {e21(t), e31(t)} + 1 × {e12(t), e32(t)}

Suppose we have a pair of {e21(t), e31(t)} at time t1 and a
pair of {e12(t), e32(t)} at time t2 respectively. Then we have
the following constraints on T r

i j:

e j
21(t1)ek

31(t1)εkrvT r
i j = 0iv (30)

ei
12(t2)ek

32(t2)εkrvT r
i j = 0 jv (31)

We have known that (30) can be written as:

mie j
21(t1)l′′k (t1)T k

i j = 0 (32)

where m denotes any point in view 1, and l′′(t1) denotes any
epipolar line which goes through e31(t1) in view 3. Simi-
larly, (31) can be described as follows:

ei
12(t2)m′ jl′′k (t2)T k

i j = 0 (33)

where m′ denotes any point in view 2, and l′′(t2) denotes any
epipolar line which goes through e32(t2) in view 3. Now, let
us consider l′′1 and l′′2 which go through e31(t1), and l′′2 and l′′3
which go through e32(t2) as shown in Fig. 3. The three lines
do not coincide. Then (32) can be written as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)}
{

l′′1
l′′2

}
(34)

which has 6 independent equations. Similarly, (33) can also
be written as:

{e12(t2)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

l′′3
l′′2

}
(35)

However, (35) provides us less than 6 independent equations

Fig. 3 The basis points and lines for representing incidence relations in
three views.

if we combine it with (34). Let us explain it in detail.
(35) can be described as two parts:

{e12(t2)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′3 } (36)

{e12(t2)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′2 } (37)

Since (36) is independent relative to (34), (36) provides us 3
independent equations. However, (37) does not.

If we consider one of the basis points m′3 as e21(t1), (37)
becomes:

{e12(t2)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2

e21(t1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′2 } (38)

where

{e12(t2)}
{

m′1
m′2

}
{l′′2 } (39)

are independent with (34). However, the third equation

{e12(t2)} {e21(t1)} {l′′2 } (40)

is dependent with (34), since e12(t2) can be represented by
the three basis points {m1,m2, m3} in view 1. Thus, (35)
provides us 3 + 2 = 5 independent equations. Therefore, 1
pair of {e21(t), e31(t)} and 1 pair of {e12(t), e32(t)} provide us
6 + 5 = 11 independent equations.

5.1.2 1 × {e21(t), e31(t)} + 2 × {e12(t), e32(t)}

If we have a pair of {e21(t), e31(t)} at time t1, and a pair of
{e12(t), e32(t)} at time t2 and t3, then we have the following
constraints on T r

i j:

e j
21(t1)ek

31(t1)εkrvT r
i j = 0iv (41)

ei
12(t2)ek

32(t2)εkrvT r
i j = 0 jv (42)

ei
12(t3)ek

32(t3)εkrvT r
i j = 0 jv (43)

Then, we can obtain their simplified forms as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)}
{

l′′2
l′′3

}
(44)

{e12(t2)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

l′′1
l′′2

}
(45)

{e12(t3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

l′′1
l′′3

}
(46)

where l′′2 and l′′3 go through e31(t1), l′′1 and l′′2 go through
e32(t2), and, l′′1 and l′′3 go through e32(t3) as shown in Fig. 4.

The former discussions also hold here, and we can see
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Fig. 4 The basis points, basis lines and epipole line for representing
incidence relations in three views.

Fig. 5 The basis points, basis lines and epipole lines for representing
incidence relations in three views.

that (44) provides us 6 independent equations, (45) and (46)
provides us 5 independent equations respectively. Thus, a
pair of {e21(t), e31(t)} at 1 time and a pair of {e12(t), e32(t)}
at 2 different time provide us 6 + 5 + 5 = 16 independent
equations.

5.1.3 1 × {e21(t), e31(t)} + 3� × {e12(t), e32(t)}

Here, n� denotes n or greater than n. We next consider the
case where a pair of {e21(t), e31(t)} is available at a single
time, and a pair of {e12(t), e32(t)} is available at three time
intervals of more.

We first consider the case of 1 × {e21(t), e31(t)} + 3 ×
{e12(t), e32(t)}, in which (44), (45), (46), and the following
equations are available:

{e12(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

l′′1
l′′4

}
(47)

where l′′4 goes through e31(t1) and e32(t4) as shown in Fig. 5.
As we have seen, 1× {e21(t), e31(t)}+ 2× {e12(t), e32(t)}

provide us 16 independent equations. Then how many inde-
pendent equations does (47) include?

(47) can be written into two parts:

{e12(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′1 } (48)

{e12(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′4 } (49)

Since e12(t2), e12(t3) and e12(t4) are collinear, e12(t4) can be
described by e12(t2) and e12(t3). Then, (48) can be rewritten
as follows:

{c1e12(t2) + c2e12(t3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′1 } (50)

which can be represented by the combination of some equa-
tions from (45) and (46). So (48) does not provide us any
independent equation. Then how about (49)? If we consider
one of the basis points m′3 as e21(t1), (49) can be rewritten
as:

{e12(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2

e21(t1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′4 } (51)

The first two equations are independent to others, but the
third equation is not. Since e12(t4) and l′′4 can be described
by {m1,m2,m3} and {l′′2 , l′′3 } respectively, the third equation
can be represented as follows:

{a1m1 + a2m2 + a3m3} {e21(t1)} {d1l′′2 + d2l′′3 } (52)

which is the combination of 6 equations in (44). There-
fore, (49) has only 2 independent equations. Thus, using
one more pair of {e12(t), e32(t)}, we can derive 2 more inde-
pendent equations than 1×{e21(t), e31(t)}+2×{e12(t), e32(t)},
that is, 1 × {e21(t), e31(t)} + 3 × {e12(t), e32(t)} can bring us
16 + 2 = 18 independent equations.

On the other hand, (49) can also be written as:

{c1e12(t2) + c2e12(t3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {d1l′′2 + d2l′′3 } (53)

Simplifying it, we have:

{
c2d1

c1d2
e12(t3)l′′2 + e12(t2)l′′3

}⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (54)

At time tn (n > 4), we derive the same equations as
(54), and cannot derive new independent equations. Thus,
1 × {e21(t), e31(t)} + 3� × {e12(t), e32(t)} still provide us 18
independent equations.

5.1.4 2 × {e21(t), e31(t)} + 2 × {e12(t), e32(t)}

We next consider the case, where we have {e21(t), e31(t)} at
two time t1 and t2, and {e12(t), e32(t)} at the other two time t3
and t4. In this case, we have the following equations:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)}
{

l′′1
l′′2

}
(55)
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Fig. 6 The basis points, basis lines and epipole lines for representing
incidence relations in three views.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t2)}
{

l′′1
l′′3

}
(56)

{e12(t3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

l′′4
l′′2

}
(57)

{e12(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

l′′4
l′′3

}
(58)

where l′′1 and l′′2 go through e31(t1), l′′1 and l′′3 go through
e31(t2), l′′4 and l′′2 go through e32(t3), and l′′4 and l′′3 go through
e32(t4) as shown in Fig. 6. (55) and (56) provide us full 6
independent equations respectively, but (57) and (58) do not.
(57) can be separated into:

{e12(t3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′4 } (59)

{e12(t3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′2 } (60)

Since (59) is independent with (55) and (56), (59) brings us
3 independent equations. Moreover, it can be written as:

{(c1m1 + c2m2 + c3m3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2

e21(t2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′4 } (61)

Then (60) can also be rewritten into:

{e12(t3)} {m′1} {l
′′
2 } (62)

{c1m1+c2m2 + c3m3}{e21(t1)}{l′′2 } (63)

{c1m1+c2m2 + c3m3}{e21(t2)}{d1l′′1 +d2l′′3 + d3l′′4 } (64)

(62) is independent to (55), (56) and (59), but (63) can be de-
scribed by (55). In addition, (64) can be represented by (56)
and (61). Therefore, (60) contributes only 1 independent
equation. Thus, (57) provides us 3+1 = 4 independent equa-
tions. For the same reason, (58) also brings us 4 independent
equations. Then, 2 × {e21(t), e31(t)} + 2 × {e12(t), e32(t)} pro-
vides us 6 + 6 + 4 + 4 = 20 independent equations.

Fig. 7 The basis points, basis lines and epipole lines for representing
incidence relations in three views.

5.1.5 2 × {e21(t), e31(t)} + 3� × {e12(t), e32(t)}

We have derived 20 independent equations from the case
2 × {e21(t), e31(t)} + 2 × {e12(t), e32(t)}. What will happen
when we use one more pair of {e12(t), e32(t)}? We can add
the following equations to (55)∼(58) in this case:

{e12(t5)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{

l′′4
l′′5

}
(65)

where l′′4 is a epipole line which goes through e32, and l′′5
denotes a line going through e32(t5) as shown in Fig. 7. Then
(65) can be rewritten as follows:

{a1e12(t3) + a2e12(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′4 } (66)

{c1m1 + c2m2 + c3m3}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1

e21(t1)
e21(t2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {l′′5 } (67)

(66) can be described by (57) and (58), so it does not pro-
vide any independent equation. In addition, l′′5 goes through
e32(t5). Then it can be a line going through not only e31(t1)
and e32(t5), but also e31(t2) and e32(t5) as shown in Fig. 7.
Thus, (67) can be written as:

{c1m1 + c2m2 + c3m3} {m′1} {l
′′
5 } (68)

{c1m1 + c2m2 + c3m3}{e21(t1)}{d1l′′1 +d2l′′2 } (69)

{c1m1 + c2m2 + c3m3}{e21(t2)}{d3l′′1 + d4l′′3 } (70)

(68) is independent to other equations, but (69) and (70)
can be represented by (55) and (56) respectively. Then (65)
provides us 1 independent equation. Thus, in the case of
2 × {e21(t), e31(t)} + 3 × {e12(t), e32(t)}, we have 20 + 1 = 21
independent equations.

On the other hand, (65) can also be described by:

{a1e12(t3) + a2e12(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
{
b1l′′2 + b2l′′3 + b3l′′4

}
(71)

Modifying it, we have:
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Fig. 8 The basis points, basis lines and epipole lines for representing
incidence relations in three views.

Table 3 The number of independent equations derived by using
{e21(t), e31(t)} for N1 time (t = t1, · · · , tN1 ), and {e12(t), e32(t)} for N2 time
(t = t1, · · · , tN2 ), and the number of corresponding points required for com-
puting trifocal tensors in each case of mutual projections of cameras. Note,
3� denotes 3 or greater than 3.

N1 + N2 # of Eq. # of points
1 + 1 11 8
1 + 2 16 5

1 + 3� 18 4
2 + 2 20 3

2 + 3� 21 3
3� + 3� 22 2

{
a2b1

a1b2
e12(t4)l′′2 + e12(t3)l′′3

}⎧⎪⎪⎪⎨⎪⎪⎪⎩
m′1
m′2
m′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (72)

Since a2b1
a1b2

is a constant, even if we use more {e12(t), e32(t)},
the number of independent equations could not increase
for the same reason mentioned before. Therefore, 2 ×
{e21(t), e31(t)} + 3� × {e12(t), e32(t)} provides us 21 indepen-
dent equations.

5.1.6 3� × {e21(t), e31(t)} + 3� × {e12(t), e32(t)}

The discussion on the number of independent equations
in this case is very similar to the previous case, 2 ×
{e21(t), e31(t)}+3�×{e12(t), e32(t)}, so we do not give the ex-
planation here, and only the configuration is shown in Fig. 8.

Up to now, we have considered all the cases of using
epipole pair {e21(t), e31(t)} and {e12(t), e32(t)}. They are sum-
marized in Table 3.

5.2 Using Epipole Pair {e21, e31} and {e13, e23}, or {e12, e32}
and {e13, e23}

In such combinations, the number of independent equations
and corresponding points required in all the cases are sum-
marized in Table 5. Most of them can be obtained by Ta-
bles 1 and 2 directly. Only two cases shown in Table 4 need
to be explained:

We first consider the case 2 × {e21(t), e31(t)} + 3 ×
{e13(t), e23(t)}.

In this case, we have 5 sets of simplified equations:

Table 4 Two exceptions.

N1 × {e21(t), e31(t)} or {e12(t), e32(t)} # #
No. + of of

N2 × {e13(t), e23(t)} Eq. points
1 2 + 3� 20 3
2 3� + 3� 22 2

Table 5 The number of independent equations derived by using of
{e21(t), e31(t)} for N1 time (t = t1, · · · , tN1 ) or {e12(t), e32(t)} for N2 time
(t = t1, · · · , tN2 ), and {e13(t), e23(t)} for N3 time (t = t1, · · · , tN3 ), and the
number of corresponding points required for computing trifocal tensors in
each case of mutual projections of cameras. Note, 3� denotes 3 or greater
than 3.

(N1 + N3) or (N2 + N3) # of Eq. # of points
1 + 1 9 9
1 + 2 12 7

1 + 3� 15 6
2 + 1 15 6

3� + 1 18 4
2 + 2 18 4

2 + 3� 20 3
3� + 2 21 3

3� + 3� 22 2

Fig. 9 The basis points, basis lines and epipole lines for representing
incidence relations in three views.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)}
{

l′′1
l′′2

}
(73)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t2)}
{

l′′1
l′′3

}
(74)

{e13(t3)} {e23(t3)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l′′1
l′′2
l′′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (75)

{e13(t4)} {e23(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l′′1
l′′2
l′′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (76)

{e13(t5)} {e23(t5)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l′′1
l′′2
l′′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (77)

where l′′1 and l′′2 go through e31(t1), and, l′′1 and l′′3 go through
e31(t2) as shown in Fig. 9. (73)∼(76) represent the case of
2 × {e21(t), e31(t)} + 2 × {e13(t), e23(t)}, which provides us 18
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independent equations. Then we next consider how many
independent equations can be derived from (77).

Since e13(t4) and e23(t4) can be described by
{m1,m2,m3} and {e21(t1), e21(t2), e23(t3)} respectively, the
first equation in (76) has the following calculations:

{e13(t4)} {e23(t4)} {l′′1 } (78)

= {c1m1 + c2m2 + c3m3}
{d1e21(t1)+d2e21(t2)+d3e23(t3)} {l′′1 } (79)

= {c1m1 + c2m2 + c3m3} {e23(t3)} {l′′1 } (80)

= {e13(t4)} {e23(t3)} {l′′1 } (81)

For the same reason, the first equation in (77) can also be
rewritten as:

{e13(t5)} {e23(t3)} {l′′1 } (82)

Since it can be described by:

{c4e13(t3) + c5e13(t4)} {e23(t3)} {l′′1 } (83)

and (83) can be represented by (75) and (81), the first equa-
tion in (77) is not independent. Whereas the other 2 equa-
tions in (77) are independent to all the others. Therefore,
(77) brings us only 2 independent equations. Even if one
more pair of {e13(t), e23(t)} is given, it will not provide us
more independent constrains.

Next, let us discuss the case of 3 × {e21(t), e31(t)} + 3 ×
{e13(t), e23(t)} in No.2.

All the equations with simplified forms are as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t1)}
{

l′′1
l′′2

}
(84)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t2)}
{

l′′1
l′′3

}
(85)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t3)}
{

l′′1
l′′4

}
(86)

{e13(t4)} {e23(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l′′1
l′′2
l′′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (87)

{e13(t5)} {e23(t5)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l′′1
l′′2
l′′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (88)

{e13(t6)} {e23(t6)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l′′1
l′′2
l′′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (89)

The configuration of them is shown in Fig. 10. If we only
focus on (84)∼(88), we know that they describe the case of
3 × {e21(t), e31(t)} + 2 × {e13(t), e23(t)} which brings us 21
independent equations. How about (89)?

Since (88) can be represented by:

{c1m1 + c2m2 + c3m3}

Fig. 10 The basis points, basis lines and epipole lines for representing
incidence relations in three views.

{d1e21(t1) + d2e21(t2) + d3e23(t4)}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l′′1
l′′2
l′′3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (90)

Expanding and simplifying them, we obtain:

{e13(t5)} {e23(t4)} {l′′1 } (91)

{e13(t5)} {d2e21(t2) + d3e23(t4)} {l′′2 } (92)

{e13(t5)} {d1e21(t1) + d3e23(t4)} {l′′3 } (93)

For the same reason, (89) also equals to:

{e13(t6)} {e23(t4)} {l′′1 } (94)

{e13(t6)} {d′2e21(t2) + d′3e23(t4)}{l′′2 } (95)

{e13(t6)} {d′1e21(t1) + d′3e23(t4)}{l′′3 } (96)

(94) can be described by (87) and (91), so in (89), only 2
independent equation candidates exit.

On the other hand,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ {e21(t3)} {l′′4 } (97)

in (86) can be rewritten into:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e13(t5)
e13(t6)

m3

⎫⎪⎪⎪⎬⎪⎪⎪⎭{a1e21(t1) + a2e21(t2)}{b1l′′2 + b2l′′3 } (98)

So we have these 2 equations:

a2b1

a1b2
{e13(t5)} {e21(t2)} {l′′2 } + {e13(t5)} {e21(t1)} {l′′3 } (99)

a2b1

a1b2
{e13(t6)} {e21(t2)} {l′′2 } + {e13(t6)} {e21(t1)} {l′′3 }

(100)

Combining (96) and (100) we have:

−
a2b1d′1
a1b2

{e13(t6)} {e21(t2)} {l′′2 }+
{
d′3e13(t6)

}
{e23(t4)} {l′′3 }

(101)

Then, by substituting (95) into (101), we obtain:
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−
a2b1d′1
a1b2d′2

{e13(t6)} {e23(t4)} {l′′2 } + {e13(t6)} {e23(t4)} {l′′3 }

(102)

Similarly, the following equation can also be derived:

−a2b1d1

a1b2d2
{e13(t5)} {e23(t4)} {l′′2 } + {e13(t5)} {e23(t4)} {l′′3 }

(103)

Since

−a2b1d1

a1b2d2
= −

a2b1d′1
a1b2d′2

, (104)

we denote them as A. For e13(t6) = c4e13(t4) + c5e13(t5),
(102) can be written as follows:

Ac4 {e13(t4)} {e23(t4)} {l′′2 } + c4 {e13(t4)} {e23(t4)} {l′′3 }
+ c5(A {e13(t5)} {e23(t4)} {l′′2 } + {e13(t5)} {e23(t4)} {l′′3 })

which is the pure combination of (87) and (103). There-
fore, (96) can be described by other equations. Thus, (89)
only provides us 1 independent equation. Then, from the
case of 3 × {e21(t), e31(t)} + 3 × {e13(t), e23(t)}, we derive
21 + 1 = 22 independent equations. Increasing the number
of {e21(t), e31(t)} or {e13(t), e23(t)} will not bring more inde-
pendent constrains. So, in the case of No.2, we still have 22
independent equations. And if we change the epipole pair
{e21, e31} to {e12, e32}, the same results will be derived.

6. Using All Three Epipole Pairs

The results on the number of independent equations and cor-
responding points required by using all three epipole pairs
are summarized in Table 6, in which the number of indepen-
dent equations can be derived by:

N1 + N2 + N3 = (N1 + N2) + (N2 + N3) − N2

where, (N1 + N2) is from Table 3, (N2 + N3) is from Table 5,
and, N2 comes from Table 1.

The most interesting thing is when we have 2 or more
samples of each epipole pair, we do not need any corre-
sponding point to derive trifocal tensors anymore.

7. Experiments

We next show the results of some experiments.

7.1 Real Image Experiment

We first show the results from real image experiments, in
which the spatio-temporal trifocal tensor is computed from
three epipole pairs at two different time viewed from arbi-
trary translational cameras. No other corresponding points
are used. The extracted trifocal tensor is used for generating
the third view from the first view and the second view of
moving cameras.

Table 6 The number of independent equations derived by using
{e21(t), e31(t)} for N1 time (t = t1, · · · , tN1 ), {e12(t), e32(t)} for N2 time
(t = t1, · · · , tN2 ) and {e13(t), e23(t)} for N3 time (t = t1, · · · , tN3 ), and the
number of corresponding points required for computing trifocal tensors in
each case of mutual projections of cameras. Note, n� denotes n or greater
than n.

N1 + N2 + N3 # of Eq. # of points
1 + 1 + 1 14 6
1 + 1 + 2 17 5
1 + 2 + 1 19 4

1 + 1 + 3� 20 3
1 + 3� + 1 21 3
1 + 2 + 2 22 2
2 + 2 + 1 23 2

1 + 2 + 3� 24 1
1 + 3� + 2 24 1
2 + 3� + 1 24 1

1 + 3� + 3� 25 1
3� + 3� + 1 25 1

2� + 2� + 2� 26 0

(a) image of camera 1 (b) image of camera 2

(c) image of camera 3 (d) point transfer result

Fig. 11 Real image experiment 1. Images (a), (b) and (c) show epipole
lines and image motions of a single point viewed from camera 1, 2 and 3.
The black points on epipole lines in each image are used for computing the
trifocal tensor. These three cameras are translating with different speeds
and in different directions. The white curve in (d) shows image motions
in camera 3 computed by the extended trifocal tensor, and the black curve
shows the real image motions.

In this experiment, we used two omnidirectional cam-
eras and one normal camera. These three cameras are trans-
lating with different constant speeds and in different direc-
tions. In Fig. 11, (a), (b) and (c) show image motions of a
single moving point and 6 epipole lines in translational cam-
era 1, 2 and 3 respectively. The trifocal tensor is computed
from 3 epipole pairs, each of which is sampled at two differ-
ent time, {e12(t1), e32(t1)}, {e12(t2), e32(t2)}, {e13(t3), e23(t3)},
{e13(t4), e23(t4)}, {e21(t5), e31(t5)}, {e21(t6), e31(t6)}, which are
shown by black points in (a), (b) and (c). The extracted tri-
focal tensor is used for generating image motions in camera
3 from image motions in camera 1 and 2. The white curve
in Fig. 11 (d) shows image motions in camera 3 generated
from the extended trifocal tensor, and the black curve shows
the real image motions viewed from camera 3. As shown in
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(a) image of camera 1 (b) image of camera 2

(c) image of camera 3 (d) point transfer result

Fig. 12 Real image experiment 2.

Fig. 11 (d), the generated image motions are almost identi-
cal with the original image motions even if these 3 cameras
have unknown translational motions.

The other experiment is also given in Fig. 12. As we
can see, the spatio-temporal trifocal tensor can be derived
from only 2 samples of the projection of each camera with
arbitrary translational motion, and thus it is very practi-
cal for generating images of arbitrary motions viewed from
translational cameras.

7.2 Stability Evaluation

We next show the stability of extracted spatio-temporal tri-
focal tensors with the 13 point method and the proposed mu-
tual projection method.

Figure 13 (a) shows a 3D configuration of three mov-
ing cameras and one moving point. The black points show
the position of the three cameras, C1, C2 and C3, before
translational motions, and the white points show those after
the translational motions. The translational motions of these
three cameras are different and unknown. The black curve
shows a locus of a freely moving point. For evaluating the
extracted trifocal tensors, we computed reprojection error
using the trifocal tensors. The reprojection error is defined
as: 1

M

∑M
i=1 d(mi, m̂i)2, where M denotes the number of the

points, and d(mi, m̂i) denotes the distance between the true
point mi and a point m̂i computed by the trifocal tensor.

In the mutual projection method, we used three pairs
of epipoles in two different time and some corresponding
points for computing the trifocal tensors. We increased the
number of corresponding points used for computing trifo-
cal tensors in three views from 0 to 25 and evaluated the
reprojection errors with Least Squares Method addressed in
Sect. 3. In the same way, we also evaluated the 13 point
method with same corresponding points from 13 to 25. The
Gaussian noise with the standard deviation of 1 pixel is
added to each image. Figure 13 (b) shows the relationship
between the number of corresponding points and the repro-
jection errors. The black points show the result from mutual

(a) 3D configuration (b) stability comparison

Fig. 13 Stability evaluation.

projection method, and the white points show that from 13
point method. As we can see, with less or even no corre-
sponding points, the mutual projection method can derive
more stable trifocal tensors than the 13 point method.

8. Conclusions

In this paper, we analyzed the computation of spatio-
temporal multiple view geometry from mutual projections
of multiple cameras. Taking three moving cameras for in-
stance, we discussed the number of independent equations
and corresponding points to compute the trifocal tensor by
using one, two and all three epipole pairs. As a result, with
one epipole pair at 3 different time we need 6 corresponding
points, with two epipole pairs we at least require 2 corre-
sponding points, and when we use three epipole pairs at 2
different time respectively, we do not need any correspond-
ing point to figure out the trifocal tensor. That means ar-
bitrary image motions tracked by moving cameras can be
recovered even if they are coplanar or collinear, as long as
we have the projections of cameras. The method was im-
plemented and tested by using real image sequences. The
stability of trifocal tensors extracted by using mutual pro-
jections of cameras was compared with that of the 13 point
method.
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