
2680
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

PAPER Special Section on Data Mining and Statistical Science

Gaussian Process Regression with Measurement Error

Yukito IBA†a) and Shotaro AKAHO††b), Members

SUMMARY Regression analysis that incorporates measurement errors
in input variables is important in various applications. In this study, we con-
sider this problem within a framework of Gaussian process regression. The
proposed method can also be regarded as a generalization of kernel regres-
sion to include errors in regressors. A Markov chain Monte Carlo method is
introduced, where the infinite-dimensionality of Gaussian process is dealt
with a trick to exchange the order of sampling of the latent variable and the
function. The proposed method is tested with artificial data.
key words: measurement error, errors in input variables, kernel, Gaussian
process, Bayes, Markov chain Monte Carlo

1. Introduction

Regression analysis that incorporates errors in both input
and output variables is often required in the analysis of ex-
perimental data; a recent example in the brain science is
found in [1]. It is also useful in a variety of situations where
only partial observation of input variables is allowed; an il-
lustrative example is when the input is an image observed
by cameras with limited resolution. Another example is in-
ference based on “binned” or “coarse grained” data, where
only a summary of data is disclosed; it is often appeared in
practical applications and becoming important in relation to
data anonymization.

Models for such an analysis are called as measurement
error models in the literature of statistical science [2]–[8].
This subject, however, seems not fully treated in the con-
text of machine learning. Also, treatment of measurement
error models for the multi-dimensional input variables still
presents an open problem.

If we ignore errors in input variables, it can cause bi-
ases in estimated parameters and functional relations be-
tween inputs and outputs. Specifically, using models with-
out errors in input variables, homogeneous noises in input
variables are interpreted as noises whose levels are depen-
dent on the local slope of the estimated functions; in deal-
ing with such noises, explicit modeling of errors in input
variables seems the best way. In reference [6], examples

Manuscript received November 30, 2009.
Manuscript revised April 2, 2010.
†The author is with the Department of Statistical Modeling,

The Institute of Statistical Mathematics, and Department of Statis-
tical Science, Tachikawa-shi, 190–8562 Japan.
††The author is with the Human Technology Research Institute,

National Institute of Advanced Industrial Science and Technology,
Tsukuba-shi, 305–8568 Japan.

a) E-mail: iba@ism.ac.jp
b) E-mail: s.akaho@aist.go.jp

DOI: 10.1587/transinf.E93.D.2680

are given where conventional regression is outperformed by
the one with errors in input variables, even with a cross-
validated choice of the hyperparameter; a corresponding re-
sult is shown by numerical experiments in Sec. 4 in this pa-
per.

The aim of this paper is to develop an algorithm for
Gaussian process regression that allows for errors in input
variables. This can also be regarded as a generalization
of kernel regression to include errors in regressors. Artifi-
cial discretization is not required in the proposed algorithm.
This property makes the algorithm computationally efficient
in problems with missing observations and opens the pos-
sibility of treating problems with multi-dimensional input
variables. In addition, priors only represented by infinite-
order lag operators can be introduced in a natural way; for
example, a process associated with a Gaussian kernel can
easily be handled.

A few studies [1], [6] in the literature treat mea-
surement error problems in a Bayesian framework using
smoothness priors∗. However, they are essentially lim-
ited to smoothness priors with second-order derivatives; ad-
ditional complexity should be introduced to treat infinite-
order priors. Also, applications to multi-dimensional prob-
lems will be difficult with these methods.

Considering great flexibility of kernel regression, one
might think that adaptation of kernels can easily handle er-
rors in input variables. It will not be always true, as we al-
ready discussed in this section and will be shown in Sec. 4.
Construction of kernels becomes even more difficult, when
noises in input variables have levels varying with the values
of inputs or have correlations to noises in outputs; in some
cases, the conditional probability of input variables may be
non-Gaussian. On the other hand, representing everything
as a kernel, it spoils an advantage of Gaussian process re-
gression that likelihood and function space of the regressor
are separately specified. Using measurement error models,
tailor-made modeling becomes easier at the expense of in-
creased computational costs.

It is straightforward to construct measurement error
models with a generic Gaussian process. On the other hand,
it is not trivial to make inference about these models, be-
cause a Gaussian process is infinite-dimensional in the sense
that infinite number of points are required to specify a sam-

∗For other attempts to treat measurement error problems in
nonparametric frameworks, see, [4], [6], [9] and references therein.
The term “kernel” used in these references does not necessarily
mean reproducing kernels; it is usually used in a broader sense.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

IBA and AKAHO: GAUSSIAN PROCESS REGRESSION WITH MEASUREMENT ERROR
2681

ple. Hence this paper mostly focuses on computational
problems, especially how we can perform the computation
using finite-dimensional representations.

In conventional kernel regression, the representer the-
orem is used to reduce a functional regression problem to a
finite-dimensional one; if we denote the values of the input
variables by {xi}, the maximum of the posterior distribution
defined by the model and data is found in the space of a
linear combination

∑
i aik(·, xi), where k is the reproducing

kernel associated with the Gaussian process. In a measure-
ment error problem, {xi} are in themselves variables to be
estimated; if we denote them as {zi}, the space spanned by
{k(·, zi)} is no more finite-dimensional, when we consider all
possible values of {zi}. If we are interested only in the joint
MAP estimate of the input variables {zi} and the function f
(i.e., the pair of {zi} and f that maximize the posterior den-
sity (8) in Sec. 2), it is possible to use the representer the-
orem within an alternate maximization of {zi} and f . How-
ever, the joint MAP estimate is often not optimal in mea-
surement error models [5], [6]. Then, we want to compute,
for example, the posterior mean of f averaging over {zi} as
an estimate of f , but the representer theorem is not directly
applicable in this case, because we cannot specify the values
of {zi}.

To avoid this difficulty, we develop a Markov chain
Monte Carlo algorithm (MCMC) specialized to the prob-
lem. A naive application of MCMC prohibited by apparent
infinite-dimensionality of the problem. We will show, how-
ever, that a simple trick of exchanging the order of sam-
plings makes it possible to reduce the problem to an ef-
fectively finite-dimensional one; this idea is explained in
Sec. 3.1.

The rest of the paper is organized as follows: In Sec. 2,
a statistical model for Gaussian process regression is intro-
duced. In Sec. 3, an MCMC algorithm is proposed for the
inference with the model. In Sec. 4, results of numerical
experiments using the proposed algorithm are shown. Sec-
tion 5 is devoted to summary and discussions.

2. Model

Let us consider estimation of a function f from samples
{(xi, yi)}; observed values of the input variables and output
variables are denoted by x = {xi} and y = {yi}, and the index
i of the samples is assumed to take a value 1, · · · , n. Unob-
served true values of input variables are denoted by z = {zi},
which are latent variables of the model.

Here we formulate the problem within a hierarchical
Bayesian framework [10]–[12]; the model is defined by the
combined probability density as

p(x, y, z, f) = p(y| f , z)p(x|z)p(z)p(f), (1)

whose components are given in the following subsections
Secs. 2.1 and 2.2. With this combined density, the posterior
density is derived by the Bayes formula in Sec. 2.3.

2.1 Regression with Measurement Error

As in a usual regression problem, we assume a Gaussian
density

p(y|z, f) =
n∏

i=1

1√
2πσ2

y

exp

⎛⎜⎜⎜⎜⎝− (yi − f (zi))2

2σ2
y

⎞⎟⎟⎟⎟⎠ (2)

to represent an observation process of the output variables.
In this study, another density p(x|z) is introduced to

represent errors in the input variables. Hereafter, we assume
independence of the observations and express p(x|z) as

p(x|z) =
n∏

i=1

p(xi|zi). (3)

Here, we restrict ourselves to the cases, where xi ∈ Rd,
zi ∈ Rd, and a Gaussian density

p(xi|zi) =
1

(2πσ2
x)d/2

exp

(
−||xi − zi||2

2σ2
x

)
(4)

is assumed, here || || is the Euclidean norm. In principle,
however, any case with a non-Gaussian density p(xi|zi), or
even with discrete or graphical input variables x and z can
be treated by using suitable modifications of the algorithm
in Sec. 3. An example of other assumptions on p(xi|zi) is
given in Sec. 5, which corresponds to coarse-grained data.

The variance σ2
x and σ2

y in (2) and (4) is assumed to be
known. Difficulty arises, when we estimate both of σ2

x and
σ2

y using the same set of data from which we estimate f ; ba-
sics of identifiability and consistency problems for models
with errors in input variables are explained in [2]. In general,
problems caused by large number of hidden variables {zi}
have been studied in statistics since Neyman and Scott [13];
their information geometrical aspects are discussed in [5].
In this paper, however, we will not discuss them further and
focus on computational aspects of the problem.

The prior p(z) is assumed to be the uniform density, al-
though it is also not essential for the algorithm. Combined
with the prior p(f) discussed in the next subsection, the den-
sities (2), (3) and p(z) specify a measurement error model.

2.2 Gaussian Process Prior

The prior p(f) is defined as a Gaussian process [12] with
zero mean E[f (s)] = 0 and the covariance function

Cov[f (s), f (s′)] = k(s, s′). (5)

An inner product (·, ·)H associated with the process can
be introduced, which satisfies

(f , g)H =
∑
i, j

aib j k(ξi, ζ j), (6)

when f (·) = ∑
i aik(·, ξi) and g(·) = ∑

i bik(·, ζi). A norm ‖·‖H

2682
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

is also defined by ‖ f ‖2H = (f , f)H . The Hilbert spaceH that
consists of f satisfying ‖ f ‖H < +∞ is called a reproducing
kernel Hilbert space (RKHS) [12], [14].

Typically, ‖ f ‖H = +∞ with probability one for a ran-
dom sample f from a Gaussian process. However, we can
apply some regularization† to f that makes the norm finite,
‖ f ‖H < +∞, and redefine the measure on the set H̃ of regu-
larized f ’s. In most of applications††, we can safely identify
H̃ with H ; we will write H in place of H̃ through the rest
of the paper.

With this identification, the Gaussian process prior is
effectively written as

p(f) ∝ exp

(
−1

2
‖ f ‖2H

)
, f ∈ H , (7)

which is used to construct the posterior density in the next
subsection.

2.3 Posterior Density

Applying the Bayes formula to the joint density (1) defined
by the densities (2), (3), and (7), the posterior density is
expressed as

p(f , z|x, y) ∝

exp

⎛⎜⎜⎜⎜⎜⎝
∑

i

⎧⎪⎨⎪⎩− (yi − f (zi))2

2σ2
y

+ log p(xi|zi)

⎫⎪⎬⎪⎭ − 1
2
‖ f ‖2H

⎞⎟⎟⎟⎟⎟⎠ . (8)

Thus, our problem is reduced to the sampling of f ∈ H and
z ∈ Rd from the posterior (8).

3. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is widely used in mod-
ern Bayesian statistics for sampling posterior distributions
[8], [10], [15], [16]; applications in measurement error mod-
els are found in [1], [4], [6], [8]. In this section, we introduce
a method for realizing MCMC for the model on a computer
without artificial discretization or truncation.

3.1 Basic Idea

In the present case, a naive version of MCMC for sam-
pling the posterior (8) is defined by alternate updates of f
and z. Starting from an initial value z(0) of z, the algorithm
produces a series (z(1), f (1)), (z(2), f (2)), · · · of samples; the
MCMC algorithm is designed that averages over them coin-
cide with the corresponding posterior averages.

Given the density q(·|z(t)) of the proposal distribution
used in the Metropolis-Hastings step, a step of the naive
MCMC is described as

1. Sample f (t+1) from the density p(f |x, y, z(t)).
2. Generate a candidate z∗ of the next value of z from the

density q(·|z(t)).

3. Calculate the Metropolis-Hastings ratio

r =
p(z∗| f (t+1), x, y) q(z(t)|z∗)
p(z(t)| f (t+1), x, y) q(z∗|z(t))

. (9)

Draw a uniform random number rnd ∈ (0, 1].
If rnd < r then z(t+1) = z∗, else z(t+1) = z(t).

In this case, however, the sampling of f (t+1) is not feasible
on a computer, because f is virtually infinite-dimensional.

A key observation is that we do not need entire f in the
procedure 3. Let us consider a case that we change a single
component zk at one time and the probability of the candi-
date z∗k at step t is defined by the density q(z∗k |z(t)

k). Then, the
computation of r using (9) in the procedure 3 requires only
the values f (t+1)(z(t)

k) and f (t+1)(z∗k), because r is expressed as

exp

⎛⎜⎜⎜⎜⎜⎜⎝−
{
(yk − f (t+1)(z∗k))2 − (yk − f (t+1)(zk))2

}
2σ2

y

⎞⎟⎟⎟⎟⎟⎟⎠
× p(z∗k |xk) q(z(t)

k |z∗k)

p(z(t)
k |xk) q(z∗k |z(t)

k)
. (10)

Then, the exchange of the order of procedures 1 and 2
resolves the difficulty, that is, we can produce exactly the
same sequence of z(1), z(2), · · · using the following proce-
dures.

1’. Choose k randomly and generate a candidate z∗k of the
next value of zk from the density q(·|z(t)

k).
2’. Sample f (t+1)(z(t)

k) and f (t+1)(z∗k) from the density
p(f (z(t)

k), f (z∗k)|x, y, z(t)).
3’. Calculate the Metropolis-Hastings ratio r using (10).

Draw a uniform random number rnd ∈ (0, 1].
If rnd < r then z(t+1) = z∗ else z(t+1) = z(t).

Here, procedures 1’ and 2’ correspond to the procedures 2
and 1 in the previous version of the algorithm, respectively.
In this scheme, we do not need to compute the function
f ; resampling of just two values f (t+1)(z(t)

k) and f (t+1)(z∗k) is
enough for our purpose of updating zk. This makes the al-
gorithm finite and feasible on a computer. The explicit form
of the density p(f (z(t)

k), f (z∗k)|x, y, z(t)) will be derived in the
next subsection.

Now that we can generate a sequence z(1), z(2), · · · by
MCMC, how we can sample required values of f ? Assume
that we want to sample the values { f (x̃i)} of f on a set of
points x̃ = {x̃i}, i = 1, · · · ,m; hereafter we call {x̃i} as ob-
servation points. Then, the sampling of { f (x̃i}) is realized
using the fact that the joint density of { f (x̃i)} and { f (zi)} is
multivariate Gaussian; similar methods are found in the lit-
erature [17].

†It is realized by the truncation of an orthogonal expansion of
f , which introduces a cutoff of high frequency part; an arbitrary
large cutoff is enough for our purpose of defining the expression
(8).
††Precisely speaking, the constraint that |xi− x j| > ε for all pairs

of i and j is required for measurement error models, where ε is a
small constant. It will, however, not affect the results in most cases.

IBA and AKAHO: GAUSSIAN PROCESS REGRESSION WITH MEASUREMENT ERROR
2683

Before explaining the details, we remark that the idea
explained in this subsection can be generalized to the cases
where we try to change more than one components of z at
one time. For example, if we change all components of z
simultaneously, the Metropolis-Hastings ratio r is expressed
using f (z(t)

i) and f (z∗i) for i = 1, · · · , n. Even in this case,
we can construct an algorithm similar to that we discuss in
the following sections, where the vector f in (12) has 2n
components.

3.2 More on Sampling of f

In this subsection, we explain details of the procedure 2’
as well as how to integrate the sampling of { f (x̃i)} into the
MCMC algorithm. We refer to the appendix for another
look at the derivation in this subsection, which will also clar-
ify the relation to the representer theorem.

To give a concise and unified description, we define
(n + m + 1)-dimensional vectors z̃ and f̃ by

z̃ = (z(t)
1 , · · · , z(t)

n , z
∗
k, x̃1, · · · , x̃m), (11)

f̃ = (f (z(t)
1), · · · , f (z(t)

n), f (z∗k), f (x̃1), · · · , f (x̃m)). (12)

The vector f̃ contains everything that we need at step t, that
is, the values of f at the inferred input points {z(t)

i }, candi-
date z∗k, and observation points {x̃i}. Using this notation, the
procedure 2’ in the previous subsection is replaced with

2”. Sample f from p(f|x, y, z(t));

this includes the sampling of { f (x̃i)} at step t.
Now, the problem is specification of the conditional

density p(f|x, y, z(t)). Using the expression (8), the condi-
tional density of the function f is written as

.p(f |x, y, z(t)) ∝

exp

⎛⎜⎜⎜⎜⎜⎝
∑

i

⎧⎪⎪⎨⎪⎪⎩−
(yi − f (z(t)

i))2

2σ2
y

⎫⎪⎪⎬⎪⎪⎭ −
1
2
‖ f ‖2H

⎞⎟⎟⎟⎟⎟⎠ . (13)

Then, by using (5), the density of the vector f̃ is given by

p(f̃|x, y, z(t)) ∝

exp

⎛⎜⎜⎜⎜⎝− 1
2σ2

y
(y+ − f̃)

T
J(y+ − f̃) − 1

2
f̃T K−1f̃

⎞⎟⎟⎟⎟⎠ , (14)

where

y+ = (y1, · · · , yn, 0, · · · , 0)T , J =

(
In O
O O

)
. (15)

The matrix K in (14) denotes the Gram matrix asso-
ciated with z̃, that is, the matrix whose (i, j)-component is
given by k(z̃i, z̃ j), where z̃i is the i-th component of the vec-
tor z̃ defined by (11). The block structure of the matrix K is
represented as

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
K1 K2 K3

KT
2 k∗ KT

4
KT

3 K4 K5

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (16)

where K1 and K5 are n × n and m × m symmetric matrix,
respectively; K2, K3, K4 are n×1 , n×m, and m×1 matrices;
k∗ is a scalar.

A routine calculation shows that the density p(f̃|x, y,
z(t)) defined by (14) is a Gaussian density with the mean

μ(z(t)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
K1

KT
2

KT
3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (K1 + σ
2
y In)−1y, (17)

and the covariance matrix

V(z(t)) =

⎛⎜⎜⎜⎜⎝K−1 +
1
σ2

y
J

⎞⎟⎟⎟⎟⎠
−1

. (18)

Here, the dependence on z(t) arises through the definition of
K. Note that μ(z(t)) of (17) coincides with the estimate by
usual kernel regression with the given z(t).

Basically, (17) and (18) are enough for generating a
sample from p(f̃|x, y, z(t)). However, if we use (18) directly,
we often encounter a numerical difficulty, because the ma-
trix K1 usually has many near-zero eigenvalues; even with a
mathematical proof that K1 has full-rank, it can be highly ill-
conditioned. To avoid this difficulty, the covariance matrix
V is expressed as

V = LT

⎛⎜⎜⎜⎜⎝In+m+1 +
1
σ2

y
LJLT

⎞⎟⎟⎟⎟⎠
−1

L, (19)

where L is the Cholesky decomposition of K, which satis-
fies K = LT L. Then, by substituting an incomplete Cholesky
decomposition for the Cholesky decomposition, we have a
stable and numerically efficient algorithm; this technique
is commonly used in the field of kernel multivariate anal-
ysis [18] and provides controllable approximations with ar-
bitrary accuracy.

3.3 Rao-Blackwellization

Until now, we discuss sampling of { f (x̃i)}, the values of f
on the observation points. If we are interested only in the
posterior averages of { f (x̃i)}, an efficient way is to calculate
the averages of the (n + 2)-th ∼ (n + m + 1)-th components
of μ(z(t)) defined by (17); they are the posterior averages of
{ f (x̃i)} conditioned with z(t). Denoting these components as
μ̃(z(t)),

E(f (x̃i)) =
∫ ∫

f (x̃i)p(f , z|x, y)d f dz

=

∫ {∫
f (x̃i)p(f |x, y, z)d f

}
p(z|x, y)dz

=

∫
μ̃(z)p(z|x, y)dz
 1

tmax

tmax∑
t=1

μ̃(z(t)), (20)

holds, which justifies this method. Such an approach is
called “Rao-Blackwellization” in statistical science [19], al-
though it has been used in physics.

2684
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

We can also calculate the variance of f (x̃i) in a similar
way; it is represented as a sum of the average of conditional
variance and the variance of conditional average, both of
which can be computed using the proposed algorithm.

3.4 Summary of the Proposed Algorithm

Putting these pieces together, a step of the proposed algo-
rithm is summarized as follows.

• Choose k randomly and generate the candidate z∗k of the
next value of zk from q(·|zt

k).
• Generate the Gram matrix K associated with the vector

z̃ defined by (11). Note that only part of the elements
of K need to be refreshed at one time.
• Calculate μ and V using (17) and (19). An incomplete

Cholesky decomposition L of K is used in (19).
• Generate the vector f as a sample from the Gaussian

distribution with the mean μ and covariance matrix V .
• Store the current value of { f (x̃i)} and/or μ.
• Calculate r using (10). Draw a uniform random num-

ber rnd ∈ (0, 1]. If rnd < r then z(t+1) = z∗ else
z(t+1) = z(t).
• t = t + 1.

Starting from an initial value of z = z(0) and t = 1, the above
procedures are iterated prescribed times. Then, the obtained
samples of { f (x̃i)} and/or μ are used to estimate posterior
averages and their errors.

4. Experiments

We perform numerical experiments by using synthetic data
of one-dimensional and two-dimensional input space in or-
der to examine the performance of the proposed algorithm.

In all experiments, we use the Gaussian kernel

k(z, z′) = λ exp(−β‖z − z′‖2) (21)

with two hyperparameters λ and β.

4.1 One-Dimensional Case

4.1.1 Setting

Here we perform experiments for one-dimensional case, in
which Gaussian noise is added to the input variable. n = 50
true values {ztrue

i } of the input variable are drawn indepen-
dently from standard Gaussian distribution N[0, 1]. Then
the observed values {xi} of input are generated by adding in-
dependent Gaussian noise with variance σ2

x = (0.3)2 to ztrue
i .

As a target function, we choose the same function as in
Berry et al.’s paper [6],

f (z) =
sin(πz/2)

1 + 2z2(sign(z) + 1)
(22)

and the observation yi of the output is generated by adding
Gaussian noise with the variance σ2

y = (0.1)2 to the function

Fig. 1 Fitting example (one-dimensional case). Upper: the usual kernel
regression optimized by CV. Lower: the proposed method (posterior mean
with errorbar (=mean±std. dev.)). Dotted line represents the target func-
tion.

value f (ztrue
i) at ztrue

i .
As a proposal distribution q(· |z(t)

i) for the candidate z∗i
of the i-th latent variable, we use a sampler that generates a
sample independent of z(t) but dependent on xi,

q(zi|z(t)
i) =

1√
2πσ2

x

exp

(
−‖zi − xi‖2

2σ2
x

)
. (23)

Initial value z(0)
i is chosen randomly with respect to

N[xi, (0.1)2] which fluctuates around xi.
Observation points are placed at regular intervals be-

tween −2.5 and 2.5 to evaluate the function values. Total
number of the observation points are m = 20. Mean square
loss measured at observation points is given by

LOSS =
1
m

∑
i

(f̂ (x̃i) − f (x̃i))
2, (24)

where f̂ (x̃i) is the estimated value of f at the observation
point x̃i.

4.1.2 Comparison to Usual Regression

Figure 1 shows an example of fitting. In this example, the

IBA and AKAHO: GAUSSIAN PROCESS REGRESSION WITH MEASUREMENT ERROR
2685

Fig. 2 Comparison of LOSS for 50 different datasets (log-log scale).
Horizontal axis: usual kernel regression optimized by cross-validation;
Vertical axis: the proposed method (λ = β = 1).

proposed algorithm estimates a solution closer to the target
curve than the usual kernel regression without errors in the
input variable.

The number of iterations are set to 480 MCMC cycles
after 20 burn-in cycles, where we define a cycle by the up-
dates of the whole samples, (thus one cycle includes n itera-
tion of the steps defined in Sec. 3.4).

The hyperparameters are fixed to λ = β = 1 for the pro-
posed algorithm, while they are optimized for the usual ker-
nel regression using the cross-validation (CV). It is easy to
calculate leave-one-out cross-validation error for usual ker-
nel regression,

CV(λ, β) =
n∑

i=1

(
yi − ŷi

1 − Hii

)2

, (25)

where the n × n matrix H = (Hi j)i, j=1,...n is defined by
H = K1(K1 + σ

2
y In)−1 and ŷ = (ŷi)i=1,...,n is an estimated

value of f (xi) that can be calculated by ŷ = Hy. We calcu-
late CV(λ, β) for the grid points (λ, β) ∈ {0.1, 0.2, . . . , 3.0} ×
{0.1, 0.2, . . . , 3.0} and choose the hyperparameters that give
the smallest CV value.

We compare the proposed algorithm with the kernel re-
gression optimized by cross-validation; 50 datasets are gen-
erated with the same function (22) using different sets of
Gaussian random numbers added to both inputs and outputs.
The result is shown in Fig. 2. It is observed that the proposed
algorithm outperforms the kernel regression on average.

4.1.3 Sensitivity against Parameters

Since we used a fixed setting of parameters λ and β for the
proposed algorithm, we investigate the sensitivity of per-
formance against the choice of parameters here. First, we
examine the performance for 50 different datasets used in
Fig. 2, changing the values of parameters (Fig. 3). Averaged
value of LOSS over all the datasets for each parameter set-
ting is summarized in Table 1. It can be seen that the perfor-
mance is robust against the change of the parameter setting.

Fig. 3 Comparison of LOSS for 50 different datasets. (Upper left: λ =
1, β = 0.5, Upper right: λ = 1, β = 1.5), Lower left: λ = 0.5, β = 1, Upper
right: λ = 1.5, β = 1). The number of iterations are 480 MCMC cycles
after 20 burn-in cycles.

Table 1 Average and standard deviation of LOSS for 50 datasets.

LOSS average (std.)
kernel regression (CV opt.) 0.06167 (0.04576)
MCMC (λ = 1, β = 1) 0.04321 (0.03949)
MCMC (λ = 1, β = 0.5) 0.03978 (0.03732)
MCMC (λ = 1, β = 1.5) 0.04519 (0.03769)
MCMC (λ = 0.5, β = 1) 0.04366 (0.03833)
MCMC (λ = 1.5, β = 1) 0.04535 (0.04318)

It is more preferable if we can apply cross-validation
to the proposed method. We show some preliminary results
here.

We examine the cross-validation of the proposed algo-
rithm for a dataset with 50 samples. We perform random-
ized 5-fold cross-validation, in which each sample is chosen
as a member of the validation set Cv randomly with prob-
ability 1/5. The validation samples are removed from the
training set, and input variables xi of the validation samples
are added to the observation points, and the function value
f̂ (xi) at xi is estimated by MCMC. The validation error is
calculated by

1
|Cv|

∑
i∈Cv

(yi − f̂ (xi))
2 (26)

where |Cv| is the size of validation set. We obtain cross-
validation error by averaging the validation errors for 10
different validation sets. Note that the above error should
be (yi − f̂ (zi))2 from the measurement error model stand-
point, but it is impossible to estimate zi without using yi and
it is not clear how much the validation error is biased if we
use yi to estimate zi. The theoretical analysis of this issue
remains as a future work.

The resulting cross-validation errors are shown in

2686
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Fig. 4 Cross-validation error of the proposed method for various values
of λ, β.

Fig. 5 LOSS of the proposed method for various values of λ, β.

Fig. 4. Although the CV error is minimized at λ = 1, β = 0.4
in this experiment, the error surface is very flat around the
optimum, which is consistent with the fact that the perfor-
mance is robust against the change of the parameter values.

To relate the cross-validation error with generalization
error, we apply the proposed algorithm for the same set of
parameters in which the whole dataset is used as training
samples, and calculate LOSS (Fig. 5). In this figure, LOSS
is minimized at λ = 1.4, β = 1, the error surface is also flat
around the optimum.

The shapes of error surface of cross-validation error
and LOSS are relatively similar, which suggests that we can
use the cross-validation error as a parameter selection proce-
dure. However, the random nature of the cross-validation er-
ror is tend to be further deteriorated by the stochastic nature
of MCMC, and it is necessary to use many validation sets
to obtain reliable cross-validation error. Hence it is compu-
tationally extensive and the further systematic studies also
remain as a future work.

4.1.4 Convergence of MCMC

Here we examine the convergence of the proposed algo-

(a) (b)

(c) (d)

Fig. 6 Relation between two LOSS values of different initial conditions
for 50 different datasets (20 burn-in and (a) 50 (b) 100 (c) 200 (d) 400
MCMC cycles).

rithm. For each dataset among 50 datasets, we perform two
MCMC experiments with different initial conditions using
different random number sequence. Figure 6 shows plots of
the pair of LOSS values corresponding to the two experi-
ments at the 50, 100, 200, and 400 MCMC cycles, where
each axis represents LOSS of each experiment. Correlation
coefficients between LOSS values obtained by the two ex-
periments are 0.815, 0.874, 0.976, and 0.981 respectively.
It is observed that most of the pairs converge to the same
LOSS values at 200 MCMC cycles.

4.2 Two-Dimensional Case

In this subsection, we show some preliminary results for
two-dimensional case, mainly to confirm the validity of im-
plementation of the algorithm.

Analogous to the one-dimensional case, n = 50 values
{ztrue

i } are drawn independently from the standard Gaussian
distribution N[0, I2], where I2 is the 2 × 2 identity matrix.
The observed values {xi} of the input variable are generated
by adding Gaussian noise N[0, σ2

xI2], σ2
x = (0.3)2 to {ztrue

i }.
Here we try to estimate the hidden variable ztrue

i ; such
inference potentially has many applications. In this experi-
ment, we choose

f (z) = ‖z‖2 (27)

as a target function, and y is generated by adding Gaussian
noise N[0, (0.1)2] in the same way as it is generated in one-
dimensional case.

An example of the estimation of hidden variable is
shown in Fig. 7. The upper panel shows the original configu-
ration of input variable, where true values {ztrue

i } and samples
{xi} are connected by segments. The lower panel shows the
result of estimation, where the estimated values are closer to
the true values than sample points in average.

To measure the performance of estimation, the average
square distance of original configuration 1

n

∑
i ‖xi − ztrue

i ‖2

IBA and AKAHO: GAUSSIAN PROCESS REGRESSION WITH MEASUREMENT ERROR
2687

Fig. 7 Example of hidden variable estimation. ×: true value of ztrue
i , ◦:

given xi (upper panel), or estimated value zestimate
i (lower panel). Dotted

lines: contour lines of f (x) = 1, 2, . . . , 9. The average square distance from
the true value is reduced by 27% in this figure.

Fig. 8 The average square distance 1
n

∑
i ‖xi − ztrue

i ‖2 (original) vs
1
n

∑
i ‖zestimated

i − ztrue
i ‖2 (estimated).

and that of the estimated value 1
n

∑
i ‖zestimated

i − ztrue
i ‖2 are

plotted in Fig. 8 for 50 different random configurations, and
clear improvement of the accuracy is observed.

Note that the function takes the same value along the
contour line in two-dimensional space, and there remains
continuous freedom of zi if we ignore the constraint by the
prior p(zi) of zi, even when the true function is known and
σy = 0,

This effect is observed in Fig. 7 as well; each point
approaches the contours, on which the corresponding true
point is located.

Probably from this reason, and also by sparseness

caused by high dimensionality, we didn’t observe significant
improvement in LOSS of estimates of f (z) on observation
points in this two-dimensional case. Further studies on the
estimation of the function should be done as a future work.

As described above, in two-dimensional cases, when
the function f is given, the probability density p(xi| f) is flat
on a contour; it is even worse in higher dimension, where
the contour is replaced by a (hyper)surface. In these cases,
it will be interesting to consider measurements of several
different quantities at each point xi; it is formally expressed
as a vector variable yi. With this assumption, it is possible
to identify the location of inputs as a cross point of contours
or surfaces. It seems possible and interesting to deal such
problems with our Bayesian framework.

5. Summary and Discussion

In this paper, we propose a method of Gaussian process re-
gression for measurement error problems; it is regarded as
an extension of usual kernel regression to incorporate the
errors in input variables. We implement and test the pro-
posed algorithm in cases of one- and two-dimensional input
spaces. In the one-dimensional case, the proposed algorithm
outperforms usual kernel regression for a set of synthetic
data, even with cross-validated choice of hyperparameters
in the usual method. The result is robust against the choice
of hyperparameters in the proposed method.

Also, we report preliminary results on (1) cross-
validated choice of hyperparameters in the proposed
method; (2) a two-dimensional case. For (1), some promis-
ing results are obtained, but further intensive computation
is required for the systematic study; implementation on par-
allel hardware will be necessary. For (2), partial success is
obtained for the estimation of hidden input variables, while
the estimate of the function f is not significantly improved;
such observations are, however, based on limited examples
and further experiments are necessary to understand high-
dimensional cases.

An important issue in this study is convergence of
MCMC. In Sec. 4, especially in one-dimensional cases, con-
vergence seems to attain within moderate number of steps.
It can be, however, very slow, in more difficult cases men-
tioned below. In these cases, implementation of advanced
MCMC methods such as replica exchange Monte Carlo
(REM) [20]–[22] will be useful; an example of the use of
REM in a measurement error model is found in [1].

In this paper, we restrict ourselves to the cases that the
Gaussian noise is added to the input variables. Other in-
teresting examples arise from the analysis of “binned” or
“coarse grained” data, where part of information on inputs is
erased intentionally or by space-saving attempts. Such prob-
lems can be formulated by introducing a tessellation {S γ} of
the input space, which satisfies S γ ∩ S γ′ = φ (γ � γ′) and
∪γS γ = Rd. The “bins” or “tiles” {S γ} represent coarse-
graining of the input space. We assume the position zi is
described by telling which of {S γ} contains zi. Denoting S γ
that contains zi as S γ(zi), this assumption is expressed as

2688
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

p(xi|zi) =

⎧⎪⎪⎨⎪⎪⎩
const. xi ∈ S γ(zi),

0 else.
(28)

Problems with these densities p(xi|zi) can be treated by
the proposed method, where any candidate z∗i of xi � S γ(z∗i)

is rejected in the Metropolis-Hastings steps.
In two-dimensional cases, when the function f is given,

the probability density p(xi| f) is flat on a contour (see
Sec.xxx); it is even worse in higher dimension, where the
contour is replaced by a (hyper)surface. In these cases, it
will be interesting to consider measurements of several dif-
ferent quantities at each point xi; it is formally expressed as
a vector variable yi. With this assumption, it is possible to
identify the location of inputs as a cross point of contours
or surfaces. It seems possible and interesting to deal such
problems with our Bayesian framework.

Finally, we note that there is an alternative approach to
the problem. That is, we first integrate out f in p(f , z|x, y);
then we get a complicated formula of p(z|x, y) that contains
determinants, but it is still treated by a Metropolis-Hastings
algorithm. Then we can obtain samples of { f (x̃i)} using
p({ f (x̃i)}|x, y, z); we can also use Rao-Blackwellization in
this step. Implementation of this alternative approach is also
an issue left for future studies, as well as comparison with
the method proposed in this paper.

Acknowledgements

We would be grateful to Prof. Arnaud Doucet, who sug-
gested us an alternative approach discussed in Sec. 5. This
study is supported by KAKENHI (Grant-in-Aid for Scien-
tific Research(C)) 18500184 .

References

[1] K. Nakae, Y. Iba, Y. Tsubo, T. Fukai, and T. Aoyagi, “Bayesian esti-
mation of phase response curves,” Neural Netw., vol.23, pp.752–
763, 2010.

[2] C.L. Cheng and J.W.V. Ness, Statistical Regression with Measure-
ment Error (Kendall’s Library of Statistics, 6), Wiley, 1999.

[3] W.A. Fuller, Measurement error models, Wiley-Blackwell, 2006.
[4] D. Ruppert, L.A. Stefanski, and C.M. Crainiceanu, Measurement

Error in Nonlinear Models: A Modern Perspective (Monographs on
Statistics and Applied Probability), Chapman and Hall, 2006.

[5] S. Amari and M. Kawanabe, “Information geometry of estimating
functions in semi-parametric statistical models,” Bernoulli, vol.3,
no.1, pp.29–54, 1997.

[6] S.M. Berry, R.J. Carroll, and D. Ruppert, “Bayesian smoothing and
regression splines for measurement error problems,” J. American
Statistical Association, vol.97, no.457, pp.160–169, 2002.

[7] P.J. Bickel, C.A.J. Klaassen, Y. Ritov, and J.A. Wellner, Efficient and
Adaptive Estimation for Semiparametric Models, Springer-Verlag,
1993.

[8] W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, eds., Markov
chain Monte Carlo in practice, Chapman & Hall, 1995.

[9] J. Fan and Y. Truong, “Nonparametric regression with errors in vari-
ables,” Annals of Statistics, vol.21, no.4, pp.1900–1925, 1993.

[10] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, eds., Bayesian
data analysis, 2nd ed., Chapman & Hall, 2003.

[11] D.J.C. MacKay, Information theory, inference and learning algo-
rithms, Cambridge University Press, 2003.

[12] C.E. Rasmussen and C.K.I. Williams, Gaussian processes for ma-
chine learning, The MIT Press, 2005.

[13] J. Neyman and E. Scott, “Consistent estimates based on partially
consistent observations,” Econometrica: J. Econometric Society,
vol.16, no.1, pp.1–32, 1948.

[14] B. Schölkopf and A.J. Smola, Learning with kernels, MIT Press,
2002.

[15] C.P. Robert and G. Casella, Monte Carlo statistical methods, 2nd ed.,
Springer, 2004.

[16] D. MacKay, “Bayesian interpolation,” Neural Comput., vol.4, no.3,
pp.415–447, 1992.

[17] A.J. Smola, S.V.N. Vishwanathan, and T. Hofmann, “Kernel meth-
ods for missing variables,” Proc. 10th Int. Workshop on AI& Statis-
tics 2005, pp.325–334, 2005.

[18] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, New York, NY, USA, 2004.

[19] G. Casella and C.P. Robert, “Rao-Blackwellisation of sampling
schemes,” Biometrika, vol.83, no.1, pp.81–94, 1996.

[20] C.J. Geyer, “Markov chain Monte Carlo maximum likelihood,”
Computing science and statistics: Proc. 23rd Symposium on the In-
terface Interface Foundation, ed. E. Keramidas, pp.156–163, Fairfax
Station, 1991.

[21] K. Hukushima and K. Nemoto, “Exchange Monte Carlo method and
application to spin glass simulations,” J. Physical Society of Japan,
vol.65, no.6, pp.1604–1608, 1996.

[22] Y. Iba, “Extended ensemble Monte Carlo,” Int. J. Modern Physics
C, vol.12, no.5, pp.623–656, 2001.

Appendix

In this appendix, we will discuss the results in Sec. 3.2 from
a different viewpoint. Here we consider the case of changing
many zi’s at one time, because there is no additional com-
plexity for treating the generic case.

Remember that {x̃i} denotes observation points and
{z(t)

i } are values of the input variables at t; hereafter we omit
the superscript t and write {zi} in place of {z(t)

i }. Also z∗i indi-
cates the candidate for the next value of zi. Then, we define
a set S as

S = {zi} ∪ {z∗i } ∪ {x̃i}. (A· 1)

By using this, HS is defined as the linear space spanned by
the functions {k(·, si)}, si ∈ S, i.e.,

f ∈ HS ⇔ f =
∑

i aik(·, si), ∃{ai}, ai ∈ R, (A· 2)

while H⊥S denotes the orthogonal subspace of HS with re-
spect to the inner product (,)H .

Now, let us start from the decomposition

H = HS ⊕H⊥S . (A· 3)

The expression (A· 3) indicates that any function f ∈ H
is written as f = f ‖ + f⊥ using functions f ‖ ∈ HS and
f⊥ ∈ H⊥S . Then, the relations

f⊥(s) = 0, ∀s ∈ S (A· 4)

and

‖ f ‖2H = ‖ f ‖‖2H + ‖ f⊥‖2H , (A· 5)

IBA and AKAHO: GAUSSIAN PROCESS REGRESSION WITH MEASUREMENT ERROR
2689

hold. The decomposition (A· 3) is similar to the one used in
the derivation of the representation theorem, which gives a
connection with usual kernel regression.

By using (A· 4) and (A· 5), we can show that the condi-
tional posterior density p(f |z, x, y) derived from (8) satisfies

p(f |z, x, y) = p(f ‖|z, x, y) p(f⊥|z, x, y), (A· 6)

which enables independent sampling of f ‖ and f⊥ from the
posterior. Since the value of f⊥ is zero inS = {zi}∪{z∗i }∪{x̃i},
we need not sample f⊥. On the other hand, f ‖ is a sample
from a finite-dimensional Gaussian distribution.

To specify this distribution of f ‖, we rewrite the pos-
terior (13) with a = {ai} in (A· 2). Using the relation
‖ f ‖2H =

∑
i, j aia jk(si, s j), which is derived from (6), it is

written as a Gaussian density

.p(a|x, y, z) ∝

exp

⎛⎜⎜⎜⎜⎝−
∑

i(yi −∑
j a jk(zi, s j))2

2σ2
y

− 1
2

aT Ka

⎞⎟⎟⎟⎟⎠ , (A· 7)

where K is the Gram matrix appeared in (14). The mean
â of a maximizes the density (A· 7) and coincides with re-
gression coefficients of usual kernel regression for the given
value of z. On the other hand, the covariance matrix† is(
K + K2

σ2
y
J
)−1

. Using (A· 2), i.e., f ‖ = Ka, we can translate

these results to the mean and covariance matrix of the dis-
tribution of f ‖; it reproduces (17) and (18).

†Here we assume the Gram matrix K has full rank.

Yukito Iba is an Associate Professor of the
Institute of Statistical Mathematics (ISM). He
was Born in Tokyo in 1959 and majored in sta-
tistical physics at the University of Tokyo. Since
1988, he is a staff member of ISM. He obtained
Ph. D degree in physics from Osaka University
in 2000. He is interested in statistical science,
statistical physics, Monte Carlo algorithms, and
cross-fertilization of different fields of sciences.

Shotaro Akaho received a Bachelor, Mas-
ter and Ph.D. degrees in Mathematical Engineer-
ing at the University of Tokyo in 1988, 1990
and 2001 respectively. He joined Electrotech-
nical Laboratory (ETL) in 1990. Since 2001,
he has been the Group Leader of Mathemati-
cal Neuroinformatics Group of Human Technol-
ogy (previously Neuroscience) Research Insti-
tute, The National Institute of Advanced Indus-
trial Science and Technology (AIST). He has
also been an invited professor at Osaka univer-

sity in 2003-2007. His research interests are theories and algorithms of
statistical machine learning.

