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Policy Gradient Based Semi-Markov Decision Problems:
Approximation and Estimation Errors

Ngo Anh VIEN†a), Nonmember, SeungGwan LEE†∗b), Member,
and TaeChoong CHUNG†c), Nonmember

SUMMARY In [1] and [2] we have presented a simulation-based algo-
rithm for optimizing the average reward in a parameterized continuous-
time, finite-state semi-Markov Decision Process (SMDP). We approxi-
mated the gradient of the average reward. Then, a simulation-based al-
gorithm was proposed to estimate the approximate gradient of the average
reward (called GSMDP), using only a single sample path of the underly-
ing Markov chain. GSMDP was proved to converge with probability 1. In
this paper, we give bounds on the approximation and estimation errors for
GSMDP algorithm. The approximation error of that approximation is the
size of the difference between the true gradient and the approximate gradi-
ent. The estimation error, the size of the difference between the output of
the algorithm and its asymptotic output, arises because the algorithm sees
only a finite data sequence.
key words: Markov decision processes, dynamic programming, semi-
Markov decision processes, policy gradient SMDP, approximation and es-
timation error bounds

1. Introduction

A generalization of MDP is the SMDP in which the amount
of time between one decision and the next is a random vari-
able, either real- or integer-valued [3]–[6]. In the real-valued
case, we have SMDPs model with continuous-time discrete-
event systems. In a discrete-time SMDPs, decisions can
be made only at (positive) integer multiples of an under-
lying time step. In this section, we restrict ourselves to
continuous-time systems with a finite or a countable num-
ber of states.

We consider a semi-Markov decision process with fi-
nite state space S = {1, . . . ,N} and finite action space
U = {1, . . . ,M}. Transition probabilities in MDP are re-
placed by transition distributions Qi j(τ, u), with a state i ∈ S,
u ∈ U(i), and τ ≥ 0 is time interval between the transition
to state i and the transition to the next state. For a given pair
(i, u), transition distributions are used to specify the joint
distribution of the transition interval and the next state [4]:

Qi j(τ, u) = P{tk+1 − tk ≤ τ, xk+1 = j|xk = i, uk = u} (1)

where the state and control at any time t are denoted by x(t)
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and u(t) respectively. We will use the following notation for
the whole paper:

tk: The time of occurrence of the kth transition. We
denote t0 = 0.
τk = tk − tk−1: The kth transition time interval.
xk = x(tk): We have x(t) = xk for tk ≤ t < tk+1.
uk = u(tk): We have u(t) = uk for tk ≤ t < tk+1.
We assume that for all states i and j, and actions u ∈

U(i), Qi j(τ, a) is known that the average transition time is
finite:∫ ∞

0
τQi j(dτ, u) < ∞

Note that the transition distributions specify the ordinary
transition probabilities via

pi j(u) = P{xk+1 = j|xk = i, uk = u} = lim
τ→∞Qi j(τ, u)

For each pair (i, u), we denote G(i, u) the single stage ex-
pected cost corresponding to state i and control u. We have

G(i, u) = g(i, u)τ̄(i, u) (2)

where g(i, u) is the immediate reward at each time step, i and
u are the current state and action respectively. And τ̄(i, u) is
the expected value of the transition time corresponding to
(i, u)

τ̄(i, u) =
N∑

j=1

∫ ∞

0
τQi j(dτ, u) (3)

A randomized policy is defined as a mapping

μ : S ×U �→ [0, 1]

such that:∑
u∈U(i)

μ(i, u) = 1 ∀i ∈ S

Under a policy μ, action u is chosen with probability μ(i, u)
whenever the state is equal to i.

The approach we pursue here is to consider a class
of policies parameterized by a parameter space {θ ∈ 
K},
whose dimension K is tractable small, compute the gradient
with respect to θ of the average reward (cost), and then im-
prove the policy by adjusting the parameters in the gradient
direction. Let θ = [θ1, θ2, . . . , θK]′ ∈ 
K be the parameter
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that determines the control policy (we use the superscript ′
to denote vector transposition). Because it is impossible to
provide an arbitrary policy μ for problems having very large
state spaces. In this paper, we are interested in parameter-
ized policy methods that perform small incremental updates
of the parameter θ. Hence, we choose to work with random-
ized policies that make policy have a smooth dependence on
θ.

Let us consider a natural reward function for the
continuous-time average reward problem:

J(θ) = lim
T→∞

1
T

Eθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T∫

0

g(xt, ut)dt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

We parameterize a randomized policy μ(θ), which at any
given state i chooses an action u with probability μ(i, u, θ).
We assume that every μ(i, u, θ) is nonnegative and that∑

u∈U(i) μ(i, u, θ) = 1. Thus, the expected reward per stage
is given by

g(i, θ) =
∑

u∈U(i)

μ(i, u, θ)G(i, u) (5)

The objective is to maximize the parameterized average re-
ward function J(θ) under policy μ(θ). Now we discuss vari-
ous assumptions about the SMDP.

1.1 Assumptions

The following assumption assumes the bound of transition
time:

Assumption 1: There is ν < ∞ such that

0 < τ̄(i, u) < ν i = 1, . . . ,N, u ∈ U(i)

For every θ ∈ 
K , let P(θ) is the stochastic matrix with
entries Pi j(θ). We assume the transition probability and the
reward matrices satisfying the following assumptions:

Assumption 2: For any θ ∈ 
K , the embedded chain
{xθk}k≥0 with transition probability Pi j(θ) = P(xθk+1 = j|xθk =
i) =

∑
u∈U(i) pi j(u)μ(i, u, θ) is a unichain.

Assumption 2 ensures J(θ) is well defined quantity with a
limit independent of the initial distribution for x0. A finite
state discrete-time homogeneous Markov chain with state
space S and transition probability Pi j is said to be a unichain
if the transition probability matrix [Pi j] corresponding to ev-
ery deterministic stationary policy consists of one single re-
current class plus a possibly empty set of transient states [4],
[7]. Since any finite-sate Markov chain always ends up in
a recurrent class, and it is the properties of this class that
determine the long-term average reward, this assumption is
mainly for convenience so that we do not have to include the
recurrence class as a quantifier in our theorems.

We denote the Markov chain corresponding to P(θ) by
M(θ). A stationary distribution of a Markov chain with
transition probability matrix P is a probability distribution

π(θ) = [π(θ, 1), . . . , π(θ,N)]′ over states. Assumption 2 im-
plies that each P(θ) has a unique stationary distribution π(θ)
satisfying the balance equations

π(θ)′P(θ) = π(θ)′ (6)

where

N∑
i=1

π(i, θ) = 1 (7)

Then, the average reward is equal to:

J(θ) =
N∑

i=1

π(i, θ)g(i, θ) = π′g (8)

To make a gradient method applicable, suitable derivatives
must exist. The following assumption about parameterized
stochastic policies suffices.

Assumption 3: The derivatives ∂μ(i, u, θ)/∂θk exist for all
u ∈ U, i ∈ S, k = 1, . . . ,K and θ ∈ 
K .

This assumption implies that the derivatives ∂Pi j(θ)/∂θk ex-
ist for all i, j = 1, . . . ,N, k = 1, . . . ,K and θ ∈ 
K .

Assumption 4: For every i ∈ S, u ∈ U the magnitudes of
the rewards, |g(i, u)|, are bounded by a C < ∞.

Assumption 5: There is a B < ∞ such that, for all u ∈ U,
i ∈ S, k = 1, . . . ,K and θ ∈ 
K ,

|∂μ(i, u, θ)/∂θk |
μ(i, u, θ)

≤ B

In the Assumption 5, we assume that 0/0 = 0 in the case
μ(i, u, θ) = 0.

2. Policy Gradient SMDP

In [1], [2], we pursued the approach that searches for a pol-
icy minimizing the average reward of SMDP problems di-
rectly. Our work was inspired by the works in [8] and [9].
In [8], the authors consider a class of stochastic policies pa-
rameterized by θ ∈ 
K , and compute the gradient with re-
spect to θ of the average reward, then improve the policy by
adjusting the parameters in the gradient direction. We in-
troduced GSMDP algorithm which extended the results in
[8] and [9] with a continuous-time model. We can consider
the average reward of SMDP problems as a function J(θ) of
θ ∈ 
K . Our main contribution in the papers [1], [2] is to de-
velop an algorithm for computing an approximation ∇βJ(θ),
to the gradient ∇J(θ) of the average reward, from a single
path of the underlying Markov chain for a SMDP.

Theorem 1: For all θ ∈ 
K ,

∇J(θ) = lim
β→0
∇βJ(θ)

where

∇βJ(θ) = π′(∇g) + π′∇PJβ(θ) (9)
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Proof : See [1] and [2]. Where Jβ(θ) = [Jβ(1, θ), . . . ,
Jβ(N, θ)]′ is the vector of the expected discounted rewards
from each state i:

Jβ(i, θ) = Eθ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∫

0

e−βtg(xt, ut)

∣∣∣∣∣∣∣∣ x0 = i

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10)

Then a gradient-based SMDP (GSMDP) algorithm was
introduced to estimate the approximation ∇βJ(θ) as de-
scribed in Algorithm 1. This algorithm was proved in [1]
and [2] to converge to the approximate gradient when the
number of iterations T → ∞: lim

T→∞ΔT (θ) = ∇βJ(θ).

The accuracy of the approximation is controlled by a
discount factor β ∈ (0,∞) of the algorithm. The approxima-
tion ∇βJ(θ) has the property that ∇J(θ) = lim

β→0
∇βJ(θ). How-

ever, when β is close to 0, the variance of the algorithm’s
estimates increase as β → 0. Inspired by the proofs in [8]
and [9], we will prove the same results that the approxima-
tion error is small provided that the 1/(1 − e−βν) (where ν is
the bound of the magnitude of the transition time) is large
compared to the mixing time of the derived Markov chain
for a SMDP. And inherited by the proof in [9], we will give
a bound on the estimation error of the GSMDP algorithm.
The estimation error, which is the size of the difference be-
tween the output of the algorithm and its asymptotic output,
arises because the algorithm sees only a finite data sequence.

Algorithm 1: Gradient-based Semi-Markov Decision Process
(GSMDP) algorithm
1. Given :
• Parameter θ ∈ 
K

• Parameterized class of randomized policies {μ(., ., θ) : θ ∈ 
K }
satisfy Assumption 3 and 5
• Discount factor β ∈ (0,∞)
• State sequence x0, x1, . . . generated by the SMDP with controls

u0, u1, . . . generated randomly according to the distribution {μ(., ., θ)}.
• Reward sequence g(x0, u0), g(x1, u1), . . . satisfies Assumption 4,

transition time sequence τ̄(x0, u0), τ̄(x1, u1), . . . satisfies Assumption 1
2: Set z0 = 0 and Δ0 = 0 (z0,Δ0 ∈ 
K )
3: For t = 0 to T − 1 do

zt+1 = e−βzt + ∇t

Δt+1 = Δt

+
1

t + 1
[∇tg(xt , ut)τ̄(xt , ut) + g(xt+1, ut+1)zt+1 − Δt

]

where

∇t =
∇μ(xt , ut, θ)
μ(xt , ut, θ)

4: End for
5: Return ΔT

where we concatenated K gradients ∇θk to one vector

Δ =

[
∂J(θ)
∂θ1
, . . . ,

∂J(θ)
∂θK

]′

and

∇t =

[∇θ1μ(·, ·; θ)
μ(·, ·; θ) , . . . ,

∇θKμ(·, ·; θ)
μ(·, ·; θ)

]′

Our estimation error bound is in terms of 1/(1 − e−βν)2 and
the mixing time of a certain stochastic process associated
with the SMDP.

3. Policy Gradient in Partially Observable SMDP

In this section, we discuss an applicability of our proposed
policy gradient algorithm (GSMDP) in Algorithm 1 for a
Partially Observable SMDP (POSMDP). Specifically, we
assume that there are Y observations Y = {1, . . . ,Y}, and
for each state i ∈ S, there is a probability distribution ν(i)
over observations in Y. Denote the probability of observa-
tion y ∈ Y as ν(y, i). Thus, a randomized policy is defined
as a function μ mapping observation y ∈ Y into the proba-
bility distribution over the controls U. As a consequence,
the Markov chain for the corresponding partially observ-
able SMDP is that: state transitions are generated by choos-
ing an observation y in state i according to the distribution
ν(y, i), then choosing a control u according to the distribu-
tion μ(y, u), and then generating a transition to a next state
j according to the probability pi j(u), the transition time τ is
generated according to a certain distribution. If the policies
are parameterized by a parameter θ ∈ 
K , μ(y, u, θ), then the
Markov chain corresponding to θ has state transition matrix
given by

pi j(θ) = Ey∼ν(i)Eu∼μ(y,θ) pi j(u)

which means

pi j(θ) =
∑
u,y

ν(y, i)μ(y, u, θ)pi j(u)

then

∇pi j(θ) =
∑
u,y

ν(y, i)∇μ(y, u, θ)pi j(u)

=
∑
u,y

ν(y, i)μ(y, u, θ)
∇μ(y, u, θ)
μ(y, u, θ)

pi j(u)

We introduce Algorithm 2 which is the policy gradient based
POSMDP. The modification is in which the updates of zt are
now based on the parameterized policy function μ(yt, ut, θ).
The convergence proof of this algorithm can be derived
straight-forward similarly to the proof of Algorithm 1 in [1],
[2].

4. Approximation Error

The following results about approximation error bound are
inspired by the works of Baxter [8], and Bartlett [9].

Theorem 1 showed that ∇βJ(θ) is an accurate approx-
imation to the gradient as β approaches 0. However, we
will prove that β approaching 0 leads to large variance in
the estimate of ∇βJ(θ). The following theorem will give
the approximation error bound depending on β. This the-
orem is defined under the assumption that the eigenvalues
of the transition probability matrix H = E × P(θ), where
E = diag(e−βτ̄(1), . . . , e−βτ̄(N)), are all distinct. The existence
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Algorithm 2: Gradient-based Partially Observable Semi-Markov De-
cision Process (GPOSMDP) algorithm
1. Given :
• Parameter θ ∈ 
K

• Parameterized class of randomized policies {μ(., ., θ) : θ ∈ 
K }
satisfy Assumption 3 and 5
• Discount factor β ∈ (0,∞)
• Observation sequence y0, y1, . . . generated by the POSMDP with

controls u0, u1, . . . generated randomly according to the distribution
{μ(yt , ., θ)}.
• Reward sequence g(x0, u0), g(x1, u1), . . . satisfies Assumption

4, transition time sequence τ̄(x0, u0), τ̄(x1, u1), . . . . satisfies Assump-
tion 1. Where x0, x1, . . . is the (hidden) sequence of states of the
Markov decision process.
2: Set z0 = 0 and Δ0 = 0 (z0,Δ0 ∈ 
K )
3: For t = 0 to T − 1 do

zt+1 = e−βzt + ∇t

Δt+1 = Δt

+
1

t + 1
[∇tg(xt , ut)τ̄(xt , ut) + g(xt+1, ut+1)zt+1 − Δt

]

where

∇t =
∇μ(yt , ut , θ)
μ(yt , ut , θ)

4: End for
5: Return ΔT

of a unique stationary distribution implies that the set of
eigenvalues λ1 ≥ |λ2| ≥ · · · ≥ |λN | have magnitudes less than
1 (some eigenvalues may be equal to each other) [10]. In the
following theorem, κ2(X) is the spectral condition number
of a nonsingular matrix X which is defined as

κ2(X) = ‖X‖2
∥∥∥X−1

∥∥∥
2

where

‖X‖2 = max
y:‖y‖=1

‖Xy‖

and ‖y‖ is the Euclidean norm of a vector y.

Theorem 2: Let assumption 1–5 hold, with station-
ary distribution π′ = (π1, . . . , πN) and denotes Π =

diag(π1, . . . , πN), and H = E × P(θ), where E =

diag(e−βτ̄1 , . . . , e−βτ̄N ), has distinct eigenvalues. Then the
normalized inner product between ∇J(θ) and ∇βJ(θ) satis-
fies

1 − ∇Je−βν∇βJ
‖∇J‖2 ≤ (1 − e−βν)BCν

‖∇J‖

+ κ2(Π1/2S )

∥∥∥∇√π′∥∥∥
‖∇J‖

√
g′Πg

1 − e−βν

1 − |λ1|
where S = (x1 x2 . . . xN) is the matrix of the right eigen-
vectors of H corresponding, respectively, to the eigenvalues
λ1 ≥ |λ2| ≥ · · · ≥ |λN |.

The proof of the Theorem 2 appears in Appendix A.
According to the result of Theorem 2, it turns out that if

|1 − e−βν| is small compared to |1 − λ1|, the gradient approx-
imation is accurate, and large β gives large approximation

error. By this theorem, we have trade-off method between
the approximation error reduction and variance reduction of
the algorithm. As seen in the proof of Theorem 1 in [1], if β
is larger, the limit converges more quickly as t → ∞with the
order of magnitude βt, that means, Algorithm 1 needs fewer
iterations to make the approximate gradient ∇βJ converge
to the true gradient ∇J(θ). However, Theorem 2 shows that
large β gives a larger approximation error. Inversely, small
β makes the limit converges more slowly, that means Algo-
rithm 1 needs many more iterations to make the approximate
gradient ∇βJ converge to the true gradient ∇J(θ). However,
small β gives small approximation error.

Theorem 2 is similar to the work of Baxter [8]. It shows
that the approximation is accurate, but the proof requires an
assumption that the eigenvalues of the Markov chain M(θ)
are all distinct. The following theorem has similar result,
but without the assumption about the eigenvalues. The fol-
lowing result is inspired from the result of Bartlett [9]. The
result is in terms of a different mixing time τ∗, based on χ2

distance.

Definition 1: Given two probability distributions p, π on
{1, 2, . . . ,N}, with πi > 0 for all i, the χ2 distance between p
and π is given by

dχ2 (p, π) =

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

(pi − πi)
πi

⎞⎟⎟⎟⎟⎟⎠
1/2

We use the following lemma result from [9]

Lemma 1:∥∥∥Π1/2(P−t − e′π)Π−1/2
∥∥∥ ≤

√
Ex∼π

{
dχ2 (pt

x, π)2
}

See Lemma 22 in [9] for proof. And definition of pt
x in the

next theorem. Now we can obtain the bound of approxima-
tion error.

Theorem 3: Partition the state transition probability ma-
trix P as

Pt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
pt′

1
...

pt′
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Suppose there are constants c, τ∗ (the mixing time is defined
based on χ2 distance) that(

Ex∼π
{
dχ2 (pt

x, π)
2
})1/2 ≤ c exp

(
− t
τ∗

)

Then∥∥∥∇J − e−βν∇βJ
∥∥∥ ≤ (1 − e−βν)BCν +

∥∥∥∇π′∥∥∥ cτ∗

× (1 − e−βν)
∥∥∥Π−1/2

∥∥∥ ∥∥∥Π1/2g
∥∥∥

The proof of the Theorem 3 appears in Appendix B. The
above theorem also justifies our discussion that if β is
smaller, the right hand side reaches to 0, thus the approx-
imation error is smaller; otherwise if β is larger, the right
hand side becomes larger, thus the approximation error is
larger. However, we previously argued that large β leads
to small variance, and vice versa. Thus, we can derive the
trade-off between bias/variance from either Theorem 2 or 3.
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5. Estimation Error

In this section, we give bounds on the estimation error of
the GSMDP algorithm. Our estimation error bound is in
terms of the algorithm’s discount factor and the mixing time
of a certain stochastic process associated with the SMDP.
We will generalize the work of Bartlett in [9] which finds
estimation error bounds of GPOMDP algorithm associated
with the Partially Observable MDP (POMDP) framework.
In Algorithm 3, we also modify our algorithm similarly to
GPOMDP. The new algorithm has three distinct phases,
which extends for n1, n2, n3 time steps. “The first phase in-
volves waiting for the controlled SMDP to mix. The second
involves gathering gradient information about actions that
are taken. The third involves waiting for the long term out-
comes of the actions for which the gradient information was
gathered” (this modification is described in detail in [9]).
Thus, we can rewrite Δ in Algorithm 1, the estimate pro-
duced by GSMDP algorithm in Algorithm 3:

Δ =
1
n2

n1+n2−1∑
t=n1

∇t

[
g(xt, ut)τ̄(xt, ut)

+

n1+n2+n3−1−t∑
s=0

e−βsg(xt+1+s, ut+1+s)
] (11)

Algorithm 3: GSMDP algorithm.
1. Given :
• Parameter θ ∈ 
K , discount factor β ∈ (0,∞).
• Parameterized class of randomized policies {μ(., ., θ) : θ ∈ 
K }

satisfy Assumption 3 and 5.
• State sequence x0, x1, . . . generated by the SMDP with controls

u0, u1, . . . generated randomly according to the distribution {μ(., ., θ)}.
• Reward sequence g(x0, u0), g(x1, u1), . . . satisfies Assumption 4,

transition time sequence τ̄(x0, u0), τ̄(x1, u1), . . . satisfies Assumption 1.
2: Set z0 = 0 and Δ0 = 0 (z0,Δ0 ∈ 
K )
3: For t = 0 to n1 − 1 do

zt+1 = zt

Δt+1 = Δt

End for
4: For t = n1 to n1 + n2 − 1 do

zt+1 = e−βzt + ∇t

Δt+1 = Δt +
1

t − n1 + 1

[
∇tg(xt , ut)τ̄(xt , ut)

+ g(xt+1, ut+1)zt+1 − Δt

]

End for
5: For t = n1 + n2 to n1 + n2 + n3 − 1 do

zt+1 = e−βzt

Δt+1 = Δt +
[
∇tg(xt , ut)τ̄(xt , ut) + g(xt+1, ut+1)zt+1

]

End for
where

∇t =
∇μ(xt , ut, θ)
μ(xt , ut, θ)

6: Return ΔT

where

∇t =
∇μ(xt, ut, θ)
μ(xt, ut, θ)

We also apply the k-blocked algorithm, which uses only k
of the future reward values

Δk =
1
n2

n1+n2−1∑
t=n1

∇t

[
g(xt, ut)τ̄(xt, ut)

+

k−1∑
s=0

e−βsg(xt+1+s, ut+1+s)
] (12)

Assume that k ≤ n3 + 1. The estimate Δk is an average
of n2 terms, each of which is a function of a vector S k

t =

(∇t, g(t), τ̄(t), . . . , g(t + k), τ̄(t + k)). Define that

Δk
t = ∇t

[
g(xt, ut)τ̄(xt, ut)

+

k−1∑
s=0

e−βsg(xt+1+s, ut+1+s)
] (13)

Then, use Assumptions 1, 4, 5 to obtain

∥∥∥Δk
t

∥∥∥∞ ≤ BC

(
ν +

1 − e−βk

1 − e−β

)
≤ BC

(
ν +

1
1 − e−β

)
(14)

We now give the estimation error bound of the GSMDP al-
gorithm

Theorem 4: If the process S k
t = (∇t, g(t), τ̄(t), . . . , g(t +

k), τ̄(t + k)) is τ∗ − mixing, s ≤ n2, k ≤ n3 + 1, then

Pr

(∥∥∥Δ − ∇βJ∥∥∥∞ ≥ ε + 2BC
1 − e−β

e−βk
∣∣∣∣∣ X0
−∞

)

≤ K
2

{
se−�n1/τ

∗� + n2e−�s/τ
∗� + 4se

( −ε2n2(1−e−β )2

4B2C2 s

)}

where K is the parameter dimension, �a/b� is integer divi-
sion, and X j

−∞ is the infinite sequence (. . . , x j−1, x j).

The proof of the theorem 4 appears in Appendix C. This
result shows the relationship between the number of itera-
tions in Algorithm 1 (n2 or T ) with the estimation error. We
consider the right side in theorem 4 as a function of n2. It is
easy to derive that the function is an decreasing function if
n2 > 0 (by taking its derivative). Thus, if the number of iter-
ations n2 (or T ) of GSMDP is infinite, the probability of the
estimation error greater than a small number becomes zero.

6. Conclusion

In this paper, we give bounds on the approximation and es-
timation errors for our GSMDP algorithm in [1]. GSMDP
algorithm is a simulation-based algorithm which was pro-
posed to estimate the approximate gradient of the average
reward, using only a single sample path of the underlying
Markov chain. The approximate gradient of the average re-
ward, with respect to the parameters in SMDP controlled by
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parameterized stochastic policies, is computed as in Algo-
rithm 1.

The approximation error of the above approximation
is the size of the difference between the true gradient and
the approximate gradient. The estimation error, the size of
the difference between the output of the algorithm and its
asymptotic output, arises because the algorithm sees only a
finite data sequence. Through approximation error bounds,
we show that the accuracy of the approximation depends
on the relationship between the discount factor used by the
approximation method and the mixing-time of the Markov
chain for a SMDP. As a consequence, we derive a trade-off
method between the approximation error reduction and vari-
ance reduction of the algorithm. The estimation error bound
shows the relationship between the number of iterations of
GSMDP with the estimation error. It is easy to derive that
if the number of iterations of GSMDP is infinite, the prob-
ability of the estimation error greater than a small number
becomes zero.
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Appendix A: Proof of Theorem 2

Lemma 2: Assume that S = (x1 x2 . . . xN) is the matrix of

the right eigenvectors of H = E × P corresponding, where
E = diag(e−βτ̄(1), . . . , e−βτ̄(N)), respectively, to the eigenval-
ues 1 = λ1 > |λ2| ≥ · · · ≥ |λN |, and S −1 = (y1, . . . , yN)′.

Then yi is the left eigenvector corresponding to eigen-
value λi, i = 1, . . . ,N.

Proof : From Theorem 4.10.2, p153 in [11], the existence
of N distinct eigenvalues implies that H = SΛS −1, where
Λ = diag(λ1, . . . , λN), S −1 = (y1, . . . , yN)′.

H = SΛS −1 ⇔ S −1H = ΛS −1

⇔ (y1, . . . , yN)′H = (λ1y1, . . . , λNyN)′

⇔ (y′1, . . . , y
′
N)H = (λ1y′1, . . . , λNy′N)

⇔
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11 · · · y1N
...
. . .

...
yN1 · · · yNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H11 · · · H1N
...

. . .
...

HN1 · · · HNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1y11 · · · λ1y1N
...

. . .
...

λNyN1 · · · λNyNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔
N∑

i=1

yiHi j = λ jy j j = 1, . . . ,N

Then yi is the left eigenvector corresponding to λi, i =
1, . . . ,N. �

Lemma 3: For any polynomial function f , then f (P) =
S f (Λ)S −1.

Proof : First, we prove that Pk = SΛkS −1, k is integer. We
have S −1Pk = S −1PPk−1 = ΛS −1Pk−1 = · · · = ΛkS −1. Then
Pk = SΛkS −1. Assume that f = a0 + a1x + · · · + anxn, then

f (P) =
n∑

t=0

atP
t =

n∑
t=0

atSΛ
tS −1

= S

⎛⎜⎜⎜⎜⎜⎝
n∑

t=0

atΛ
t

⎞⎟⎟⎟⎟⎟⎠ S −1 = S f (Λ)S −1

�
The following proof is for Theorem 2. We have the

formula of the true gradient and the approximate gradient of
the average reward Eq. (9)

∇J(θ) = π′(∇g) + (∇π)′g
and

∇βJ(θ) = π′(∇g) + π′∇PJβ

On the other hand, in [3]

Jβ(i) = g(i) + e−βτ̄(i)
∞∑
j=0

Pi jJβ( j)

or

Jβ(θ) = g + EPJβ(θ) (A· 1)

where E = diag(e−βτ̄(1), . . . , e−βτ̄(N))
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Following from Assumption 1, the magnitude of the
transition time satisfies τ̄(i) ≤ ν⇒ e−βτ̄(i) ≥ e−βν. Thus, we
have

(∇π)′g = (∇π)′(Jβ − EPJβ)

≤ (∇π)′Jβ − e−βν(∇π)′PJβ

(by (A· 1)). Hence, from the definition of ∇J(θ) and the
above inequality, we have

∇J ≤ π′(∇g) + (∇π)′Jβ − e−βν(∇π)′PJβ

According to the balance equation that (∇π)′P = ∇π′−π′∇P,
then

∇J ≤ π′(∇g) + (∇π)′Jβ − e−βν(∇π′ − π′∇P)Jβ

Subtract both sides of the above inequality by both sides of
∇βJ(θ) formula multiplied with e−βν to obtain

∇J − e−βν∇βJ ≤ (1 − e−βν)π′(∇g) + (1 − e−βν)(∇π)′Jβ
(A· 2)

First, we will find the bound of the first part of the right-
hand side, then the reduced form of the second of the above
inequality. We have

π′(∇g) =
∑

i

∑
u

π(i)μ(i, u)
∇μ(i, u)
μ(i, u)

g(i, u)τ̄(i, u)

=
∑

i

∑
u

E(Yt)

where E(Yt) is the expectation of the stationary and ergodic
process {Yt} is defined by:

Yt = χi(xt)χu(ut)
∇μ(i, u)
μ(i, u)

g(i, u)τ̄(i, u)

where χi(·) denotes the indicator function:

χi(xt) =

{
1 if xt = i
0 otherwise

then

π′∇g =
∑
i,u

lim
T→∞

1
T

T−1∑
t=0

χi(xt)χu(ut)
∂μ(i, u)
μ(i, u)

g(i, u)τ̄(i, u)

= lim
T→∞

1
T

T−1∑
t=0

∇μ(xt, ut)
μ(xt, ut)

g(xt, ut)τ̄(xt, ut)

≤ lim
T→∞

1
T

T−1∑
t=0

BCν = BCν (A· 3)

Use results from (A· 1), Lemmas 2 and 3, we obtain

(1 − e−βν)Jβ = (1 − e−βν)
∞∑

t=0

(EP)tg

= (1 − e−βν)S
⎛⎜⎜⎜⎜⎜⎝
∞∑

t=0

Λt

⎞⎟⎟⎟⎟⎟⎠ S −1g

= (1 − e−βν)
n∑

j=1

x jy
′
j

⎛⎜⎜⎜⎜⎜⎝
∞∑

t=0

(λ j)
t

⎞⎟⎟⎟⎟⎟⎠ g

= S MS −1g (A· 4)

where

M = diag

(
1 − e−βν

1 − λ1
,

1 − e−βν

1 − λ2
, . . . ,

1 − e−βν

1 − λN

)

Now we prove the main result of this theorem. From the
inequality (A· 2), we have

∇J − (1 − e−βν)π′∇g − (1 − e−βν)(∇π)′Jβ ≤ e−βν∇βJ
Thus,

1 − ∇Je−βν∇βJ
‖∇J‖2

≤ 1 −
∇J

[
∇J − (1 − e−βν)π′∇g − (1 − e−βν)(∇π)′Jβ

]
‖∇J‖2

=
∇J

[
(1 − e−βν)π′∇g + (1 − e−βν)(∇π)′Jβ

]
‖∇J‖2

=
∇J

[
(1 − e−βν)π′∇g + ∇π′S MS −1g

]
‖∇J‖2

(Following to (A· 4))

≤
∇J

[
(1 − e−βν)BCν + ∇π′S MS −1g

]
‖∇J‖2

≤ (1 − e−βν)BCν
‖∇J‖ +

∥∥∥∇π′S MS −1g
∥∥∥

‖∇J‖
(Following to (A· 3) and the Cauchy-Schwartz inequality).

From here we apply the result of Baxter [8] to reduce
the above inequality of the normalized inner product be-
tween ∇J(θ) and ∇βJ(θ). Since ∇π′ = (∇√π′)Π1/2, then
apply the Cauchy-Schwartz again to obtain

1 − ∇Je−βν∇βJ
‖∇J‖2

≤ (1 − e−βν)BCν
‖∇J‖ +

∥∥∥∇√π′∥∥∥ ∥∥∥Π1/2S MS −1g
∥∥∥

‖∇J‖
The second part of the right-hand side of the above inequal-
ity is∥∥∥Π1/2S MS −1g

∥∥∥ = ∥∥∥Π1/2S MS −1Π−1/2Π1/2g
∥∥∥

≤ ∥∥∥Π1/2S
∥∥∥

2

∥∥∥S −1Π−1/2
∥∥∥

2

∥∥∥Π1/2g
∥∥∥

2
‖M‖2

≤ κ2(Π1/2S )
√

g′Πg
1 − e−βν

1 − λ1

Because

‖M‖2 =
∥∥∥∥∥∥diag

(
1 − e−βν

1 − λ1
,

1 − e−βν

1 − λ2
, . . . ,

1 − e−βν

1 − λN

)∥∥∥∥∥∥
2

= max
i

∣∣∣∣∣∣
1 − e−βν

1 − λi

∣∣∣∣∣∣ =
1 − e−βν

1 − λ1

Then

1 − ∇Je−βν∇βJ
‖∇J‖2 ≤ (1 − e−βν)BCν

‖∇J‖

+ κ2(1/2S )

∥∥∥∇√π′∥∥∥
‖∇J‖

√
g′Πg

1 − e−βν

1 − λ1

�



278
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.2 FEBRUARY 2010

Appendix B: Proof of Theorem 3

Proof : The inequality (A· 2) shows that∥∥∥∇J − e−βν∇βJ
∥∥∥ ≤ (1 − e−βν)π′(∇g)

+ (1 − e−βν)(∇π)′Jβ
And applying the inequality (A· 3) to obtain

∥∥∥∇J − e−βν∇βJ
∥∥∥ ≤ (1 − e−βν)BCν + (1 − e−βν)(∇π)′Jβ

(A· 5)

According to (A· 1), we have

(1 − e−βν)(∇π)′Jβ = (1 − e−βν)∇π′
∞∑

t=0

EtPtg

= (1 − e−βν)∇π′
∞∑

t=0

Et(Pt − eπ′)g

(because ∇π′e = ∇(π′e) = 0)

= ∇π′(1 − e−βν)
∞∑

t=0

EtΠ−1/2

×
(
Π1/2(Pt − eπ′)Π−1/2

)
Π1/2g

≤ ∥∥∥∇π′∥∥∥ (1 − e−βν)
∞∑

t=0

∥∥∥EtΠ−1/2
∥∥∥

×
√

Ex∼π
{
dχ2 (pt

x, π)2
} ∥∥∥Π1/2g

∥∥∥
(by Lemma 1)

≤ ∥∥∥∇π′∥∥∥ (1 − e−βν)
∞∑

t=0

ce−t/τ∗
∥∥∥EtΠ−1/2

∥∥∥ ∥∥∥Π1/2g
∥∥∥

≤ ∥∥∥∇π′∥∥∥ (1 − e−βν)
∞∑

t=0

ce−t/τ∗−βtτ̄min
∥∥∥Π−1/2

∥∥∥ ∥∥∥Π1/2g
∥∥∥

(because
∥∥∥Et

∥∥∥ = max{e−βτ̄(1), . . . , e−βτ̄(N)} = e−βτ̄min , where
τ̄min = min{τ̄(1), . . . , τ̄(N)})

=
∥∥∥∇π′∥∥∥ c(1 − e−βν)

(1 − e−1/τ∗−βτ̄min )

∥∥∥Π−1/2
∥∥∥ ∥∥∥Π1/2g

∥∥∥
Because

1
1 − e−βτ̄min e−1/τ∗ ≤

1
1 − e−1/τ∗ ≤ τ∗

then

(1 − e−βν)(∇π)′Jβ
≤ ∥∥∥∇π′∥∥∥ cτ∗(1 − e−βν)

∥∥∥Π−1/2
∥∥∥ ∥∥∥Π1/2g

∥∥∥
(A· 6)

From (A· 5) and (A· 6), we have∥∥∥∇J − e−βν∇βJ
∥∥∥ ≤ (1 − e−βν)BCν +

∥∥∥∇π′∥∥∥ cτ∗

× (1 − e−βν)
∥∥∥Π−1/2

∥∥∥ ∥∥∥Π1/2g
∥∥∥

�

Appendix C: Proof of Theorem 4

Lemma 4: Assume that Assumptions 1, 2, 3, 4, and 5 hold,
then

∥∥∥Δk − Δ∥∥∥ ≤ BC
e−βk

1 − e−β

Proof : We have

∥∥∥Δk − Δ∥∥∥ = 1
n2

×

∥∥∥∥∥∥∥∥∥∥∥
n1+n2−1∑

t=n1

∇t

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k−1∑
s=0

e−βsg(xt+1+s, ut+1+s)

−
n1+n2+n3−1−t∑

s=0
e−βsg(xt+1+s, ut+1+s)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

∥∥∥∥∥∥∥∥∥∥∥
≤ 1

n2

n1+n2−1∑
t=n1

‖∇t‖

×

∣∣∣∣∣∣∣∣∣∣∣

k−1∑
s=0

e−βsg(xt+1+s, ut+1+s)

−
n1+n2+n3−1−t∑

s=0
e−βsg(xt+1+s, ut+1+s)

∣∣∣∣∣∣∣∣∣∣∣
≤ 1

n2

n1+n2−1∑
t=n1

‖∇t‖
n1+n2+n3−1−t∑

s=k

e−βs

× |g(xt+1+s, ut+1+s)|

≤ 1
n2

BC

⎧⎪⎪⎨⎪⎪⎩
n2e−βk

1 − e−β
−

n1+n2−1∑
t=n1

e−β(n1+n2+n3)e−βt

(1 − e−β)

⎫⎪⎪⎬⎪⎪⎭
= BC

e−βk

1 − e−β
− BC

n2

n1+n2−1∑
t=n1

e−β(n1+n2+n3)e−βt

(1 − e−β)

≤ BC
e−βk

1 − e−β

The equality is when n2 = ∞. �

Lemma 5:

∥∥∥EπΔ
k
t − ∇βJ

∥∥∥ ≤ BC
e−βk

1 − e−β

Proof : From the proof of Theorem 2 in [1] and [2], we have

∇βJ(θ) = lim
T→∞

1
T

T−1∑
t=0

∇t

[
g(xt, ut)τ̄(xt, ut)

+

∞∑
s=0

e−βsg(xs+t+1, us+t+1)
]

On the other hand,

EπΔ
k
t = lim

T→∞
1
T

T−1∑
t=0

∇t

[
g(xt, ut)τ̄(xt, ut)

+

k−1∑
s=0

e−βsg(xs+t+1, us+t+1)
]
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Thus,∥∥∥EπΔ
k
t − ∇βJ(θ)

∥∥∥
= lim

T→∞
1
T

T−1∑
t=0

∇t

∞∑
s=k

e−βsg(xs+t+1, us+t+1)

≤ lim
T→∞

BC
T

T−1∑
t=0

∞∑
s=k

e−βs

= BC
e−βk

1 − e−β
�

To prove Theorem 4, we use the following theorem
from [9] (see Theorem 15): if {Xt} is τ∗ − mixing and
f : X → [a, b]K , and s ≤ n2, then

Pr

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∥∥∥∥∥∥∥

1
n2

n1+n2−1∑
i=n1

f (Xi) − Eπ( f )

∥∥∥∥∥∥∥∞
≥ ε

∣∣∣∣∣∣∣∣ X0
−∞

⎞⎟⎟⎟⎟⎟⎟⎟⎠
≤ K

2

(
se−�n1/τ

∗� + n2e−�s/τ
∗� + 4s exp

( −ε2n2

4(b − a)2s

))

(where K is the parameter dimension and �a/b� is integer
division)

Theorem 4 is now easy to be proved by using results of
Lemmas 4, 5 and the above theorem. We apply the above
Theorem to the function Δk

t of the vector S k
t to obtain

Pr

⎛⎜⎜⎜⎜⎜⎜⎝
∥∥∥∥∥∥∥

1
n2

n1+n2−1∑
i=n1

f (Xi) − Eπ( f )

∥∥∥∥∥∥∥∞
+

2BC
1 − e−β

e−βk

≥ ε + 2BC
1 − e−β

e−βk
∣∣∣∣∣X0
−∞

⎞⎟⎟⎟⎟⎟⎟⎠
= Pr

( ∥∥∥Δk − EπΔ
k
t

∥∥∥∞ + 2BC
1 − e−β

e−βk

≥ ε + 2BC
1 − e−β

e−βk
∣∣∣∣∣X0
−∞

)

where,

Δk =
1
n2

n1+n2−1∑
t=n1

Δk
t

On the other hand,
∥∥∥Δk − EπΔ

k
t

∥∥∥∞ + 2BC
1 − e−β

e−βk

≥ ∥∥∥Δk − EπΔ
k
t

∥∥∥∞ +
∥∥∥Δ − Δk

∥∥∥∞
+

∥∥∥EπΔ
k
t − ∇βJ

∥∥∥∞
≥ ∥∥∥Δ − ∇βJ∥∥∥∞

(Following to Lemmas 4, 5). Thus,

Pr

⎛⎜⎜⎜⎜⎜⎝
∥∥∥Δk − EπΔk

t

∥∥∥∞ + 2BC
1−e−β e

−βk

≥ ε + 2BC
1−e−β e

−βk

∣∣∣∣∣∣∣ X0
−∞

⎞⎟⎟⎟⎟⎟⎠
≥ Pr

(∥∥∥Δ − ∇βJ∥∥∥∞ ≥ ε + 2BC
1 − e−β

e−βk
∣∣∣∣∣ X0
−∞

)

According to (14) (or actually Theorem 15 in [9]), if we set
{

a = 0
b = BC

(
ν + 1

1−e−β
)

Then finally, we obtain

Pr

(∥∥∥Δ − ∇βJ∥∥∥∞ ≥ ε + 2BC
1 − e−β

e−βk
∣∣∣∣∣ X0
−∞

)

≤ K
2

⎧⎪⎪⎨⎪⎪⎩
se−�n1/τ

∗� + n2e−�s/τ∗�

+4s exp
( −ε2n2(1−e−β)2

4B2C2(v−ve−β+1)2 s

)
⎫⎪⎪⎬⎪⎪⎭

≤ K
2

{
se−�n1/τ

∗� + n2e−�s/τ
∗� + 4se

−ε2n2(1−e−β )2

4B2C2 s

}
�
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