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PAPER

A C-Testable 4-2 Adder Tree for an Easily Testable High-Speed
Multiplier∗

Nobutaka KITO†a), Member, Kensuke HANAI††, Nonmember, and Naofumi TAKAGI†, Member

SUMMARY A C-testable 4-2 adder tree for an easily testable high-
speed multiplier is proposed, and a recursive method for test generation
is shown. By using the specific patterns that we call ‘alternately inverted
patterns,’ the adder tree, as well as partial product generators, can be tested
with 14 patterns regardless of its operand size under the cell fault model.
The test patterns are easily fed through the partial product generators. The
hardware overhead of the 4-2 adder tree with partial product generators
for a 64-bit multiplier is about 15%. By using a previously proposed easily
testable adder as the final adder, we can obtain an easily testable high-speed
multiplier.
key words: multiplier, design for testability, 4-2 adder tree, C-testability

1. Introduction

The growth in the number of logic gates integrated in a VLSI
chip has made testing chips more difficult. In order to reduce
the cost of a test of a VLSI chip, it is crucial to make its com-
ponent circuits, such as arithmetic circuits, easily testable.
In this paper, we focus on development of an easily testable
parallel multiplier.

A parallel multiplier is one of the key component cir-
cuits in VLSI systems. Widely used parallel multipliers are
categorized into two types. One is an array multiplier, and
the other is a tree-type multiplier such as a Wallace multi-
plier. Although an array multiplier is area-efficient, it does
not operate so fast, and its computation time is proportional
to its operand size. On the other hand, a tree-type multiplier
operates fast, and its computation time is proportional to the
logarithm of its operand size.

In this paper, we propose a C-testable 4-2 adder tree (or
4-2 compressor tree) for an easily testable tree-type multi-
plier and show a generation method of test patterns of the
tree through the partial product generators (PPGs) of a mul-
tiplier. An arithmetic circuit is said to be C-testable, if it can
be tested with a constant number of input patterns indepen-
dent of its operand size. We adopt the cell fault model [1]
and treat basic circuit blocks, such as full adders, as cells.

Although C-testable array multipliers were pro-
posed [2]–[5], no C-testable tree-type multiplier has been
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proposed so far. In [6] and [7], easily testable multipli-
ers with a 4-2 adder tree were proposed. These multipli-
ers require the number of patterns growing with its operand
size. In [8], design methods of C-testable counters were
proposed. Although the methods can construct a C-testable
Wallace tree, the structure of the obtained tree is complex,
and it seems impossible to feed test patterns of the tree
through the PPGs of a multiplier. In [9], we proposed a gen-
eralized design method for C-testable multipliers which can
generate tree-type multipliers. However, no detailed design
for specific archtectures were provided.

We use a 4-2 adder tree with special structure which
has specific connections between 4-2 adders, and show a
method of recursive test generation for it using special pat-
terns which we call ‘alternately inverted patterns.’ By this
method, we always obtain 14 input test patterns for every 4-
2 adder tree of this type, regardless of the size of the tree. We
show a design of the PPGs which can produce alternately in-
verted patterns for a test of the 4-2 adder tree.

This paper is organized as follows. In the next sec-
tion, we briefly review a multiplier with a 4-2 adder tree [10]
and describe the cell fault model. In Sect. 3, we propose
a C-testable 4-2 adder tree and a recursive test generation
method for it. In Sect. 4, we show a design of a C-testable
4-2 adder tree with PPGs for an easily testable multiplier.
In Sect. 5, we discuss the hardware overhead and the delay
overhead.

2. Preliminaries

2.1 Multiplier with a 4-2 Adder Tree

We consider an N-bit unsigned multiplier. For simplicity,
we assume N is a power of 2 and at least 4. We let the
multiplicand and the multiplier be X = [xN−1xN−2 · · · x0] and
Y = [yN−1yN−2 · · · y0], respectively.

In general, a parallel multiplier consists of three parts:
partial product generators (PPGs), a partial product com-
pressor, and a final adder. The PPGs generate partial prod-
ucts Pj = X ·y j ·2 j for j = 0, 1, · · · ,N−1. The partial product
compressor adds up the partial products by carry-save addi-
tions. In a multiplier with a 4-2 adder tree, a 4-2 adder (or
4-2 compressor) tree is used as the compressor [10]. The fi-
nal adder is a carry propagate adder, which adds up the two
binary numbers (sum and carry) produced by the compres-
sor and generates the product.

The 4-2 adder tree consists of 4-2 adders as shown in
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Fig. 1 A 4-2 adder tree for 32-bit multiplier.

Fig. 1. (The figure shows a 4-2 adder tree for a 32-bit mul-
tiplier.) We label each 4-2 adder as adder(l,m), where l de-
notes the level in the tree to which the adder belongs and m
is the number of the adder in the level. We let the level of
an adder at a leaf of the tree be 1 and let that of the adder at
the root as L = log2 N − 1. We number the adders in level
1 so that adder(1,m) sums up partial products P4m, P4m+1,
P4m+2 and P4m+3, and number the adders in level l (≥ 2) so
that adder(l,m) sums up the output of adder(l − 1, 2m) and
that of adder(l − 1, 2m + 1).

A 4-2 adder sums up 4 binary numbers to two binary
numbers. We construct a 4-2 adder by connecting 4-2 adder
blocks, each of which consists of two full adders (FAs), as
shown in Fig. 2. We name the input terminals of a 4-2 adder
block as a, b, c, d and w, and the output terminals as e, f and
u. Terminal u of an adder block is connected with terminal
w of the adder block at the next higher position. We name
the internal line in a block as v.

Figure 3 shows 4-2 adders in a 4-2 adder tree of a mul-
tiplier. Figures 3 (a), (b), and (c) show an 4-2 adder in level
1, one in level 2, and one in level l (≥ 3), respectively. In
the figure, position k means the bit position with weight 2k.
Hereafter, we call the adder block at position k as ‘adder
block k’.

Note that there are some positions in the both end parts
of each 4-2 adder which have less than 4 input bits. FAs
and half adders (HAs) are used as adder blocks for these
positions instead of 4-2 adder blocks.

Fig. 2 A 4-2 adder.

2.2 The Cell Fault Model

We adopt the ‘cell fault model’ [1] as the fault model. In the
model, it is assumed that the considered circuit consists of
cells. We treat basic circuit blocks, such as full adders, as
cells.

In the model, the followings hold.

• At most one cell can be faulty in the circuit.
• The faulty cell is memoryless. Namely, the faulty cell

works as a combinational circuit, and its output is de-
termined by only its present input.
• There is at least one input pattern of the faulty cell that

makes the output of the cell incorrect.

A test set with respect to this model must satisfy the
following two conditions. Note that the test set is indepen-
dent of gate-level implementations of cells.
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(a) a 4-2 adder in level 1: adder(1,m)

(b) a 4-2 adder in level 2: adder(2,m)

(c) a 4-2 adder in level l: adder(l,m) (l ≥ 3)

Fig. 3 4-2 adders in a 4-2 adder tree.

• All cells in the circuit must receive exhaustive input
patterns when all test patterns in the test set are applied
to the circuit.
• The effect of a faulty cell must propagate to at least one

of the primary outputs of the circuit.

3. Test of a 4-2 Adder Tree by Alternately Inverted Pat-
terns

As stated in Sect. 2.1, the inputs of adder(l,m) (l ≥ 2) are
from adder(l − 1, 2m) and adder(l − 1, 2m + 1). Here, we
specify the connections between the 4-2 adders, in order to
make the 4-2 adder tree easily testable. In this section, we
focus on the middle part, i.e., the positions from 2l+1m+2l+

2l−1 to 2l+1m+2l +N −2, which have 4 input bits. We will
consider the end parts in the next section.

We connect input terminals a, b, c, and d of the adder
block k of adder(l,m) with output terminal f of adder block
k of adder(l − 1, 2m), e of block k − 1 of adder(l − 1, 2m),
f of block k of adder(l − 1, 2m + 1), and e of block k − 1 of
adder(l − 1, 2m + 1), respectively, as shown in Fig. 4.

We define an alternately inverted pattern, an ai-pattern
in short, (α, β, γ, δ)ai (α, β, γ, δ ∈ {0, 1}) for an input of a 4-2
adder as follows:
Input bits to a, b, c, and d of adder block k are α, β, γ, and

Fig. 4 Connection between 4-2 adders (Input terminals a, b, c, and d of
the adder block k of adder(l,m) are connected with output terminal f of
adder block k of adder(l− 1, 2m), e of block k − 1 of adder(l− 1, 2m), f of
block k of adder(l− 1, 2m+ 1), and e of block k− 1 of adder(l− 1, 2m+ 1),
respectively).

δ, respectively for even k’s, and ᾱ, β̄, γ̄, and δ̄, respectively
for odd k’s, where ᾱ is the logical inverse (complement) of
α.

There are 16 ai-patterns. We name them as ai0 to ai15,
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Table 1 Signal values of adder blocks fed with ai-patterns.

even-numbered adder block odd-numbered adder block
pattern a, b, c, d w v e f u a, b, c, d w v e f u

ai0 0,0,0,0 1 0 0 1 0 1,1,1,1 0 1 1 0 1
ai15 1,1,1,1 0 1 1 0 1 0,0,0,0 1 0 0 1 0
ai1 0,0,0,1 1 0 1 0 0 1,1,1,0 0 1 0 1 1
ai14 1,1,1,0 0 1 0 1 1 0,0,0,1 1 0 1 0 0
ai3 0,0,1,1 1 1 1 1 0 1,1,0,0 0 0 0 0 1
ai12 1,1,0,0 0 0 0 0 1 0,0,1,1 1 1 1 1 0
ai5 0,1,0,1 1 1 1 1 0 1,0,1,0 0 0 0 0 1
ai10 1,0,1,0 0 0 0 0 1 0,1,0,1 1 1 1 1 0
ai7 0,1,1,1 0 0 0 1 1 1,0,0,0 1 1 1 0 0
ai8 1,0,0,0 1 1 1 0 0 0,1,1,1 0 0 0 1 1

Table 2 Relation between input patterns of adjacent 4-2 adders in a 4-2
adder tree.

adder(l − 1, 2m) adder(l − 1, 2m + 1) adder(l,m)
ai1 ai8 ai0
ai14 ai7 ai15
ai8 ai12 ai1
ai7 ai3 ai14

ai15 ai0 ai3
ai0 ai15 ai12

ai10 ai10 ai5
ai5 ai5 ai10

ai3 ai1 ai8
ai12 ai14 ai7

by regarding (αβγδ) as a binary number. For example, ai5 =
(0, 1, 0, 1)ai. We use 10 ai-patterns, ai0, ai15, ai1, ai14, ai3,
ai12, ai5, ai10, ai7, and ai8, for a test of the 4-2 adder tree.

Table 1 shows the signal values of adder blocks fed
with ai-patterns. We can see that by these 10 ai-patterns,
the two FAs in a 4-2 adder block, i.e., the one with inputs a,
b and c, and the one with inputs v, d, and w, are both fed with
all the 8 patterns. We can also see that the output patterns
of the 4-2 adder are alternately inverted. This is because the
sum and the carry of an FA are both self-dual functions.

Using the fact that the output pattern of a 4-2 adder is
alternately inverted when it is fed with an ai-pattern, we can
test a 4-2 adder tree efficiently. We can feed an ai-pattern to
adder(l,m), by feeding appropriate ai-patterns to adder(l −
1, 2m) and adder(l − 1, 2m + 1). For example, we can feed
ai0 to adder(l,m), by feeding ai1 and ai8 to adder(l− 1, 2m)
and adder(l − 1, 2m + 1), respectively.

Table 2 shows the relation between input patterns of
adjacent 4-2 adders in a 4-2 adder tree. The relation holds
at any level in the tree. As we can see in the table, the three
input pattern sets of adjacent 4-2 adders are identical. There-
fore, we can test a 4-2 adder tree by only 10 patterns, regard-
less of the size of the tree.

We can obtain a test pattern set of a 4-2 adder tree
by using the relation shown in Table 2 recursively. Each
of the 10 test patterns exclusively corresponds to one of
the 10 ai-patterns fed to the adder at the root of the tree.
Let us consider a 4-level 4-2 adder tree. We can feed ai0
to adder(4, 0) by feeding ai1 and ai8 to adder(3, 0) and
adder(3, 1), respectively. We can feed ai1 to adder(3, 0)
and ai8 to adder(3, 1) by feeding ai8, ai12, ai3, and ai1 to
adder(2, 0), adder(2, 1), adder(2, 2), and adder(2, 3), re-

spectively. Finally, we obtain the test pattern (ai3, ai1, ai0,
ai15, ai15, ai0, ai8, ai12) fed to adder(1, 0) . . . adder(1, 7).
We can obtain the other 9 test patterns in the same way.

Note that we have considered only the middle part of
the 4-2 adders in this section. We will consider the both end
parts in the next section.

4. C-Testable 4-2 Adder Tree with PPGs

4.1 C-Testable 4-2 Adder Tree

As stated in Sect. 2.1, in a 4-2 adder tree, there are some
positions in the both end parts of each 4-2 adder which have
less than 4 input bits. As shown in Fig. 3, these parts consist
of FAs and HAs instead of 4-2 adder blocks. In order to
adopt the recursive method of test generation described in
the previous section, we modify the 4-2 adders so that their
end parts also consist of 4-2 adder blocks.

Figure 5 shows a modified 4-2 adder in level 1. The
modified parts are drawn by bold lines. An ‘S’ cell and a ‘C’
cell are reductions of an FA, which compute only the sum
and the carry, respectively. The lowest part of adder(1, 0)
is a bit simpler, and the part surrounded by the broken lines
in Fig. 5 (a) is replaced by the one shown in (b). This is
because the outputs of this part are directly connected to the
final adder.

We need several extra input bits at the input terminals
at the end parts shown by ◦ in the figure. We discuss this
matter later.

Figure 6 shows a modified 4-2 adder in level 2. The
lowest part of adder(2, 0) is simpler and shown in (b). Fig-
ure 7 shows a modified 4-2 adder in level l (l ≥ 3). The
lowest part of adder(l, 0) is simpler and shown in (b). In
adder(L, 0), i.e., the adder at the root, since its outputs are
directly connected to the final adder, we need not modify its
upper part. This part is shown in (c).

We connect the input terminals of adder(l,m) (l ≥ 2)
with the output terminals of adder(l − 1, 2m) and adder(l −
1, 2m + 1) in the way stated in the previous section. Then,
there are several input terminals at the end parts shown by
◦ in Figs. 6 and 7 which are not connected with any output
terminal. (In adder(3,m), terminal c at the most significant
position, i.e., position 16m+N+15 and terminal a at position
16m + N + 7 shown by • in Fig. 7 are also not connected
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Fig. 5 Modified 4-2 adder in level 1: (a) adder(1,m), (b) Lowest part of adder(1, 0).

Fig. 6 Modified 4-2 adder in level 2: (a) adder(2,m), (b) Lowest part of adder(2, 0).

Fig. 7 Modified 4-2 adder in level l (l ≥ 3): (a) adder(l,m), (b) Lowest part of adder(l, 0) (c) Upper
part of adder(L, 0).

with any output terminal.) We need extra input bits to these
terminals, as in the case of the adders in level 1.

Each extra bit must be 0 in normal operation and must
have an appropriate value in test mode. Since each 4-2 adder
is fed with an ai-pattern in test, we can use a copy (or its in-
verse) of an input bit to the corresponding terminal at a mid-
dle position as an extra bit. In adder(l,m), we use the input

bits at position 2l+1m + N − 1 for the extra bits to terminals
a and b, and use the input bits at position 2l+1m+ N + 2l − 1
for those to terminals c and d. Note that these input bits are
from the highest position of the middle part of the preceding
adders. Since 2l+1m+ N − 1 and 2l+1m+ N + 2l − 1 are odd,
we use copies of the input bits for odd numbered positions
and their inverses for even numbered positions. Positions of
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Fig. 8 An EX cell.

bits to be copied are shown by � in Figs. 5, 6, and 7.
In order to produce a copy and its inverse of an input bit

in test mode, we introduce an ‘EX’ cell which is shown in
Fig. 8. An EX cell takes AND of the input bit and signal t, as
well as AND of the inverse of the input bit and t, where t is
an additional external input signal for test and is 0 in normal
operation. In normal operation, since t = 0 and therefore the
extra bits are 0, the adder tree consisting of the modified 4-2
adders works as same as the one consisting of the original
4-2 adders shown in Fig. 3.

4.2 Generation of Alternately Inverted Patterns by PPGs

Now we consider the partial product generators (PPGs) and
the connection between PPGs and the 4-2 adder tree.

Each PPG generates a partial product Pj = X · y j · 2 j in
normal operation. We label each PPG as PPG( j) according
to the corresponding multiplier bit y j. Each PPG consists
of N ‘PG’ cells which takes AND of a multiplicand bit and
a multiplier bit. The PG cell at position k of PPG( j) takes
AND of xk− j and y j.

We connect the output terminals of the PG cells at po-
sition k of PPG(4m), PPG(4m + 1), PPG(4m + 2), and
PPG(4m + 3) (0 ≤ m ≤ N

4 − 1) to input terminals a, b,
c, and d of adder block k of adder(1,m), respectively.

In order to produce ai-patterns in test mode, we sep-
arate the PG cells of PPG( j) into two groups, i.e., the PG
cells receiving xi of even i and those receiving xi of odd i.
In test mode, we feed the former with y j, while the latter
with the inverse of y j. To produce the inverse of y j in test
mode, we introduce a ‘CI’ (controlled inverter) cell which
takes EXOR of y j and the mode signal t. Figure 9 shows the
modified PPG.

When we intend to generate ai-pattern (α, β, γ, δ)ai (α,
β, γ, δ ∈ {0, 1}) for adder(1,m), we let X be [11 · · · 1] (all
1) and let y4m, y4m+1, y4m+2, and y4m+3 be α, β̄, γ, and δ̄,
respectively.

Let us consider the 4-level 4-2 adder tree with
PPGs of a 32-bit multiplier as an example. The
test pattern that feeds ai0 to adder(4, 0) is X =

[1111 1111 1111 1111 1111 1111 1111 1111], Y =

[1001 1011 1010 0101 0101 1010 0010 0110] and t = 1.

4.3 Test Set and Fault Propagation of a 4-2 Adder Tree
with PPGs

We adopt the cell fault model and treat FAs, C cells, S cells,
PG cells, CI cells and EX cells as cells.

Fig. 9 Modified PPG.

Table 3 Test set of the 4-2 adder tree with PPGs of a 32-bit multiplier.

X Y (= [y31 . . . y0]) t
all 1 1001 1011 1010 0101 0101 1010 0010 0110 1
all 1 0110 0100 0101 1010 1010 0101 1101 1001 1
all 1 0100 1101 1011 0010 1001 1011 1010 0101 1
all 1 1011 0010 0100 1101 0110 0100 0101 1010 1
all 1 0010 0110 1001 1011 1101 1001 0110 0100 1
all 1 1101 1001 0110 0100 0010 0110 1001 1011 1
all 1 1111 1111 1111 1111 1111 1111 1111 1111 1
all 1 0000 0000 0000 0000 0000 0000 0000 0000 1
all 1 1010 0101 1101 1001 0100 1101 1011 0010 1
all 1 0101 1010 0010 0110 1011 0010 0100 1101 1
all 0 0000 0000 0000 0000 0000 0000 0000 0000 0
all 0 1111 1111 1111 1111 1111 1111 1111 1111 0
all 1 0000 0000 0000 0000 0000 0000 0000 0000 0
all 1 1111 1111 1111 1111 1111 1111 1111 1111 0

FAs, C cells and S cells are fed with their all input pat-
terns by the 10 test patterns considered above. We need four
more test patterns for feeding PG cells, CI cells and EX cells
with their all input patterns. They are (X = [00 · · · 0] (all 0),
Y = [00 · · · 0] (all 0) and t = 0), (X = [00 · · · 0] (all 0),
Y = [11 · · · 1] (all 1) and t = 0), (X = [11 · · · 1] (all 1),
Y = [00 · · · 0] (all 0) and t = 0), and (X = [11 · · · 1] (all 1),
Y = [11 · · · 1] (all 1) and t = 0). Table 3 shows the test set
(14 patterns) for the 4-2 adder tree with PPGs of a 32-bit
multiplier.

Now, we show that all faults are observed at the output
of the multiplier.

The effect of a fault in a CI cell propagates to N
2 posi-

tions of the corresponding PPG and produces an erroneous
value in the partial product except the cases of X = [00 · · · 0]
(all 0). It is obvious that the error in the value propagates to
the final adder and can be observed at the output of the mul-
tiplier. Note that all CI cells are fed with all input patterns
by only the test patterns with X = [11 · · · 1] (all 1).

A fault in a cell of the other types (PG, FA, C, S and
EX) causes an erroneous value in the corresponding partial
product or the output of the corresponding 4-2 adder. The
error is to propagate toward the final adder. Because of the
tree structure of the 4-2 adder tree, it propagates through
only one 4-2 adder in each level. Let us consider that the
error has propagated to adder(l,m).

When t = 0 or the effect of the fault has not reached
the EX cells, the error propagates to the succeeding adder in
level l + 1. Here, the effect of the fault is seen as opposite
values on signal lines than the case without the fault, while
the error is the difference in the value of the output of the
4-2 adder. When a value is represented in carry-save form,
there is a possibility that the opposite values in signal lines
do not change the value. Thus, we distinguish the effect of
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the fault from the error.
When the effect of the fault has reached the EX cells for

c and d inputs, it propagates to the lowest part of the adder.
The considerd EX cells are at position 2l+1m + N + 2l − 1.
The arrived error is larger than 2(2l+1m+N+2l−2l), because the
effect forwards at most two positions in each adder. On
the other hand, the value produced by the EX cells is less
than 2(2l+1m+2l+1). Therefore, the error cannot be canceled
and propagates to the succeeding adder. Furthermore, the
effect having propagated to the lowest part cannot reach any
EX cell of the succeeding adders, because the delivered po-
sitions are much lower than positions of EX cells of the suc-
ceeding adders.

When the effect has reached the EX cells for a and b
inputs, it propagates to the highest and the lowest part of the
adder. Therefore, the error cannot be canceled and propa-
gates to the succeeding adder. The effect having propagated
to the lowest part cannot reach any EX cell of the succeeding
adders. The effect having propagated to the highest part also
cannot affect any EX cell of the succeeding adders, because
the delivered positions are higher than positions of EX cells
of the succeeding adders.

Thus, the error cannot be canceled at any level. The
error propagates to the final adder and can be observed at
the output of the multiplier.

Therefore, the proposed 4-2 adder tree with PPGs is
testable with 14 patterns regardless of its operand size under
the cell fault model. Note that the easily testable 4-2 adder
tree proposed in [6] requires 4 log2 N + 3 patterns, and that
proposed in [7] requires 4 log2 N + 6 patterns.

4.4 Easily Testable Multiplier

Here, we consider an easily testable multiplier using the
proposed C-testable 4-2 adder tree with PPGs. Although
we could construct a C-testable multiplier by using a ripple
carry adder as the final adder as in [7], we do not think this
is a good way because it increases the time complexity of
the whole multiplier to O(N) and spoils the merit of using
the 4-2 adder tree. As mentioned in [6], we should use a fast
adder with time complexity of O(log N) as the final adder.

We may construct an easily testable high-speed mul-
tiplier by using a previously proposed easily testable high-
speed adder [11]–[16] as the final adder. Unfortunately, we
do not have an excellent way to feed test patterns to the final
adder through the 4-2 adder tree. Therefore, we insert ex-
tra isolation hardware (multiplexor) at the inputs of the final
adder, so that we can feed test patterns directly. Of course,
this solution will not only increase the hardware overhead
but also will increase the delay of the multiplier. Devel-
opment of an excellent way to feed test patterns to the final
adder through the 4-2 adder tree with PPGs, as well as devel-
opment of a more efficient easily testable high-speed adder,
is left as a future work.

5. Hardware Overhead and Delay Overhead

We estimate hardware overhead of the 4-2 adder tree with
PPGs by an equivalent number of 2-input NAND gates. For
example, in CMOS technology without transmission gates,
a 2-input EXOR gate and a 2-input NAND gate can be real-
ized by 10 transistors and 4 transistors, respectively. There-
fore, we consider an CI cell is 2.5 gate equivalents. We use
gate equivalents of cells in Table 4 for overhead estimation.

We show the estimation of hardware overhead in Ta-
ble 5. In the table, “Original 4-2 adder tree with PPGs”
denotes the gate equivalents of an original 4-2 adder tree
with PPGs. “Proposed 4-2 adder tree with PPGs” denotes
the gate equivalents of the 4-2 adder tree with PPGs shown
in this paper. As the operand size N increases, the ratio of
hardware overhead decreases. Hardware overhead of the 4-2
adder tree with PPGs for a 64-bit multiplier is about 15%.

We also estimate delay overhead of the proposed 4-2
adder tree with PPGs. Compared to an original PPGs (that
generate partial products only by PG cells), the delay of the
PPGs is increased by the delay of one CI cell (EXOR gate).
In normal operation, the worst delay time of the tree is al-
most the same as that of an original one, because their logic
levels are the same. Therefore, delay overhead of the 4-2
adder tree with PPGs is about one EXOR gate delay.

To aquire actual overhead by the proposed modifica-
tion, we synthesized design of the proposed 4-2 adder tree
with PPGs and design of the original one. We used Syn-
opsis design compiler to synthesize designs and adopted
the Rohm 0.18 μm CMOS process cell library provided by
Kyoto University. Table 6 shows synthesis results. When
synthesising designs, we used timing constraint options so
that both designs have the same delay time for each operand
size N. Even under the timing constraints, ratio of hardware
overhead is relatively close to that of hardware overhead in
Table 5 except operand size N = 16. Note that when strong
timing constraints are used, because of one CI cell delay in

Table 4 Gate equivalent of each cell for overhead estimation.

Cell Gate equivalents
FA 8.5
HA 4.0
C 3.5
S 5.0

PG 1.5
CI 2.5
EX 3.0

Table 5 Hardware overhead estimation of the 4-2 adder tree with PPGs.
C-testable Original

4-2 Adder Tree 4-2 Adder Tree
N with PPGs with PPGs Overhead

(#of gates) (#of gates)
16 2996.0 2346.0 27.7%
32 12254.0 10103.0 21.3%
64 47315.0 41336.0 14.5%
128 181184.0 165985.0 9.2%
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Table 6 Synthesis results of the 4-2 adder tree with PPGs.

C-testable 4-2 Adder Tree Original 4-2 Adder Tree
N with PPGs with PPGs Hardware Overhead

(Area [μm2] / Delay [ns]) (Area [μm2] / Delay [ns])
16 36014 / 2.00 24676 / 2.00 45.9%
32 116031 / 3.00 97545 / 3.00 19.0%
64 437524 / 4.00 393668 / 4.00 11.1%

128 1692769 / 5.00 1589592 / 5.00 6.5%

the proposed PPGs, hardware overhead becomes larger than
that in Table 5 to achieve the same delay time to the original
design.

The hardware overhead is much smaller than that of the
easily testable 4-2 adder tree proposed in [6] where all 4-2
adders in the tree are of 2N-bit in length. By the mechanism
of producing the extra bits required at the end parts of each
4-2 adder, we can reduce the hardware overhead drastically.
(The hardware overhead of the easily testable 4-2 adder tree
proposed in [7] is not clear, because the method to treat the
positions in the both end parts of each 4-2 adder that have
less than 4 input bits is not shown.)

As stated in the end of the previous section, insertion of
extra isolation hardware at the inputs of the final adder will
further increase the hardware overhead and delay overhead.

6. Conclusion

We have shown a C-testable 4-2 adder tree with PPGs for a
high-speed multiplier. The proposed 4-2 adder tree has re-
cursive structure, and an efficient test set for it is obtained by
recursive generation process using special patterns. By us-
ing a previously proposed easily testable adder as the final
adder, we can construct an easily testable high-speed multi-
plier. Development of an excellent way to feed test patterns
to the final adder through the 4-2 adder tree with PPGs, as
well as development of a more efficient easily testable high-
speed adder, is left as a future work.

Although we assumed that operand size N is a power
of 2, the proposed method can be applied to any N. Note
that when N is odd, we need a dummy partial product.
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