
2792
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

PAPER

GTRACE: Mining Frequent Subsequences from Graph Sequences∗∗

Akihiro INOKUCHI†∗a) and Takashi WASHIO†, Members

SUMMARY In recent years, the mining of a complete set of frequent
subgraphs from labeled graph data has been studied extensively. However,
to the best of our knowledge, no method has been proposed for finding fre-
quent subsequences of graphs from a set of graph sequences. In this paper,
we define a novel class of graph subsequences by introducing axiomatic
rules for graph transformations, their admissibility constraints, and a union
graph. Then we propose an efficient approach named “GTRACE” for enu-
merating frequent transformation subsequences (FTSs) of graphs from a
given set of graph sequences. The fundamental performance of the pro-
posed method is evaluated using artificial datasets, and its practicality is
confirmed by experiments using real-world datasets.
key words: frequent pattern mining, graph sequence, union graph

1. Introduction

Data mining research in recent years has resulted in the
development of many approaches for finding characteris-
tic patterns in a variety of structured data. Sequential Pat-
tern Mining, such as AprioriSome [1] and PrefixSpan [17],
is used to efficiently find a complete set of subsequences that
appear more frequently than a minimum support threshold
in a given set of itemset sequences. These approaches are
limited to mining total order relations among itemsets rep-
resenting the co-occurrence of events. In contrast, WINEPI
and MINEPI [14], more advanced approaches to Sequential
Pattern Mining, find frequent episodes representing partial
order relations among event occurrences. However, the rela-
tions are still limited to orders and do not cover any semantic
and/or topological issues.

Graph Mining, which efficiently mines all subgraphs
appearing more frequently than a given threshold from a
set of graphs, focuses on the topological relations among
events [21]. AGM [7], gSpan [22], and Gaston [16] mine
frequent subgraphs levelwise starting from those of size 1,
by using the anti-monotonic property of the support values.

AGM [7] enumerates candidate patterns stepwise by
adding an extra vertex, whereas FSG [11], gSpan [22], and
Gaston [16] enumerate patterns by adding an edge. More-
over, AGM and FSG use a breadth-first search, while gSpan

Manuscript received February 23, 2010.
Manuscript revised June 16, 2010.
†The authors are with the Institute of Scientific and Industrial

Research, Osaka University, Ibaraki-shi, 567–0047 Japan.
∗Presently, with PRESTO, Japan Science and Technology

Agency.
∗∗The main idea of this paper was presented at the International

Conference on Data Mining in 2008.
a) E-mail: inokuchi@ar.sanken.osaka-u.ac.jp

DOI: 10.1587/transinf.E93.D.2792

and FFSM incorporate depth-first search algorithms. Gas-
ton is known to be the fastest algorithm. Its efficiency stems
from the use of the sparsity of graphs in most real-world ap-
plications. It first figures out frequent free trees embedded in
the graph data while avoiding redundant enumerations and
then extends these to frequent subgraphs by adding some
loops. Despite the main algorithms for Graph Mining being
quite efficient in practice, they do require much computation
time when mining complex frequent subgraphs due to the
NP-completeness of subgraph isomorphism matching [5].
Accordingly, these conventional methods are not well suited
to more complex graphs such as graph sequences [8].

Nevertheless, in many real-world applications, objects
are modeled using graph sequences. For example, a human
network can be represented as a graph in which humans and
the relationships between them correspond, respectively, to
the vertices and edges. If a person joins or leaves a com-
munity, the numbers of vertices and edges in the graph in-
crease or decrease accordingly. Similarly, a gene network
consisting of genes and their interactions produces a graph
sequence in their evolutionary history. The distribution of
vertex degrees in most of these real-world graphs is known
to have a long tail with most of the vertices having only a
few edges [2], and thus such graphs are sparse. We focus
on the topological changes in sequences of sparse graphs,
because in many cases their changes are caused by some
underlying mechanism restricted by the topology, such as
distances (dissimilarities) between vertices and information
traveling on the graphs (networks).

The primary objective of this paper is to establish a
novel framework for mining a complete set of frequent sub-
sequences embedded in a given set of observed sequences
of sparse graphs. We introduce a novel representation for
graph sequences where each change between two observed
successive graph states is interpolated by axiomatic trans-
formation rules that follow their associated admissibility
constraints. We further propose a new method for mining
subsequences called “frequent transformation subsequences
(FTSs)”, represented by transformation rules of the graph
sequence data. A secondary objective is to mine FTSs
corresponding to “relevant” graph subsequences based on
“union graphs”, which represent relevant vertices in graph
sequences. The relevant FTSs are important, since, in
many cases, we focus on the relations among relevant per-
sons, events, phenomena, and so on. Our proposed ap-
proach based on these principles is called “GTRACE (Graph
TRAnsformation sequenCE mining)”. The final objective is

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

INOKUCHI and WASHIO: GTRACE: MINING FREQUENT SUBSEQUENCES FROM GRAPH SEQUENCES
2793

to characterize experimentally the efficiency of GTRACE
using artificially generated data and to demonstrate its prac-
ticality by applying it to real-world datasets.

The rest of this paper is organized as follows. Section 2
introduces the interpolation of observed graph changes, the
transformation rules and their associated constraints, and
also provides an algorithm for compiling graph sequences
into transformation sequences. In Sect. 3 we propose the
principles of and an algorithm for mining FTSs from the
transformation sequences, while in Sect. 4 we further pro-
pose the mining of relevant FTSs. The fundamental per-
formance and practicality of GTRACE are demonstrated
through experiments in Sect. 5. Section 6 presents a dis-
cussion, and Sect. 7 concludes this paper.

2. Principles for Representing Graph Sequences

Figure 1 (a) shows an example of an observed graph se-
quence. A graph g(j) is the j-th labeled graph in the se-
quence. Here, we introduce two practical Assumptions.
The first is that “change is gradual”; that is, between two
successive graphs g(j) and g(j+1) only a small part of the
structure changes while the rest remains unchanged. The
other assumption is that “every graph g(j) is sparse”. In the
aforementioned examples of human networks and gene net-
works, these assumptions certainly hold, since most of the
changes to the vertices are progressive, and the vertices are
not very densely coupled to one another at any step. Al-
though this paper focuses on undirected graphs only, our
proposed principles are also applicable to directed graphs
without loss of generality.

A compact representation of graph sequences is needed
to reduce both the computational and spatial cost in mining
the frequent transformation subsequences (FTSs). The di-
rect representation of a graph sequence is not compact, since
many parts of a graph remain unchanged over multiple steps
and are therefore redundant in the representation.

One way of deriving a compact representation is by us-
ing a Graph Grammar [12], which is a collection of rules for
transforming one graph into another. In concrete terms, the
Graph Grammar rule S → P, where S and P are graphs,
transforms subgraphs that are isomorphic with S in a given
graph to P. For example, given the Graph Grammar rule
shown in Fig. 2 and the graph g(j) in a graph sequence, a
subgraph that is isomorphic with S in the graph g(j) is trans-
formed to P to produce another graph g(j+1). A few data
mining studies have incorporated a Graph Grammar. Re-
cently, Holder and Cook incorporated a Graph Grammar
into their modified SUBDUE, which iteratively replaces a
frequent subgraph S in a graph to a vertex v using the rule

Fig. 1 A graph sequence and a mined graph subsequence.

S → v based on the Minimum Description Length [10],
[13]. Because the head of the rule consists of a single ver-
tex, this technique is not applicable to general graph sub-
sequence mining. In concrete terms, given two successive
graphs g(j) and g(j+1) in a graph sequence, we cannot rep-
resent transformations between g(j) and g(j+1) using rules
of the form S → v, since we assume that the numbers of
vertices and edges in the graphs in the graph sequence can
increase as well as decrease. On the other hand, since the
general framework of a Graph Grammar is too generic to de-
rive a compact representation of graph sequences, we need
a large set of rules to represent transformations between any
two successive graphs in a graph sequence.

Accordingly, we propose the following novel graph
grammatical framework adapted to describe a graph se-
quence easily and compactly by introducing rules of inser-
tion, deletion, and relabeling of vertices and edges under the
assumption of gradual change.

2.1 Representation of Graph Sequences

A labeled graph g is represented as g = (V, E, L, f), where
V = {v1, v2, · · · , vz} is a set of vertices, E = {(v, v′) | (v, v′) ∈
V×V} is a set of edges, and L is a set of labels determined by
the function f : V ∪ E → L. V(g), E(g), and L(g) are sets of
vertices, edges and labels of g, respectively. An observed
graph sequence is represented as d = 〈g(1) g(2) · · · g(n)〉,
where the integer superscript of each g represents the or-
dered step in the observation. The j-th graph included in d
is represented as g(j) ∈ d. We assume that each vertex v is
mutually distinct from all other vertices in any g(j), and has
a vertex ID id(v) in d. We define a set of vertex IDs IDV (d)
and a set of pairs of vertex IDs IDE(d) as follows.

IDV (d) = {id(v)|v ∈ V(g(j)), g(j) ∈ d},
IDE(d) = {(id(v), id(v′))|(v, v′) ∈ E(g(j)), g(j) ∈ d}.

Example 1: In the human network mentioned in Sect. 1,
each person has a vertex ID, and his/her gender is an exam-
ple of a vertex label.

To represent a graph sequence compactly, we focus on the
differences between two successive graphs g(j) and g(j+1) in
the sequence.

Definition 1: Each observed graph g(j) in a graph sequence
d = 〈g(1)g(2) · · · g(n)〉 is called an “interstate”. The differ-
ences between interstates g(j) and g(j+1) in d are interpolated
by a virtual sequence 〈g(j,1)g(j,2) · · · g(j,mj)〉, where g(j,1) = g(j)

and g(j,mj) = g(j+1), and each graph g(j,k) in the sequence is

Fig. 2 A rule of Graph Grammar.

2794
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Table 1 Transformation rules (TRs) for representing graph sequence
data.

Vertex Insertion Insert a vertex with label l and vertex
vi(j,k)

[u,l] ID u into g(j,k) to transform to g(j,k+1).
Vertex Deletion Delete an isolated vertex with vertex
vd(j,k)

[u,•] ID u in g(j,k) to transform to g(j,k+1).
Vertex Relabeling Relabel the label of a vertex with vertex
vr(j,k)

[u,l] ID u in g(j,k) to be l to transform to
g(j,k+1).

Edge Insertion Insert an edge with label l between 2

ei(j,k)
[(u1 ,u2),l]

vertices with vertex IDs u1 and u2 into
g(j,k) to transform to g(j,k+1).

Edge Deletion Delete an edge between 2 vertices with
ed(j,k)

[(u1 ,u2),•] vertex IDs u1 and u2 in g(j,k) to

transform to g(j,k+1).
Edge Relabeling Relabel the label of an edge between 2

er(j,k)
[(u1 ,u2),l]

vertices with vertex IDs u1 and u2 in
g(j,k) to be l to transform to g(j,k+1).

called an “intrastate”. The observed graph sequence (“in-
terstate sequence”) d is represented by the interpolations as
d = 〈s(1)s(2) · · · s(n−1)〉. �

The order of interstates represents the order of graphs in
an observed sequence. On the other hand, the order of in-
trastates is the order of graphs in the artificial interpolation,
with various interpolations possible between graphs g(j) and
g(j+1). To ensure that the interpolations are compact and
unambiguous, we select the one with the shortest length in
terms of graph edit distance [18], thereby reducing both the
computational and spatial cost.

Definition 2: Let the transformation of a graph by either
insertion, deletion or relabeling of a vertex or an edge be a
unit, and let each unit have an edit distance of 1. An “in-
trastate sequence” s(j) = 〈g(j,1)g(j,2) · · · g(j,mj)〉 is defined as
an interpolation where the edit distance between any two
successive intrastates is 1 and the edit distance between any
two intrastates is the minimum. �

Transformations are represented in this paper by the
following “transformation rule (TR)”.

Definition 3: A transformation rule (TR) transforming
g(j,k) to g(j,k+1) is expressed as tr(j,k)

[o jk ,l jk], where

• tr is a transformation type, which is either insertion,
deletion, or relabeling of a vertex or an edge,
• o jk is the element in IDV (d)∪IDE(d) to which the trans-

formation is applied, and
• l jk ∈ L is a label to be assigned to the vertex or edge in

the transformation. �

For the sake of simplicity, we simplify the transforma-
tion rule tr(j,k)

[o jk ,l jk] to tr(j,k)
[o,l] by omitting the subscripts of o jk

and l jk, except in cases where the original notation is essen-
tial. We introduce six TRs in Table 1. For example, the
transformation vi(j,k)

[u,l] inserts a vertex with vertex ID u and
label l between the k-th and k + 1-th intrastates in the j-th
interstate. Since the transformations by vertex deletion vd
and edge deletion ed do not assign any labels to the vertex

Fig. 3 Examples of transformations.

or edge respectively, their arguments l are dummy and are
represented by ‘•’ without loss of generality. The reader
may notice that a relabeling transformation can be decom-
posed into a deletion and subsequent insertion of a vertex
or edge with the same ojk. However, we retain the relabel-
ing transformation, because it increases the compactness of
the graph sequences and the mined frequent transformation
subsequences (FTSs).

In the remainder of this subsection, we introduce ax-
ioms governing the transformation rules and the Admissi-
bility Theorem for the transformation rules to prove that any
graph sequence can be represented by the six transformation
rules given in Table 1. The transformation rules for vertex
insertion and vertex deletion are governed by the following
axioms due to their nature.

Axiom 1: A transformation rule vi(j,k)
[u,l] is used to transform

g(j,k) to g(j,k+1) if and only if

• a vertex with vertex ID u is not contained in g(j,k), and
• a vertex with label l and vertex ID u is contained in

g(j,k+1). �

For example, in Fig. 3 (a), g(j,k) is transformed to g(j,k+1) by
inserting a vertex with vertex ID 3, where the number at-
tached to each vertex denotes the vertex ID of the vertex.
The inserted vertex becomes an isolated vertex.

Axiom 2: A transformation rule vd(j,k)
[u,•] is used to transform

g(j,k) to g(j,k+1) if and only if

• a vertex with vertex ID u is contained in g(j,k),
• no edges connected to this vertex are contained in g(j,k),

and
• a vertex with vertex ID u is not contained in g(j,k+1). �

This rule is not applicable to vertices that are not isolated.
For example, g(j,k) in Fig. 3 (b) is transformed to g(j,k+1) by
deleting the isolated vertex with vertex ID 3. All axioms
governing the rules in Table 1 are listed in Table 2.

In summary, we introduce the following representation
of a transformation sequence.

Definition 4: An intrastate sequence s(j) = 〈g(j,1)g(j,2) · · ·
g(j,mj)〉 is represented by the following sequence of TRs.

seq(s(j)) = 〈tr(j,1)
[o,l] tr(j,2)

[o,l] · · · tr(j,mj−1)
[o,l] 〉.

This is called an “intrastate transformation sequence”.
Moreover, an observed graph sequence (interstate sequence)
d = 〈g(1)g(2) · · · g(n)〉 is represented by an “interstate transfor-
mation sequence” seq(d)= 〈seq(s(1))seq(s(2)) · · · seq(s(n−1))〉
together with its initial interstate g(1). �

INOKUCHI and WASHIO: GTRACE: MINING FREQUENT SUBSEQUENCES FROM GRAPH SEQUENCES
2795

Table 2 Axioms governing transformation rules (TRs).

Axiom 1 Vertex Insertion �v ∈ V(g(j,k)) s.t. id(v) = u, and
vi(j,k)

[u,l] ∃v′ ∈ V(g(j,k+1)) s.t. (id(v′) = u) ∧ (f (v′) = l).

Axiom 2 Vertex Deletion ∃v ∈ V(g(j,k)) s.t. id(v) = u,

vd(j,k)
[u,•]

�(v1, v2) ∈ E(g(j,k)) s.t. (id(v1) = u) ∨ (id(v2) = u), and
�v′ ∈ V(g(j,k+1)) s.t. id(v′) = u.

Axiom 3 Vertex Relabeling ∃v ∈ V(g(j,k)) s.t. (id(v) = u) ∧ (f (v) � l), and
vr(j,k)

[u,l] ∃v′ ∈ V(g(j,k+1)) s.t. (id(v′) = u) ∧ (f (v′) = l).

Axiom 4 Edge Insertion �(v1, v2) ∈ E(g(j,k)), ∃v1 ∈ V(g(j,k)), ∃v2 ∈ V(g(j,k)) s.t. (id(v1) = u1) ∧ (id(v2) = u2), and
ei(j,k)

[(u1 ,u2),l] ∃(v′1, v
′
2) ∈ E(g(j,k+1)) s.t. (id(v′1) = u1) ∧ (id(v′2) = u2) ∧ (f ((v′1, v

′
2)) = l).

Axiom 5 Edge Deletion ∃(v1, v2) ∈ E(g(j,k)) s.t. (id(v1) = u1) ∧ (id(v2) = u2), and
ed(j,k)

[(u1 ,u2),•] �(v′1, v
′
2) ∈ E(g(j,k+1)), ∃v′1 ∈ V(g(j,k+1)), ∃v′2 ∈ V(g(j,k+1)) s.t. (id(v′1) = u1) ∧ (id(v′2) = u2).

Axiom 6 Edge Relabeling ∃(v1, v2) ∈ E(g(j,k)) s.t. (id(v1) = u1) ∧ (id(v2) = u2) ∧ (f ((v1, v2)) � l), and
er(j,k)

[(u1 ,u2),l] ∃(v′1, v
′
2) ∈ E(g(j,k+1)) s.t. (id(v′1) = u1) ∧ (id(v′2) = u2) ∧ (f ((v′1, v

′
2)) = l).

Fig. 4 A graph sequence and its TRs.

The notation for intrastate transformation sequences is far
more compact than the original graph based representation,
since only differences between two successive intrastates are
kept in the sequence.

Example 2: In Fig. 4 (a), a graph sequence d can be
expressed as a sequence of insertions and deletions
of vertices and edges as shown in Fig. 4 (b). The
transformation sequence is represented as seq(d) =

〈vi(1,1)
[4,C]vi(2,1)

[5,C]ei(2,2)
[(3,4),−]ed(2,3)

[(2,3),•]vd(2,4)
[2,•]ed(3,1)

[(1,3),•]vd(3,2)
[1,•]〉,

where “−” denotes an edge label.

Let tr(j,k)
[o,l] ≺ tr(j,k′)

[o′,l′] indicate that tr(j,k)
[o,l] precedes tr(j,k′)

[o′,l′] in
an intrastate transformation sequence, so that k < k′. Based
on the axioms in Table 2 and Definition 2, we define the
following admissibility constraint on a pair of TRs in a se-
quence.

Definition 5: Let all TRs tr(j,k′′)
[o′′,l′′] where k < k′′ < k′ have

o′′ different from o and o′ for a TR pair tr(j,k)
[o,l] ≺ tr(j,k′)

[o′,l′] in a
transformation sequence. Any TR pair is admissible unless

• o and o′ correspond to either a vertex or an edge that is
incident with the vertex.

Otherwise, the TR pair is admissible if

• the condition for applying tr(j,k′)
[o′,l′] to o′ is satisfied by the

resultant o of the preceding tr(j,k)
[o,l] under the axioms in

Table 2, and
• we cannot rewrite the transformation subsequence,

including the TR pair, as a shorter and equivalent

transformation sequence that does not include the TR
pair. �

We limit this admissibility to the case in which objects o′′ of
all TRs between k and k′ are different from o and o′, since
the TR that transforms an object o appears only once in an
intrastate transformation sequence, as shown later. In ad-
dition, we request that a transformation sequence including
the TR pair not be rewritable as a shorter transformation se-
quence that does not include the TRs, due to the minimum
edit distance condition in Definition 2.

Based on the axioms in Table 2 and Definition 5, we
prove the admissible pairs and inadmissible pairs of TRs
that appear in the sequence as shown in Table 3. For exam-
ple, the pair vd(j,k)

[u1,•] ≺ vi(j,k′)
[u1,l′] marked by † is not admissible,

because it can be replaced by vr(j,k)
[u1,l′], and thus Definition 2

does not hold. On the other hand, the pair ei(j,k)
[(u1,u2),l] ≺ vr(j,k′)

[u1,l′]

marked by ‡ is admissible. Applying ei(j,k)
[(u1,u2),l] indicates the

existence of a vertex whose vertex ID is u1 in the objec-
tive graph. This suffices for applying vr(j,k′)

[u1,l′]. The following
theorem summarizes the admissibility of TR pairs shown in
Table 3.

Theorem 1: (Admissibility Theorem) Given an intrastate
transformation sequence seq(s(j))= 〈tr(j,1)

[o,l] tr(j,2)
[o,l] · · · tr(j,mj−1)

[o,l] 〉,
the admissible pairs of TRs that may be applied to a vertex
with vertex ID u1 or an edge incident with the vertex with
ID u1 in the sequence is limited to one of the following 8
ordered pairs where 1 ≤ k < k′ ≤ mj − 1.

vi(j,k)
[u1,l]
≺ ei(j,k′)

[(u1,u2),l′], vr(j,k)
[u1,l]
≺ ei(j,k′)

[(u1,u2),l′],

vr(j,k)
[u1,l]
≺ ed(j,k′)

[(u1,u2),•], vr(j,k)
[u1,l]
≺ er(j,k′)

[(u1,u2),l′],

ei(j,k)
[(u1,u2),l] ≺ vr(j,k′)

[u1,l′], ed(j,k)
[(u1,u2),•] ≺ vr(j,k′)

[u1,l′],

er(j,k)
[(u1,u2),l] ≺ vr(j,k′)

[u1,l′], ed(j,k)
[(u1,u2),•] ≺ vd(j,k′)

[u1,•]. �

As this theorem is a summary of Table 3, its proof is omit-
ted. From Theorem 1, we can obtain in a straightforward
manner, a sequence of TRs for interpolating between two

2796
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Table 3 Admissibility of ordered transformation rules.

tr(j,k′)
[o′ ,l′]

Vertex Vertex Vertex Edge Edge Edge

tr(j,k)
[o,l]

Insertion Deletion Relabeling Insertion Deletion Relabeling
o′ = u1 o′ = u1 o′ = u1 o′ = (u1, u2) o′ = (u1, u2) o′ = (u1, u2)

Vertex Insertion o = u1 X X X O X X
Vertex Deletion o = u1 X† X X X X X
Vertex Relabeling o = u1 X X X O O O
Edge Insertion o = (u1, u2) X X O‡ X X X
Edge Deletion o = (u1, u2) X O O X X X
Edge Relabeling o = (u1, u2) X X O X X X

O and X denote being admissible and not admissible, respectively.

tr(j,k)
[o,l] precedes tr(j,k′)

[o′ ,l′] in an intrastate transformation sequence.

successive graphs g(j) and g(j+1) under the definitions in Ta-
ble 1 and the constraints of Theorem 1. We now show that
any graph sequence is represented by our six TRs.

Theorem 2: (Representation Theorem) Any graph se-
quence can be represented by the six TRs in Table 1 with
a given initial interstate g(1). �

Proo f . Let g(j) and g(j+1) (j = 1, · · · , n − 1) be two succes-
sive graphs in a given graph sequence d = 〈g(1), · · · , g(n)〉.
Let f and f ′ be the labeling functions of g(j) and g(j+1), re-
spectively. We define

Vvi = {v | v ∈ V(g(j+1)),

id(v) ∈ IDV (g(j+1)) \ IDV (g(j))},
Vvd = {v | v ∈ V(g(j)),

id(v) ∈ IDV (g(j)) \ IDV (g(j+1))},
Vvr = {v | v ∈ V(g(j)), v′ ∈ V(g(j+1)),

id(v) = id(v′), f (v) � f ′(v′)},
V = {v | v ∈ V(g(j)), v′ ∈ V(g(j+1)),

id(v) = id(v′), f (v) = f ′(v′)},
Eei = {(v1, v2) | (v1, v2) ∈ E(g(j+1)),

(id(v1), id(v2)) ∈ IDE(g(j+1)) \ IDE(g(j))},
Eed = {(v1, v2) | (v1, v2) ∈ E(g(j)),

(id(v1), id(v2)) ∈ IDE(g(j)) \ IDE(g(j+1))},
Eer = {(v1, v2) | (v1, v2) ∈ E(g(j)),

(v′1, v
′
2) ∈ E(g(j+1)),

(id(v1), id(v2)) = (id(v′1), id(v′2)),

f ((v1, v2)) � f ′((v′1, v
′
2))},

E = {(v1, v2) | (v1, v2) ∈ E(g(j)),

(v′1, v
′
2) ∈ E(g(j+1)),

(id(v1), id(v2)) = (id(v′1), id(v′2)),

f ((v1, v2)) = f ′((v′1, v
′
2))}.

Vvi, Vvd, and Vvr are the sets of vertices that are inserted,
deleted, and relabeled, respectively. Similarly, Eei, Eed, and
Eer are the sets of edges that are inserted, deleted, and re-
labeled, respectively. V and E are the sets of vertices and
edges to which no rules are applied. Thus, g(j) and g(j+1) are
expressed as

g(j) = (V ∪ Vvr ∪ Vvd, E ∪ Eer ∪ Eed, L(g(j)), f) and

g(j+1) = (V ∪ Vvr ∪ Vvi, E ∪ Eer ∪ Eei, L(g(j+1)), f ′),

respectively. First, g(j) = g(j,1) is transformed to the graph

g(j,k1) = (V ∪ Vvr ∪ Vvd ∪ Vvi, E ∪ Eer ∪ Eed, L(g(j)), f)

by inserting all vertices in Vvi into g(j,1) in a stepwise man-
ner, where k1 = 1 + |Vvi|. Next, g(j,k1) is transformed to the
graph

g(j,k2) = (V∪Vvr∪Vvd∪Vvi, E∪Eer∪Eed∪Eei, L(g(j)), f)

by inserting all edges in Eei into g(j,k1) where k2 = k1 + |Eei|.
Subsequently, g(j,k2) is transformed to the graph

g(j,k3) =

(V ∪ Vvr ∪ Vvd ∪ Vvi, E ∪ Eer ∪ Eed ∪ Eei, L(g(j+1)), f ′)

by relabeling the labels of all vertices in Vvr and all edges in
Eer where k3 = k2 + |Vvr |+ |Eer |. g(j,k3) is further transformed
to

g(j,k4) = (V ∪Vvr ∪Vvd ∪Vvi, E ∪Eer ∪Eei, L(g(j+1)), f ′)

by deleting all edges in Eed from g(j,k3) where k4 = k3+ |Eed |.
Finally, g(j,k4) is transformed to

g(j,k5) = (V ∪ Vvr ∪ Vvi, E ∪ Eer ∪ Eei, L(g(j+1)), f ′)

by deleting all vertices in Vvd from g(j,k4) where k5 = k4 +

|Vvd | = mj. The graph g(j,k5) becomes isomorphic with g(j+1).
In addition, because Vvi, Vvd, Vvr, and V are mutually dis-
joint, and Eei, Eed, Eer, and E are also mutually disjoint, the
number of TRs applied to each object o in a TR tr(j,k)

[o,l] is at
most 1. The order of TRs applied in the above transforma-
tion process is consistent with the admissibility of ordered
TRs indicated by Theorem 1. Accordingly, any intrastate se-
quence from g(j) to g(j+1) can be represented by the six TRs
and the initial intrastate g(j) = g(j,k). Finally, because this
statement holds for all j = 1, · · · , n − 1, we conclude that
any graph sequence d can be represented by the six TRs and
the initial interstate g(1). �

2.2 Compilation of Graph Sequences

In this subsection, we propose an algorithm for compiling
a given observed graph sequence to a transformation se-
quence. An observed graph sequence (interstate sequence)

INOKUCHI and WASHIO: GTRACE: MINING FREQUENT SUBSEQUENCES FROM GRAPH SEQUENCES
2797

1) GraphSequenceCompiler(d)
2) seq(d) = 〈〉
3) for each j
4) Define Vvi, Vvd , Vvr , Eei, Eed , and Eer

as in the proof of Theorem 2.
5) k = 1
6) for each v ∈ Vvi

7) seq(d) = seq(d) ∪ vi(j,k++)
[id(v), f (v)]

8) for each (v, v′) ∈ Eei

9) seq(d) = seq(d) ∪ ei(j,k++)
[(id(v),id(v′)), f ((v,v′))]

10) for each v ∈ Vvr

11) seq(d) = seq(d) ∪ vr(j,k++)
[id(v), f ′(v)]

12) for each (v, v′) ∈ Eer

13) seq(d) = seq(d) ∪ er(j,k++)
[(id(v),id(v′)), f ′((v,v′))]

14) for each (v, v′) ∈ Eed

15) seq(d) = seq(d) ∪ ed(j,k++)
[(id(v),id(v′)),•]

16) for each v ∈ Vvd

17) seq(d) = seq(d) ∪ vd(j,k++)
[id(v),•]

18) output seq(d)

Fig. 5 Algorithm to compile a graph sequence to a transformation se-
quence.

d = 〈g(1)g(2) · · · g(n)〉 is represented by an interstate transfor-
mation sequence seq(d) = 〈seq(s(1))seq(s(2)) · · · seq(s(n−1))〉
and its initial interstate g(1) by Definition 4. Based on this
graph sequence representation, we have developed an algo-
rithm for compiling a graph sequence d = 〈g(1) · · · g(n)〉 to a
transformation sequence seq(d) as shown in Fig. 5. The pro-
cedure basically follows the proof of Theorem 2 for compil-
ing each graph sequence. seq(d) ∪ tr(j,k)

[o,l] means that tr(j,k)
[o,l] is

appended to the end of the transformation sequence seq(d).
To interpolate the differences between g(j) and g(j+1), the
vertex and edge insertions are first appended to the end of
the transformation sequence in Lines 9 and 11. Next, rela-
belings are appended in Lines 13 and 15. Finally, the vertex
and edge deletions are appended in Lines 17 and 19.

As is evident from this algorithm, the order of TRs in
an intrastate transformation sequence is artificial, and does
not reflect the order of graphs in a given observed graph se-
quence, except for the starting and ending graphs in the in-
trastate sequences. Therefore, we need to focus on the order
of interstates only in the mining result. On the other hand,
because the intrastate transformation sequence represents an
admissible order of TRs for the interpolation between two
successive interstates, it enables us to apply Sequential Pat-
tern Mining to the graph sequence mining problem as shown
later. In general, computing the edit distance between two
graphs is NP-hard, because all combinations of vertices in
the two graphs must be considered. However, in our case
computing a sequence of TRs based on differences between
two graphs is solvable in linear time, because all vertices
have vertex IDs.

3. Principles of FTS Mining

In this section, we propose a method for mining frequent
transformation subsequences (FTSs) from a given set of
graph sequences. Since the FTSs to be mined are included in

Fig. 6 Inclusion relation.

the given transformation sequences, the FTSs are also gov-
erned by the Admissibility Theorem. To mine FTSs from
a given set of compiled graph sequences, that is, a set of
transformation sequences, we define an inclusion relation
between the intrastate transformation sequences.

Definition 6: Let

seq(s(j)) = 〈tr(j,1)
[o,l] · · · tr(j,k)

[o,l] · · · tr(j,mj−1)
[o,l] 〉, (1)

seq(s′(h)) = 〈tr(h,1)
[o,l] · · · tr(h,r)

[o,l] · · · tr(h,mh−1)
[o,l] 〉 (2)

be two intrastate transformation sequences. seq(s′(h)) is a
subsequence of seq(s(j)), denoted by seq(s′(h)) ⊆φ seq(s(j)),
if there is an injective function φ : IDV (s′(h)) → IDV (s(j))
such that tr1 = tr2, φ(ohr) = o jk, and lhr = l jk for tr1[ohr ,lhr] ∈
seq(s′(h)) and tr2[o jk ,l jk] ∈ seq(s(j)). �

Note that for φ(ohr) = o jk, ohr = o jk does not always hold as
shown in Example 3. Moreover, the order among intrastates
is not preserved in either seq(s(j)) or seq(s′(h)), because in-
trastate transformation sequences are artificially generated
by the interpolation. In addition, we define an inclusion re-
lation between interstate transformation sequences.

Definition 7: Let seq(d) and seq(d′) be the transformation
sequences

seq(d) = 〈seq(s(1)) · · · seq(s(j)) · · · seq(s(n−1))〉,
seq(d′) = 〈seq(s′(1)) · · · seq(s′(h)) · · · seq(s′(n

′−1))〉,
where the intrastate sequences seq(s(j)) and seq(s′(h)) are
given in Eqs. (1) and (2), respectively. seq(d′) is a sub-
sequence of seq(d), denoted by seq(d′) � seq(d), if there
exist integers 1 ≤ j1 < · · · < jn′−1 ≤ n − 1 such that
seq(s′(h)) ⊆φ seq(s(jh)) for h = 1, · · · , n′ − 1. �

Example 3: Given the graph sequence d in Fig. 6 (a)
represented by the transformation sequence seq(d) =

〈vi(1,1)
[4,C]vi(2,1)

[5,C]ei(2,2)
[(3,4),−]ed(2,3)

[(2,3),•]vd(2,4)
[2,•]ed(3,1)

[(1,3),•]vd(3,2)
[1,•]〉, the trans-

formation sequence seq(d′) = 〈vi(1,1)
[3,C]ei(2,1)

[(2,3),−]ed(2,2)
[(1,2),•]vd(2,3)

[1,•]〉
of the graph sequence d′ in Fig. 6 (b) is a subsequence of

2798
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Fig. 7 DB containing graph sequences.

seq(d), and the transformation rules in seq(d′) match the
underlined rules in seq(d) via φ(i) = i + 1 for i ∈ IDV (d′) =
{1, 2, 3}.

While the transformation sequence data indicates the
progressive change in a graph and as such can be graph-
ically represented as long as the data is valid, the change
represented by its subsequences is discontinuous and often
difficult to present graphically.

Given a set of data DB = {(id, d) | d =

〈g(1)g(2) · · · g(n)〉}, where id is the ID of d, a support value
σ(seq(d′)) of a transformation subsequence seq(d′) is de-
fined by

σ(seq(d′)) =
|{id | (id, d) ∈ DB, seq(d′) � seq(d)}|

|DB| .

We call a transformation subsequence whose support value
is greater than or equal to a minimum support threshold σ′
a “frequent transformation subsequence (FTS)”. The anti-
monotonicity of this support value holds; that is, if seq(d′1) �
seq(d′2) then σ(seq(d′1)) ≥ σ(seq(d′2)). Using these defini-
tions, we now state our mining problem as follows.

Problem 1: Given a dataset DB = {(id, d) | d =

〈g(1)g(2) · · · g(n)〉} and a minimum support threshold σ′ as
input, enumerate all frequent transformation subsequences
(FTSs).

Example 4: Figure 7 shows a graph sequence database DB
containing two graph sequences, which are, respectively,
compiled into the following transformation sequences.

(1, 〈vi(1,1)
[1,A]vi(2,1)

[2,B]vi(2,2)
[3,A]ei(2,3)

[(1,2),−]ei(2,4)
[(1,3),−]ei(2,5)

[(2,3),−]

vi(3,1)
[4,C]ed(3,2)

[(1,3),•]ed(3,3)
[(1,2),•]vd(3,4)

[1,•]〉),
(2, 〈vi(1,1)

[1,B]vi(1,2)
[2,A]vi(1,3)

[3,B]ei(1,4)
[(2,3),−]vi(2,1)

[4,C]ei(2,2)
[(1,3),−]〉).

One of the FTSs mined from DB under σ′ = 2 is

〈vi(1,1)
[1,A]vi(2,1)

[2,B]vi(2,2)
[3,A]vi(3,1)

[4,C]〉,
where the TRs in the FTS match the underlined TRs in each
of the transformation sequences.

To enumerate a complete set of FTSs in DB, we con-
sider an algorithm that recursively appends a TR to the end
of the current FTS using the Pattern Growth principle. For
example, let seq(d) = 〈vi(1,1)

[1,A]〉 be a current FTS. If the rule
to be appended is a vertex insertion, the transformation sub-
sequences generated are

1) FTSMiner(seq(d), seq(DB), σ′, F, j, k)
2) if seq(d) = 〈〉{
3) AppendRule(seq(d), seq(DB), σ′, F, 1, 1)
4) }else{
5) AppendRule(seq(d), seq(DB), σ′, F, j, k + 1)
6) AppendRule(seq(d), seq(DB), σ′, F, j + 1, 1) }
7) }

8) AppendRule(seq(d), seq(DB), σ′, F, j, k)
9) for every tr(j,k)

[u,l] ∈ C(seq(d), seq(DB)){
10) if σ(seq(d) ∪ tr(j,k)

[u,l]) ≥ σ′{
11) F = F ∪ {seq(d) ∪ tr(j,k)

[u,l])}
12) FTSMiner(seq(d) ∪ tr(j,k)

[u,l] , seq(DB), σ′, F, j, k)
13) }
14) }

Fig. 8 Algorithm to enumerate FTSs.

〈vi(1,1)
[1,A]vi(1,2)

[u,l] 〉 = 〈vi(j,k)
[1,A]vi(j,k+1)

[u,l] 〉 and

〈vi(1,1)
[1,A]vi(2,1)

[u,l] 〉 = 〈vi(j,k)
[1,A]vi(j+1,1)

[u,l] 〉

where ∃(id, d) ∈ DB and ∃(j, k); 〈vi(j,k)
[1,A]vi(j,k+1)

[u,l] 〉 � seq(d)

or 〈vi(j,k)
[1,A]vi(j+1,1)

[u,l] 〉 � seq(d). The former subsequence shows
that a vertex with vertex ID u is inserted at the same time that
the vertex with vertex ID 1 is inserted. The latter represents
a vertex with vertex ID u being inserted after the vertex with
vertex ID 1 has been inserted. In each case, any inadmissible
subsequences such as 〈vi(1,1)

[1,A]vi(1,2)
[1,l] 〉 are never generated, be-

cause such subsequences are not included in any seq(d) with
(id, d) ∈ DB according to the Admissibility Theorem. The
following lemma provides the enumeration of the complete
set of transformation subsequences.

Lemma 1: Let seq(DB) = {(id, seq(d)) | (id, d) ∈
DB}. Given a transformation subsequence seq(d) =
〈tr(1,1)

[o,l] · · · tr(j,k)
[o,l] 〉, let the candidate set of TRs to be appended

to seq(d) be

C(seq(d), seq(DB))

= {tr(j,k+1)
[o,l] and tr(j+1,1)

[o,l] |
∃(id, seq(di)) ∈ seq(DB);

seq(d) ∪ tr(j,k+1)
[o,l] � seq(di) or

seq(d) ∪ tr(j+1,1)
[o,l] � seq(di)}

where seq(d) ∪ tr(j,k)
[o,l] denotes appending a transformation

rule tr(j,k)
[o,l] to the end of seq(d). By recursively appending

tr(j,k+1)
[o,l] or tr(j+1,1)

[o,l] in C(seq(d), seq(DB)) to seq(d), the com-
plete set of candidate FTSs is generated. If seq(d) = 〈〉, all
candidate subsequences 〈tr(1,1)

[o,l] 〉 ∈ C(seq(d), seq(DB)) suf-
fice for completeness where

C(seq(d), seq(DB))

= {tr(1,1)
[o,l] | ∃(id, seq(di)) ∈ seq(DB);

〈tr(1,1)
[o,l] 〉 � seq(di)}. �

INOKUCHI and WASHIO: GTRACE: MINING FREQUENT SUBSEQUENCES FROM GRAPH SEQUENCES
2799

From Lemma 1, we design an efficient depth-first al-
gorithm as shown in Fig. 8. The argument F accumulates
the FTSs found. If seq(d) = 〈〉, all candidate subsequences
seq(d) = 〈tr(1,1)

[o,l] 〉 are generated. Otherwise, the algorithm
recursively mines FTSs by appending a TR to the end of
the current FTS in Line 12. The appended rule is either
in the intrastate sequence where the last TR in seq(d) ex-
ists (Line 5), or is in the next intrastate sequence (Line 6).
Because this algorithm is based on the Pattern Growth prin-
ciple, transformation subsequences containing inadmissible
rules are never generated according to the aforementioned
data compilation based on the Admissible Theorem.

We have implemented this algorithm using PrefixS-
pan [17], which is a representative method for mining fre-
quent subsequences from a set of itemset sequences. Since
it enumerates FTSs by projecting the given sequences into
shorter sequences, it can efficiently mine long FTSs.

4. Principles of Relevant FTS Mining

The algorithm proposed in Sect. 3 enumerates a complete set
of FTSs. However, for practical reasons, we often focus on
graph subsequences consisting of mutually relevant vertices
and edges only. For example, given the graph subsequence
depicted in Fig. 9, the vertex with vertex ID 1 is considered
to be irrelevant, because it is not connected to any other ver-
tex in any step. On the other hand, although the vertices
with vertex IDs 2 and 4 are not connected directly in any
step, they are connected to the vertex with vertex ID 3 in the
first and fourth steps, respectively. In this case, we consider
the vertices with vertex IDs 2 and 4 to be mutually relevant
via the vertex with vertex ID 3. In the case of Fig. 9, many
analysts consider it appropriate to include the vertices with
vertex IDs 2, 3, and 4 but exclude the vertex with vertex
ID 1 in the graph sequence analysis. Based on the above
observation and the potential connectivity in a given graph
sequence, we define the relevancy among vertex IDs of ver-
tices and edges as follows.

Definition 8: Vertex IDs in a graph sequence d =

〈g(1)g(2) · · · g(n)〉 are relevant to one another, and d is called
a “relevant graph sequence”, if the union graph gu(d) of d
is connected. Here, we define the union graph of d to be
gu(d) = (V, E) where

V = {id(v) | v ∈ V(g(j)), g(j) ∈ d},
E = {(id(v), id(v′)) | (v, v′) ∈ E(g(j)), g(j) ∈ d}. �

A connected graph in this definition is a graph that has a
path between any two vertices, and the path is a set of edges
making reachable from a vertex v to another v′. The union

Fig. 9 An irrelevant graph subsequence.

graph of a graph sequence d also defines the relevance of the
corresponding transformation sequence seq(d).

Definition 9: The union graph gu(seq(d)) = (V, E) of a
transformation sequence seq(d) is similarly defined as

V = {u | tr(j,k)
[u,l] ∈ seq(d), tr ∈ {vi, vd, vr}}

∪ {u, u′ | tr(j,k)
[(u,u′),l] ∈ seq(d), tr ∈ {ei, ed, er}},

E = {(u, u′) | tr(j,k)
[(u,u′),l] ∈ seq(d), tr ∈ {ei, ed, er}}. �

Using the definition of the union graph, we define the
following problem for mining relevant FTSs.

Problem 2: Given a dataset DB = {(id, d) | d =

〈g(1)g(2) · · · g(n)〉} and a minimum support threshold σ′ as in-
put, enumerate all FTSs whose union graphs are connected.

To enumerate all relevant FTSs efficiently, the union
graphs of all graph sequences in DB are generated. All fre-
quent “connected” subgraphs among these union graphs are
then enumerated using the conventional Graph Mining al-
gorithm. Every time the algorithm outputs a frequent con-
nected subgraph, FTSMiner, as given in Fig. 8, is called with
its input set of transformation sequences generated by the
projection in the following definition.

Definition 10: Given a transformation sequence
(id, seq(d)) ∈ seq(DB) and a connected graph g, we define a
function “proj” that projects seq(d) onto its maximum sub-
sequences whose union graphs are identical to g as follows.

pro j((id, seq(d)), g) = {(id, seq(d′)) |
seq(d′) � seq(d) s.t. gu(seq(d′)) = g ∧
�seq(d′′) s.t. (seq(d′) � seq(d′′) � seq(d) ∧

gu(seq(d′′)) = g)}. �

In this definition, the first half pro j((id, seq(d)), g) =
{(id, seq(d′)) | seq(d′) � seq(d) s.t. gu(seq(d′)) = g} rep-
resents a transformation sequence seq(d) being projected
onto its subsequences seq(d′) whose union graph is g. The
second half of the definition, �seq(d′′) s.t. (seq(d′) �
seq(d′′) � seq(d) ∧ gu(seq(d′′)) = g), guarantees that the
projected transformation sequences seq(d′) are maximal.

Because each union graph of an FTS is also frequent
in the union graphs of all seq(d) s.t. (id, seq(d)) ∈ seq(DB),
we can enumerate all candidate relevant FTSs from the pro-
jected transformation sequences if all frequent connected
subgraphs of the union graphs of all seq(d) ∈ seq(DB) are
given.

Example 5: Given the graph sequence d shown in
Fig. 10 (a), seq(d) is represented as seq(d) =

〈vi(1,1)
[3,C]ei(1,2)

[(1,3),−]ei(1,3)
[(2,3),−]vi(2,1)

[4,A]ei(2,2)
[(1,4),−]ed(2,3)

[(1,3),•]〉, and its union

graph gu(d) is depicted in Fig. 10 (b). Given a graph g
which is a subgraph of gu(d), shown in Fig. 10 (d), an exam-
ple transformation sequence seq(d′) in pro j((id, seq(d)), g)
is 〈vi(1,1)

[3,C]ei(1,2)
[(1,3),−]ei(1,3)

[(2,3),−]ed(2,1)
[(1,3),•]〉 as depicted in Fig. 10 (c).

2800
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Fig. 10 Example of a projection.

1) RelevantFTSMiner(seq(DB), σ′, F)
2) Gu = {gu(d) | (id, seq(d)) ∈ seq(DB)}
3) for g =FrequentSubgraphMiner(Gu, σ

′);
until g � null{

4) pro j(DB) =
⋃

(id,d)∈DB pro j((id, seq(d)), g)
5) F = F ∪ FTSMiner(〈〉, pro j(DB), σ′, F, 1, 1)
6) }

Fig. 11 Algorithm to mine relevant FTSs.

Note that this subsequence matches the underlined rules in
seq(d).

Figure 11 shows an algorithm that enumerates all rel-
evant FTSs from DB. First, a set Gu of union graphs of
transformation sequences seq(DB) is generated in Line 2.
Assuming that the function “FrequentSubgraphMiner” in
Line 3 repeatedly and exhaustively outputs the frequent con-
nected subgraphs g in Gu one at a time, FTSMiner (Fig. 5)
is called in Line 5 with the transformation sequences pro-
jected in Line 4. These processes are continued until the
frequent connected subgraph g is exhausted in FrequentSub-
graphMiner.

For FrequentSubgraphMiner, we used AcGM [9]
which is a conventional Graph Mining method. AcGM enu-
merates all embeddings in each union graph that are isomor-
phic with a frequent subgraph g, and this feature of AcGM
enables efficient projection of g to all of its isomorphic trans-
formation subsequences pro j((id, seq(d)), g).

5. Experiment

Our proposed method, called “GTRACE (Graph TRAnsfor-
mation sequenCE mining)”, was implemented in C++. An
HP xw4400 with Intel Core 2 6700 2.66 GHz and 2 GB of
main memory, running Windows XP, was used for the ex-
periments. The performance of GTRACE was evaluated for
both artificial and real-world graph sequence data. Owing to
the lack of any other established approach comparable with
our frequent graph subsequence mining, we set up a min-
ing task, which is functionally similar within the framework
of conventional Graph Mining, for comparison. Each graph
sequence (id, d = 〈g(1) · · · g(n)〉) ∈ DB is converted into a
graph g as shown in the example in Fig. 12. Each vertex ID
u, if it appears as a vertex with label l in g(j), is represented

Fig. 12 Conversion from a graph sequence to a graph.

Table 4 Parameters of test data.

Definition Default values
probability of vertex and edge insertions

in transformation sequences p = 80%
average number of vertex IDs

in transformation sequences |Vavg | = 7
probability of vertex and edge insertions

in embedded FTSs p′ = 50%
average number of vertex IDs

in embedded FTSs |V′avg | = 5
number of vertex labels |Lv | = 10
number of edge labels |Le | = 1
number of embedded FTSs N = 10
number of transformation sequences |DB| = 1,000
minimum support threshold σ′ = 30%

by a vertex with label l:P (Presence) in the j-th column of g
(Fig. 12 (b)). Otherwise u is represented by a vertex with la-
bel A (Absence). If there is an edge between two vertices in
g(j), an edge is placed between the corresponding vertices in
the j-th column of g. Finally, all vertices corresponding to
an identical vertex ID u are mutually connected by edges to
form a clique. This ensures that the identity of vertices in the
graph can be represented. Each clique is indicated by a rect-
angle in Fig. 12 (b). Graph Mining on this data extracts in-
formation of the presence/absence of each vertex with their
associated edges over a sequence of steps. We applied Gas-
ton [16] to this task, since it is known to be the fastest Graph
Mining algorithm.

5.1 Artificial Datasets

We compared the performance of GTRACE with Gaston
using artificial datasets generated based on the parameters
listed in Table 4. First, starting from g(1) with V(g(1)) = ∅,
we grew each transformation sequence up to having an aver-
age of |Vavg| vertex IDs by inserting vertices and edges with
probability p at each step. Accordingly, if p is small or |Vavg|
is large, the transformation sequence generated is long. This
process is continued by increasing the numbers of vertices
and edges until the sequence becomes relevant, while main-
taining the sparsity of each interstate graph. Typically, the
average probability of the existence of an edge between two
vertices in an interstate was 13% using the default param-
eter values. This value remained low for all the test data.
Similarly, we generated N relevant FTSs with an average of
|V ′avg| vertex IDs using probability p′. We then generated
DB, where each transformation sequence was overlaid by
each relevant FTS with probability 1/N. The overlay was
conducted in the graph sequence domain to ensure a topo-

INOKUCHI and WASHIO: GTRACE: MINING FREQUENT SUBSEQUENCES FROM GRAPH SEQUENCES
2801

Table 5 Results for |Vavg |, p, |Lv |, and σ′.
|Vavg | 6 7 10 35
avg. length of seq(d) 12.1 15.7 22.2 82.1

GTRACE comp. time 0.27 0.42 0.70 224
of FTSs 15 50 84 2622
comp. time/FTS 0.018 0.0085 0.0084 0.086

Gaston comp. time 8.05 416.5 – –
of FSGs 600 23594 – –
comp. time/FSG 0.013 0.018 – –

p 95% 80% 70% 10%
avg. length of seq(d) 14.3 15.7 16.6 30.2

GTRACE comp. time 0.38 0.42 0.38 0.59
of FTSs 44 50 54 133
comp. time/FTS 0.0085 0.0085 0.0069 0.0045

Gaston comp. time 119.0 416.5 – –
of FSGs 7289 23594 – –
comp. time/FSG 0.016 0.018 – –

|Lv | 1 9 10 11
avg. length of seq(d) 15.7 15.7 15.7 15.7

GTRACE comp. time 0.56 0.38 0.42 0.39
of FTSs 189 47 50 53
comp. time/FTS 0.0030 0.0080 0.0085 0.0074

Gaston comp. time – – 416.5 250.2
of FSGs – – 23594 13737
comp. time/FSG – – 0.018 0.018

σ′ 0.3% 20% 30% 35%
avg. length of seq(d) 15.7 15.7 15.7 15.7

GTRACE comp. time 14.7 0.89 0.42 0.13
of FTSs 160658 3841 50 36
comp. time/FTS 9.1E-5 2.3E-4 0.0085 3.2E-3

Gaston comp. time – – 416.5 124.89
of FSGs – – 23594 5292
comp. time/FSG – – 0.018 2.3E-2

of FTSs: the number of mined FTSs,
of FSGs: the number of mined Frequent SubGraphs
comp. time/FTS [sec]: comp. time per FTS,
comp. time/FSG [sec]: comp. time per Frequent SubGraph

logically correct overlay. Each relevant transformation se-
quence contained |Lv| vertex labels and |Le| edge labels.

Table 5 shows the computation times [sec], the num-
bers of derived FTSs (or FSGs: Frequent SubGraphs), and
the average computation times [sec] to derive an FTS (or
FSG) for various values of |Vavg|, p, |Lv|, and σ′, with the
other parameters remaining fixed at their default values.
Though we designed the mining task for Gaston to be as
similar as possible to the task for GTRACE, the numbers
of FTSs in the respective solutions are very different. Ac-
cordingly, we also use the computation time per FTS for
comparison. Results depicted as ’–’ in the table were not
obtainable due to either intractable computation time (more
than one hour) or memory overflow. The first and second
parts of the table indicate that the computation times of both
GTRACE and Gaston are exponential in the average length
of seq(d) provided by the settings of |Vavg| and p. We con-
sider the main reason that the computation time increases
with the average length to be the increase in the numbers of
FTSs in both cases, because the computation times per FTS
do not vary significantly. However, the increased efficiency
of GTRACE over Gaston is confirmed in terms of both the
computation time per FTS and the number of focused FTSs.

The third part of Table 5 shows the effect of the num-
ber of labels on the efficiency. When |Lv| is small, many
subgraphs included in the graph g as depicted in Fig. 12 (b)
are isomorphic with each other, and thus the computation
time for Gaston is enormous. In contrast, the computa-
tion time for GTRACE remains small since |Lv| does not
affect the length of seq(d). The fourth part of Table 5
shows that GTRACE is tractable even for a low minimum
support threshold. This is because it involves mining only
small union subgraphs to ensure the relevance of FTSs and
the Pattern-Growth based Sequential Pattern Mining for the
FTS mining, whereas Gaston’s application requires mining
large graphs, as depicted in Fig. 12 (b). The good scalability
of GTRACE is indicated in every part of Table 5 since the
computation time per FTS remains almost the same and is
even significantly reduced in some instances.

5.2 Real-World Datasets

To assess the practicality of GTRACE, we applied it to two
real-world datasets. The first is the Enron Email Dataset [4],
while the other contains phone call histories from the Re-
ality Mining Project at MIT [15]. In both datasets, we as-
signed a vertex ID to each person participating in the com-

2802
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Table 6 Results for Enron dataset.

of persons |V | 20 40 60 80 90
avg. length of seq(d) 9.7 24.9 35.5 65.5 84.3

GTRACE comp. time 0.031 0.093 0.13 1.20 36.1
(5 days) # of FTSs 3 10 18 109 420

comp. time/FTS 0.010 0.0093 0.007 0.011 0.086
Gaston comp. time 3.2 6.6 10.3 48.8 –
(5 days) # of FSGs 84 310 481 1463 –

comp. time/FSG 0.038 0.021 0.022 0.033 –

of persons |V | 20 40 60 80 90
avg. length of seq(d) 11.8 29.4 42.0 77.3 100.1

GTRACE GT6 comp. time 0.031 0.093 0.14 1.5 303.5
(6 days) # of FTSs 6 27 48 278 1734

comp. time/FTS 0.0052 0.0034 0.0029 0.0053 0.18
Gaston comp. time 59.9 – – – –
(6 days) # of FSGs 500 – – – –

comp. time/FSG 0.12 – – – –

min. sup. σ′ 15% 16% 18% 20% 30%
GTRACE comp. time 6359 4167 1504 668 7.7
(5 days) # of FTSs 42961 30250 16019 7483 498

comp. time/FTS 0.15 0.14 0.094 0.089 0.015
Default: minimum support σ′ = 50%, the number of vertex labels |Lv | = 3,
the number of edges labels |Le | = 1, the number of persons |V | = 50

Table 7 Results for MIT dataset.

of persons |V | 5 7 10 15 20
avg. length of seq(d) 6.5 11.3 19.5 40.5 62.2

GTRACE comp. time 0.016 0.031 0.047 9.02 1477.5
(5 days) # of FTSs 5 18 100 1479 11725

comp. time/FTS 0.0032 0.0017 0.00047 0.0061 0.13
Gaston comp. time 0.14 32.03 – – –
(5 days) # of FSGs 90 5596 – – –

comp. time/FSG 0.0016 0.0057 – – –

of persons |V | 5 7 10 15 20
avg. length of seq(d) 7.5 13.1 22.6 47.7 73.0

GTRACE comp. time 0.016 0.032 0.109 104.0 –
(6 days) # of FTSs 9 23 195 4196 –

comp. time/FTS 0.0018 0.0014 0.00056 0.025 –
Gaston comp. time 2.92 – – – –
(6 days) # of FSGs 435 – – – –

comp. time/FSG 0.0067 – – – –

min. sup. σ′ 5% 10% 15% 20% 40%
GTRACE comp. time 63.25 8.08 2.41 0.89 0.093
(5 days) # of FTSs 724094 47863 11201 3841 263

comp. time/FTS 8.7E-5 1.7E-4 2.1E-4 2.3E-4 3.5E-4
Default: minimum support σ′ = 50%, the number of vertex labels |Lv | = 3,

the number of edge labels |Le | = 1, the number of persons |V | = 10

munication and an edge to a pair if they communicated via
email or phone on a given day, and obtained a daily graph
g(j). We labeled people according to whether their daily ver-
tex degrees were high, moderate, or low. A person with a
high degree label was considered to be a hub in the orga-
nization. We obtained a set of weekly graph sequence data
for the DB. The total number of weeks, that is, the number
of sequences, was 200 in the Enron Email Dataset and 40
in the MIT Dataset. We randomly sampled |V |(= 1 ∼ 90)
people in the Enron Email Dataset and |V |(= 1 ∼ 20) people
in the MIT Dataset to form each DB.

Tables 6 and 7 show the computation times, numbers
of enumerated FTSs (or FSGs), and computation times per
FTS (or FSG) for various numbers of vertex IDs (persons)

|V | and minimum support value σ′ for each dataset. The
other parameters were set to the values indicated at the bot-
tom of each table. GTRACE (5 days) and Gaston (5 days)
indicate that each sequence d in DB consists of five graph
steps g(j) from Monday to Friday. Similarly, GTRACE (6
days) and Gaston (6 days) indicate six graph steps g(j) from
Monday to Saturday. The average length (avg. length) of
seq(d) is the average number of TRs in the observed trans-
formation sequences. In cases where the required compu-
tation time was more than one hour or memory overflowed,
results are denoted as ’–’.

The upper parts of these tables show the superior scala-
bility of GTRACE as seen in the total computation time and
computation time per FTS. In contrast, Gaston’s application

INOKUCHI and WASHIO: GTRACE: MINING FREQUENT SUBSEQUENCES FROM GRAPH SEQUENCES
2803

Fig. 13 A FTS mined from the MIT dataset.

is not tractable, since according to the data, many people
only communicate with one another on a few days. This
produces many vertex IDs labeled A (Absence) in each rel-
evant graph sequence, and the cliques resulting from these
absent vertex IDs produce a vast number of spurious fre-
quent subgraphs. The computation times required in the
MIT Dataset are far larger in spite of the smaller number of
people. This is because the daily graphs in the MIT Dataset
are denser than those for the Enron Email Dataset, since the
MIT Dataset is based on phone calls within a tightly coupled
community. The lower parts of the tables show the practical
scalability of GTRACE with regard to the minimum support
threshold.

Figure 13 shows a very simple but informative example
mined from the MIT Dataset. Person 3 has communication
with hub person 2 a few days after having communication
with person 1, who has a low vertex degree. This implies the
possibility that person 3, who is not a hub, is an important
connection between a hub person and an uncommunicative
person.

6. Discussion

Our compilation algorithm in Fig. 5 is linear in both the
length of the graph sequence |d| and the size of each graph
|g(j)|, since the sequence is read only once. The algorithm
for enumerating FTSs in Fig. 8 is basically a pattern growth
algorithm. Its complexity is identical to that of conventional
Graph Mining, because the isomorphism matching prob-
lem is solved to check the inclusion relation between two
transformation sequences as defined in Sect. 3. The algo-
rithm for mining relevant FTSs in Fig. 11 uses conventional
Graph Mining, and hence its complexity is also exponential
in |g(j)|. The complexity of all these tasks is linear for the
number of graph sequences in DB. In total, the complex-
ity of GTRACE is exponential in the average size of g(j),
and linear in |DB|. This is reflected by our experimental re-
sults. The superior computational efficiency of GTRACE
over Gaston stems from the characteristics of GTRACE,
which are adapted to the graph sequence mining task, and
does not indicate the inefficiency of Gaston for ordinary fre-
quent graph mining tasks.

Recently, Borgwardt et al. proposed a method for min-
ing frequent patterns from a set of graph sequences where
only insertions and deletions of edges are allowed, and not
insertion or deletion of vertices or relabeling of either ver-
tices or edges [3]. In this approach, the existence or non-
existence of an edge in each time step is represented by 1
and 0, respectively, and the edge is then labeled by a binary
string consisting of these 1’s and 0’s over all the time steps.

As this preprocessing for each graph sequence converts the
data into ordinary labeled graphs, the problem of mining
the frequent patterns in the graph sequences can be handled
by conventional Graph Mining techniques. However, this
method cannot be applied to graph sequences where inser-
tions and deletions of vertices and relabeling are included,
as in the example of human communities and gene networks
mentioned in Sect. 1.

The study of Temporal Logic is another topic in which
describing time sequence events is relevant [20]. A recent
data mining study used this framework to analyze time se-
quence data [6]. Temporal logic describes the relations be-
tween times and time intervals when events hold. Our TRs
can be seen as a set of simple temporal operators. The intro-
duction of advanced temporal logic may enhance the expres-
siveness of graph subsequences. As mentioned in Sect. 2,
another possibility for increasing expressiveness is the use
of a Graph Grammar [12]. However, in both cases, compu-
tational tractability is a big issue.

In [1], [19], Srikant and Agrawal first defined the prob-
lem of finding frequent sequential patterns from a set of se-
quences of itemsets and proposed a method called GPS for
finding the frequent sequential patterns. In the frequent se-
quential pattern mining problem defined in [19], maximum
and/or minimum time gaps between adjacent itemsets of se-
quential patterns can be specified. Because PrefixSpan is
an extended version of GPS to solve the same problem, Pre-
fixSpan can be extended to mine frequent sequential patterns
with maximum and/or minimum time gaps between adja-
cent itemsets. Therefore, GTRACE can also be extended
to mine rFTSs where maximum and/or minimum time gaps
exist between intrastate transformation sequences.

7. Conclusion

In this paper, we introduced transformation sequences to
represent given graph sequences based on

• six transformation rules representing the differences
between two successive graphs under the assumption
of gradual changes in graphs,
• admissibility conditions for a pair of intrastates, and
• the Representation Theorem.

In addition, we proposed a novel framework for mining a
complete set of relevant Frequent Transformation Subse-
quences (rFTSs) from given graph sequences. The method
is based on

• the anti-monotonicity of support values
• relevancies among vertices in each graph sequence, and
• PrefixSpan based Pattern-Growth principle.

Moreover, we developed a graph sequence mining pro-
gram GTRACE, and confirmed its efficiency and practicality
through computational experiments using both artificial and
real-world datasets.

2804
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

References

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proc. In-
ternational Conference on Data Engineering, pp.3–14, 1995.

[2] A.L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol.286, pp.509–512, 1999.

[3] K.M. Borgwardt, H. Kriegel, and P. Wackersreuther, “Pattern mining
in frequent dynamic subgraphs,” Proc. International Conference on
Data Mining, pp.818–822, 2006.

[4] Enron Email Dataset, http://www.cs.cmu.edu/˜enron/
[5] M. Garey and D. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness, W.H. Freeman, 1979.
[6] T.B. Ho, C.H. Nguyen, S. Kawasaki, S.Q. Le, and K. Takabayashi,

“Exploiting temporal relations in mining hepatitis data,” New Gen-
eration Computing, vol.25, no.3, pp.247–262, 2007.

[7] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm
for mining frequent substructures from graph data,” Proc. European
Conference on Principles of Data Mining and Knowledge Discovery,
pp.13–23, 2000.

[8] A. Inokuchi and T. Washio, “A fast method to mine frequent subse-
quences from graph sequence data,” Proc. International Conference
on Data Mining, pp.303–312, 2008.

[9] A. Inokuchi, T. Washio, Y. Nishimura, and H. Motoda, “A fast al-
gorithm for mining frequent connected subgraphs,” IBM Research
Report, RT0448, 2002.

[10] J.P. Kukluk, L.B. Holder, and D.J. Cook, “Inference of node re-
placement graph Grammars,” Intelligent Data Analysis, vol.11, no.4,
pp.377–400, 2007.

[11] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,”
Proc. International Conference on Data Mining, pp.313–320, 2001.

[12] E. Jeltsch and H. Kreowski, “Grammatical inference based on hy-
peredge replacement. graph-Grammars,” Lect. Notes Comput. Sci.,
vol.532, pp.461–474, 1990.

[13] I. Jonyer, L.B. Holder, and D.J. Cook, “MDL-based context-free
graph Grammar induction and applications,” International Journal
on Artificial Intelligence Tools, vol.13, no.1, pp.65–79, 2004.

[14] H. Mannila, H. Toivonen, and A.I. Verkamo, “Discovering frequent
episodes in sequences,” Proc. International Conference on Knowl-
edge Discovery and Data Mining, pp.210–215, 1995.

[15] MIT Media Lab: Reality Mining, http://reality.media.mit.edu/
[16] S. Nijssen and J.N. Kok, “A quickstart in frequent structure mining

can make a difference,” Proc. International Conference on Knowl-
edge Discovery and Data Mining, pp.647–652, 2004.

[17] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu, “PrefixSpan: Mining sequential patterns by prefix-projected
growth,” Proc. International Conference on Data Eng., pp.2–6, 2001.

[18] A. Sanfeliu and K.S. Fu, “A distance measure between attributed
relational graphs for pattern recognition,” IEEE Trans. Syst. Man
Cybern., vol.13, no.3, pp.353–362, 1983.

[19] R. Srikant and R. Agrawal, “Mining sequential patterns: General-
izations and performance improvements,” Proc. International Con-
ference on Extending Database Technology, pp.3–17, 1996.

[20] Y. Venema, Temporal Logic, Goble, Lou, ed., The Blackwell Guide
to Philosophical Logic, Blackwell, 2001.

[21] T. Washio and H. Motoda, “State of the art of graph-based data min-
ing,” SIGKDD Explorations, vol.5, no.1, pp.59–68, 2003.

[22] X. Yan and J. Han, “gSpan: Graph-based substructure pattern min-
ing,” Proc. International Conference on Data Mining, pp.721–724,
2002.

Akihiro Inokuchi received his Ph.D. degree
in Communication Engineering from Osaka
University, Japan, in 2004. He is an Assistant
Professor at the Institute of Scientific and In-
dustrial Research (ISIR), Osaka University, and
also a PRESTO Researcher at the Japan Science
and Technology Agency. At ISIR, his research
focuses on the study of data mining, machine
learning, and multidimensional databases. He
received the best paper award from the Journal
Award of Computer Aided Chemistry in 2002,

and the incentive awards from Japanese Society for Artificial Intelligence
in 2004 and 2008. Department of Reasoning for Intelligence, The Insti-
tute of Science and Industrial Research, Osaka University, 8–1 Mihogaoka
Ibaraki, Osaka, 567–0047 Japan.

Takashi Washio received his Ph.D. de-
gree in Nuclear Engineering from Tohoku Uni-
versity, Japan, in 1983, on the topic of process
plant diagnosis based on qualitative reasoning.
He is a Professor at the Institute of Scientific
and Industrial Research (ISIR), Osaka Univer-
sity. At ISIR, his research focuses on the study
of scientific discovery, graph mining, and high-
dimensional data mining. He received the Best
Paper Award from the Atomic Energy Society
of Japan in 1996, the Best Paper Award from

the Japanese Society for Artificial Intelligence in 2001, the Journal Award
of Computer Aided Chemistry in 2002, and Contribution Award from the
Japanese Society for Artificial Intelligence in 2009. He is a member of
the IEEE Computer Society. Department of Reasoning for Intelligence,
The Institute of Science and Industrial Research, Osaka University, 8–1
Mihogaoka Ibaraki, Osaka, 567–0047 Japan.

