
2850
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

LETTER

The Time Complexity of Hsu and Huang’s Self-Stabilizing Maximal
Matching Algorithm

Masahiro KIMOTO†a), Nonmember, Tatsuhiro TSUCHIYA†, Member, and Tohru KIKUNO†, Fellow

SUMMARY The exact time complexity of Hsu and Huan’s self-
stabilizing maximal matching algorithm is provided. It is 1

2 n2 + n − 2 if
the number of nodes n is even and 1

2 n2 + n − 5
2 if n is odd.

key words: self-stabilization, maximal matching, time complexity, stabi-
lization time, distributed computing

1. Introduction

The idea of self-stabilization was introduced by Edsger W.
Dijkstra in 1974 [1]. Self-stabilizing algorithms enable sys-
tems to be started in an arbitrary state and still converge to a
desired behavior.

In this letter, we discuss the time complexity of the
self-stabilizing algorithm proposed by Hsu and Huang in
[2], which finds a maximal matching in a network. This
algorithm is the first self-stabilizing maximal matching al-
gorithm and has been regularly cited in the literature.

Because of its technical importance, the time complex-
ity of this particular algorithm has been well studied. In [2],
Hsu and Huang show that it is bounded by O(n3), where n is
the number of nodes. In [3], Tel provides an almost tight up-
per bound, which is 1

2 n2+2n+1 if n is even and 1
2 n2+n− 1

2 if
n is odd. In [4] Tel gives a more concise proof for the O(n2)
bound than [3]. In [5] Hedetniemi, Jacobs and Srimani pro-
vide an upper bound of 2m + n, where m is the number of
edges. This gives a better bound than the one in [3] only
if the network is sparse. In this letter, we provide the exact
time complexity of the Hsu-Huan algorithm.

2. The Hsu-Huang Algorithm

We consider a distributed system consisting of n (≥ 2)
nodes. The topology of the system is modeled as an undi-
rected graph. Let N(p) denote the set of a node p’s adja-
cent nodes (neighbors). Each node p has a pointer. The
pointer either points to one of p’s neighbors which p selects
to match or has a null value. The notation p → q denotes
that p’s pointer points to q ∈ N(p), the notation p → null
denotes that p’s pointer has a null value, and the notation
p⇔ q denotes that p→ q ∧ p→ q.

Each node p is in either one of the following five states.

Manuscript received May 18, 2010.
Manuscript revised June 30, 2010.
†The authors are with Osaka University, Suita-shi, 565–0871

Japan.
a) E-mail: m-kimoto@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.E93.D.2850

1. If ∃q ∈ N(p) : (p→ q)∧ (q→ null), then p is waiting.
2. If ∃q ∈ N(p) : p⇔ q, then p is matched.
3. If ∃q ∈ N(p),∃r ∈ N(q) : (p→ q)∧ (q→ r)∧ (r � p),

then p is chaining.
4. If (p → null) ∧ (∀q ∈ N(p) : q is matched), then p is

dead.
5. If (p→ null) ∧ (∃q ∈ N(p) : q is not matched), then p

is free.

A maximal matching is found if and only if every node is
either matched or dead.

The Hsu-Huang algorithm at each node p is given by
the following three rules.

(R1)

(p→ null) ∧ (∃q ∈ N(p) : q→ p)

⇒ Let p→ q

(R2)

(p→ null) ∧ (∀r ∈ N(p) : ¬(r → p))

∧ (∃q ∈ N(p) : q→ null)

⇒ Let p→ q

(R3)

(p→ q) ∧ (q→ r) ∧ (r � p)

⇒ Let p→ null

where each rule is of form guard ⇒ action. Each rule is
executed atomically and no two processes can execute a rule
at a time.

A configuration of the system is a collection of the
pointers of all nodes. The execution of a rule by a node
causes a transition from a configuration to the next config-
uration. We define a run as a sequence of configurations,
s1, s2, · · · , sl such that the transition from si to si+1 is pos-
sible for any i ≤ l − 1. In [2], it is proven that any run of
the algorithm is finite and every node is either matched or
dead in the last configuration of any maximal run, mean-
ing that the system always converges a configuration where
a maximal matching is obtained. The time complexity of
the algorithm is the maximum number of steps (that is, rule
executions) required to find a maximal matching. Thus we
have:

(time complexity) = (the length of the longest run) − 1

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



LETTER
2851

3. Upper Bound on Run Lengths

Our derivation of the upper bound on the time complexity
follows the basic line of [3]. In [3], as in much of the self-
stabilization literature, the time complexity is analyzed us-
ing the variant function technique. A variant function is a
function over configurations, whose value is monotonically
decreases (in our context) when nodes execute a rule of the
algorithm.

Our variant function is a tuple (F,G), where F and G
are functions that map a configuration to a non-negative in-
teger as follows:

F ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌈
c+ f+w

2

⌉
(even n)

⌊
c+ f+w

2

⌋
(odd n)

G ≡ 2c + f

where c, f , and w are the number of chaining, free and wait-
ing nodes, respectively. For odd n, the variant function is
identical to that of [3]. The modification made is that a dif-
ferent expression of G is used for even n. As stated later,
this subtle modification is critical in obtaining the exact time
complexity.

The variable function is evaluated in the lexicograph-
ical order; i.e., F is evaluated first and then G. Below
we show that this function indeed monotonically decreases
when a rule is executed. As in [3], an important observation
is that c + f + w never increases because, by the design of
the rules, matched or dead nodes remain matched or dead.
Thus it suffices to see that either F or G is decreased by an
execution of a rule. In the following description, p, q, and r
refer to p, q, and r in the rule definition described in Sect. 2.

(1) Execution of Rule R1

Rule R1 is enabled only when p is free and q is waiting.
When it is executed, p and q become matched. Dead or
matched nodes do not change their state. Hence the rule
execution decreases c + f + w by at least 2, thus decreasing
F by at least 1.

(2) Execution of Rule R2

Rule R2 is enabled only when p is free and causes p to
become waiting. Because no node is waiting for p (∀r ∈
N(p) : ¬(r → p)), no waiting node becomes chaining nor
free. Except p, all free nodes remain free. Hence the execu-
tion of the rule decreases G by 1.

(3) Execution of Rule R3

This rule is enabled only when p is chaining and causes p
to be free or dead by setting p’s pointer to null. No node
becomes chaining. Also no waiting node becomes free, as
p is the only node that makes its pointer null. Hence the
execution of R3 decreases G by at least 1.

In summary, the execution of any of the three rules ei-
ther (1) decreases F or (2) decreases G but not increase F.

This leads to the following observation:

Observation 1. Any run s1s2 · · · sl is a concatenation of
runs σ1, · · · , σm such that: (1) all configurations in σi have
the same F value; (2) if configurations s, s′ occur in σi and
σi+1 respectively, then F(s) > F(s′); (3) if configurations
s, s′ consecutively occur in σi, then G(s) > G(s′).

This is schematically represented as follows:

· · ·

σi︷�����������������������︸︸�����������������������︷
· · ·
· · ·
· · ·
=

>

s j−2

F(s j−2)
G(s j−2)

=

>

s j−1

F(s j−1)
G(s j−1)

>

σi+1︷��������������������︸︸��������������������︷
s j

F(s j)
G(s j)

=

>

s j+1

F(s j+1)
G(s j+1)

=

>

· · ·
· · ·
· · ·
· · ·

Another observation used in obtaining the upper bound
is as follows:

Observation 2. Because a waiting node waits for a free
node, w ≥ 1 implies f ≥ 1. Hence G ≥ 1 if c + f + w ≥ 1;
G = 0 if c + f + w = 0.

Our derivation of the upper bound refines the one by
Tel in [3] in three points.

• The analysis of the configurations where F = � n
2 � is

refined (Lemma 1). This reduces the upper bound by 4
if n is even and by 2 if n is odd.
• The new variable function allows to reduce the upper

bound by n − 2 for the case of even n (Lemma 2).
• The analysis of the configurations where F = 0 is re-

fined (Lemma 3). This reduces the upper bound by 1
for the case of even n.

As a result, the new bound is smaller than that of [3] by n+3
if n is even and by 2 if n is odd.

Lemma 1. If a run s1s2 · · · sl satisfies F(s1) = · · · = F(sl) =
� n

2 �, then the length l of the run is at most 2n − 2.

Proof. From Observation 2, G(si) ≥ 1 for any si. If G(s1) ≤
2n− 2, then the lemma trivially follows. Thus in the follow-
ing of the proof, we assume that 2n − 1 ≤ G(s1) ≤ 2n and
proceed as follows: We first show that under this assump-
tion, there is always a “cycle” of chaining nodes in s1. Then
we show that l ≤ 2n − 2 holds in the two cases: (1) none of
the nodes consisting of the cycle executes a rule in the run;
and (2) some node in the cycle executes a rule.

Because of the assumption of 2n − 1 ≤ G(s1) ≤ 2n,
either c = n − 1 ∧ f = 1 ∧ w = 0 or c = n ∧ f = w = 0
holds in s1. Hence in s1 every chaining node has a pointer
pointing to another chaining node. (Note that even if f = 1,
a chaining node cannot point to that free node, since if a
node p has a pointer to a free node, then, by definition, p is
a waiting node.)

In s1, therefore, there is at least one cycle of chaining
nodes; that is, there is a sequence of nodes p1, p2, · · · , plen

such that pi → pi+1 for all i, 1 ≤ i ≤ len − 1 and plen → p1.
By the definition of a chaining node, the cycle contains at
least three nodes; that is, len ≥ 3.



2852
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

If none of the nodes consisting of the cycle executes a
rule in the run, G(sl) ≥ 6, because len ≥ 3 implies c ≥ 3. In
that case, since 2n ≥ G(s1) > G(s2) > · · · > G(sl) ≥ 6, the
run length l is at most 2n − 5.

Now consider the case where some node in the cycle
executes a rule in this run. Note that only R3 can be executed
by this node. Let p be the first node that executes the rule in
the cycle and si be the configuration in which this rule exe-
cution occurs. Then G(si)−3 ≥ G(si+1), because p becomes
free and the node that points to p in the cycle becomes wait-
ing, resulting in a decrease in c by at least 2 and an increase
in f by 1. Since 2n ≥ G(s1) > G(s2) > · · · > G(sl) ≥ 1, the
run length l is at most 2n − 2. �

Lemmas 2, 3, 4 apply to the case of even n.

Lemma 2. When n is even, if a run s1s2 · · · sl satisfies
F(s1) = · · · = F(sl) = x > 0, then the length l of the run is
at most 4x.

Proof. G(s1) ≤ 4x, since c is at most 2x. From Observa-
tions 1 and 2, 4x ≥ G(s1) > G(s2) > · · · > G(sl) ≥ 1; thus
the lemma follows. �

Lemma 3. When n is even, if a run s1s2 · · · sl satisfies
F(s1) = · · · = F(sl) = 0, then the length l of the run is
1.

Proof. When n is even, if F = 0, then c + f + w = 0 and
2 f+w = 0. Hence the run contains exactly one configuration
in which every node is matched or dead. �

Lemma 4. When n is even, the length of any run is at most:

1
2

n2 + n − 1

Proof. As there are n nodes, 0 ≤ F ≤ n
2 and 0 < n

2 . From
Observation 1 and Lemmas 1, 2, 3, the upper bound on the
run length is derived as follows:

(2n − 2) +

n
2−1∑
x=1

4x + 1

=
1
2

n2 + n − 1

�

Lemmas 5, 6, 7 apply to the case of odd n.

Lemma 5. When n is odd, if a run s1s2 · · · sl satisfies
F(s1) = · · · = F(sl) = x > 0, then the length l of the run is
at most 4x + 2.

Proof. G(s1) ≤ 4x + 2, since c is at most 2x + 1. From
Observations 1 and 2, 4x + 2 ≥ G(s1) > G(s2) > · · · >
G(sl) ≥ 1; thus the lemma follows. �

Lemma 6. When n is odd, if a run s1s2 · · · sl satisfies
F(s1) = · · · = F(sl) = 0, then the length l of the run is
at most 2.

Proof. At each configuration si in the run, either c+ f+w = 1
or c + f + w = 0, because F(si) = 0.

If c + f + w = 1, then 2c + f = 2, since neither c =
w = 0 ∧ f = 1 nor c = f = 0 ∧ w = 1 is possible: This is
because a node can be free or waiting only if at least one of
its neighbors is neither matched nor dead. If c + f + w = 0,
then 2c + f = 0. As a result, G(si) = 2 (if c + f + w = 1)
or G(si) = 0 (if c + f + w = 0) for any si in the run, thus the
run length is at most 2. �

Lemma 7. When n is odd, the length of any run is at most:

1
2

n2 + n − 3
2

Proof. As there are n nodes, 0 ≤ F ≤ � n
2 � and 0 < � n

2 �.
From Observation 1 and Lemmas 1, 5, 6, the upper bound
on the run length is derived as follows:

(2n − 2) +
� n

2 �−1∑
x=1

(4x + 2) + 2

=
1
2

n2 + n − 3
2

�

4. The Exact Time Complexity

In this section we provide the exact time complexity, by
showing an algorithm execution whose run length exactly
matches the upper bound obtained in the previous section.
This example of execution is identical to that shown by Tel
in [3]; however the run length is analyzed only for the case
of even n. Here we provide the exact run length for the case
of odd n, generalizing his result to any n. Before presenting
our result, we first describe this execution in order to clearly
show how the result is derived.

Suppose that the system consists of n ≥ 3 nodes
p1, p2, · · · , pn and that the topology of the system is a com-
plete graph. Also suppose that initially p1 → p2, p2 →
p3, · · · , pn−1 → pn, pn → p1.

1. R3 is executed by n − 1 nodes p1, p2, · · · , pn−1. As a
result, all the n − 1 nodes become free and pn becomes
waiting for p1.

2. R2 is executed by n − 2 nodes p2, p3, · · · , pn−1 to point
p1.

3. R1 is executed by p1 to match pn. As a result, p1 and
pn become matched and the other n − 2 nodes become
chaining.

Phases 1–3 result in n − 2 chaining nodes and two matched
nodes.

Phases 4–6 starts with n − i matched nodes and i (≥ 2)
chaining nodes pointing to a matched node. Initially i is
n − 2.

4. R3 is executed by the i chaining nodes. As a result, all
the i nodes become free.



LETTER
2853

5. Let p be any one of the i free nodes. The free nodes
other than p execute R2 to point p. The i − 1 steps
cause these free nodes to become waiting.

6. R1 is executed by one of the waiting node, say q, to
match p. As a result, p and q become matched and
the other i − 2 nodes become chaining. Phases 4–6 is
repeated with i replaced with i − 2 until at most one
chaining node remains.

As a result, all nodes become matched if n is even,
whereas a single chaining node remains if n is odd. In the
latter case, Phase 7 is performed.

7. R3 is executed by the chaining node, causing the node
to become dead.

The number of steps of the above execution is ex-
pressed as follows: For even n:

2n − 2 +

n
2−1∑
x=1

(2x + (2x − 1) + 1)

=
1
2

n2 + n − 2

For odd n:

2n − 2 +
� n

2 �−1∑
x=1

(2(x + 1) + 2x + 1) + 1

=
1
2

n2 + n − 5
2

For the case n = 2, we can consider the follow-
ing scenario. Starting with two free nodes, the execution
of R2 by each of the nodes leads to a final configuration
where both are matched. The number of steps involved in

this example is two, which coincides with the above expres-
sion.

Theorem 1. The exact time complexity of the algorithm is
expressed as follows.

1
2

n2 + n − 2 (even n)

1
2

n2 + n − 5
2

(odd n)

Proof. By Lemma 4 and Lemma 7, these expressions repre-
sent the upper bound on the time complexity. The above ex-
amples of algorithm execution show that these expressions
also represent the lower bound. �

5. Conclusion

We analyzed the time complexity of Hsu and Huang’s self-
stabilizing maximal matching algorithm [2]. Refining the
result by Tel [3], we provided the exact time complexity.

References

[1] E.W. Dijkstra, “Self-stabilizing systems in spite of distributed con-
trol,” Commun. ACM, vol.17, no.11, pp.643–644, 1974.

[2] S.C. Hsu and S.T. Huang, “A self-stabilizing algorithm for maximal
matching,” Inf. Process. Lett., vol.43, no.2, pp.77–81, 1992.

[3] G. Tel, “Maximal matching stabilizes in quadratic time,” Inf. Process.
Lett., vol.49, no.6, pp.271–272, 1994.

[4] G. Tel, Introduction to Distributed Algorithms, Cambridge University
Press, New York, NY, USA, 2001.

[5] S.T. Hedetniemi, D.P. Jacobs, and P.K. Srimani, “Maximal matching
stabilizes in time o(m),” Inf. Process. Lett., vol.80, no.5, pp.221–223,
2002.


