
2922
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

PAPER Special Section on Architectures, Protocols, and Applications for the Future Internet

Otedama: A Relocatable RFID Information Repository
Architecture

Shigeya SUZUKI†a), Member, Rodney VAN METER††, Nonmember,
Osamu NAKAMURA††, and Jun MURAI††, Members

SUMMARY We present a novel RFID middleware architecture,
Otedama, which makes use of a unique property of RFID information to
improve performance. RFID tags are bound to items. New information re-
lated to an RFID tag is generated at the site where the ID exists, and the en-
tity most interested in the history and the item itself is in close proximity to
the RFID tag. To exploit this property, we propose a scheme which bundles
information related to a specific ID into one object and moves that bundle
to a nearby server as the RFID tag moves from place to place. By using
this scheme, information is always accessible by querying a system near
the physical location of the tag, providing better query performance. Addi-
tionally, the volume of records that must be kept by a repository manager
is reduced, because the relocation naturally migrates data away as physical
objects move. We show the effectiveness of this architecture by analyzing
data from a major retailer, finding that information retrieval performance
will be six times better, and the cost of search is possibly several times
cheaper.
key words: RFID, middleware, intelligent storage, reactive agent

1. Introduction

In this paper, we propose a novel information relocation and
search scheme for RFID information systems that provides
better search performance and resource utilization than cur-
rently standardized and proposed schemes.

RFID, an automatic-identification technology using
Radio Frequency, has been developed for different appli-
cation areas [1]. Recently, several different standards have
been developed [2] and used in many application areas [3].
Figure 1 depicts a supply chain item flow with contexts cap-
tured by an RFID system. An item travels from the factory,
through several intermediate sites such as distribution cen-
ters (DCs), finally gets to a store, and is sold to a consumer.
The RFID tag and related information allows software to
fulfill a variety of business functions.

Since around the year 2000, networked RFID systems
have received a lot of attention [4]. Such systems use the
ID number recorded on a tag as a hint to locate and access
information held in networked databases. By limiting the
functionality required of the tag, a networked system allows
the tag manufacturer to produce tags at very low cost even
as the system functionality improves.

Manuscript received March 6, 2010.
Manuscript revised June 20, 2010.
†The author is with the Graduate School of Media and Gover-

nance, Keio University, Fujisawa-shi, 252–8520 Japan.
††The authors are with Faculty of Environment and Information

Studies, Keio University, Fujisawa-shi, 252–8520 Japan.
a) E-mail: shigeya@wide.ad.jp

DOI: 10.1587/transinf.E93.D.2922

Fig. 1 RFID and contexts in supply chain management.

The information typical RFID equipment provides is
the observed ID of an RFID tag ∗. By combining the ID in-
formation and some contextual information about the RFID
equipment – where it is, and when it read the ID – soft-
ware can capture meaningful information, such as the time
the item with the RFID passed a specific gate. At each site
in Fig. 1, deployed equipment will generate raw RFID in-
formation. Upon reception of raw RFID information, pre-
configured software components will capture contexts and
store the contexts to databases, which are accessed by other
business software components.

There are several peculiarities of an RFID system:

• because it is designed to detect the movement of the
objects among physical locations, the system must be
distributed;
• information generated by the equipment is also dis-

tributed; and
• to track an item among these locations, we need to in-

tegrate information generated among distributed sites.

To handle these issues, RFID middleware provides two
functions: a distributed repository which stores the infor-
mation, and a mechanism to discover the relevant repository
locations based on a tag’s ID.

The first industry-defined middleware mechanism, Ob-
ject Naming Services (ONS) [5], stores the information at
a single repository which is statically mapped from an ID.
That repository will normally be operated by the manufac-
turer of the item to which the tag is attached. Another
mechanism currently in development, Discovery Services
(DS) [6], requires each organization in the supply chain to
operate a repository, which stores the information gener-

∗Some RFID tags, also have user memory, but the use of that
memory is beyond the scope of this paper.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

SUZUKI et al.: OTEDAMA: A RELOCATABLE RFID INFORMATION REPOSITORY ARCHITECTURE
2923

ated at its sites. A Discovery Service, which locates these
repositories based on ID, is provided by one or more service
providers, which are similar to Internet search engines.

Both ONS and DS have limitations. ONS expects to
use a single repository for a specific ID range, requiring the
manufacturer to operate the repository indefinitely, since the
optimal data retention duration is unknown. This raises con-
cern about the scalability of the repository. DS expects that
there will be multiple repositories operated by possibly dif-
ferent organizations. When a client wants to find informa-
tion, it must issue requests to multiple servers in different lo-
cations, which requires far more computing resources. The
DS scheme also cannot define a retention policy.

We propose a novel approach to resolve these issues,
making use of the fact that the entity most interested in the
RFID information about an item is usually physically lo-
cated near the item. We use an information placement strat-
egy which relocates or replicates the information related to
a specific ID alongside the actual item as it moves between
sites. By using this strategy, the number of requests required
to find records can be smaller and response latency can be
lower. Also, since each repository can monitor the level of
interest for specific records bound to an ID, it can decide
when to delete unused records. This policy will effectively
provide better query performance and better resource uti-
lization.

The contributions of this paper are:

• to point out that the entity most interested in a specific
RFID tagged item is often near the physical item, pro-
viding a basis for improved automatic retention deci-
sions;
• to propose a possibly faster, resource efficient storage

system matched to the information scheme by using
this fact; and
• to describe a new scheme that relocates information

between sites while implementing access control, with
the help of a digital rights management (DRM) mech-
anism.

This paper is structured as follows: in Sect. 2, we de-
tail the current architecture and its issues, in Sect. 3, we de-
scribe our proposal in detail, in Sect. 4, we evaluate the ef-
fectiveness of our proposal, then in Sect. 5, we discuss re-
lated work. Finally, we wrap up our discussion in Sect. 6.

2. EPCnetwork Architecture and Issues

In this section, we introduce the de-facto standard EPCnet-
work architecture and its issues. To clearly state our focus,
we first describe the generic components of a network RFID
system, then continue on to the specifics of the EPCnetwork
system.

2.1 Motivation: Data Visibility

The motivation to use RFID is to improve visibility of the
movement of products in a supply chain. Track and Trace

(“where is my stuff?” and “where has my stuff been?”) is
the major application use case of the EPCnetwork system.
To achieve this, sites participating in the supply chain will
collect information generated by RFID equipment and pro-
vide that information to interested parties (clients). In the
Track and Trace (TnT) scenario, a client will request in-
formation bound to a specific ID, called an EPC (Electric
Product Code) [7].

2.2 Components of a Networked RFID System

A networked RFID system comprises the following six com-
ponents:

Identification Number Scheme The numbering scheme
for an ID imprinted on an RFID tag, used as the pri-
mary key of a networked RFID system.

RFID Event Capturing RFID is a sensor system which
captures information from the physical world. This
component, with the help of some additional equip-
ment, captures events generated by communication be-
tween an RFID tag and an RFID reader and provides
information to software components.

Context Capturing An RFID event – observation of an ID
at a specific time on a specific reader – itself does
not provide any meaning. By combining RFID events
with other information, such as placement of the RFID
reader, the system can infer meaningful context such as
“item A has moved from room X to room Y.”

Repository Once meaningful contexts are captured, they
can be stored to a repository for later reference. A
repository can be either distributed or centralized. A
repository may contain some extra information related
to business logic.

Interfaces Captured contexts can be provided to other sys-
tems such as business information system through de-
fined interfaces.

Discovery If repositories are distributed among sites, there
must be a mechanism for discovering the set of reposi-
tories relevant to a given search criteria.

2.3 Data Model of a Networked RFID System

RFID-related information can be divided into three cate-
gories:

RFID Event An RFID Event is information directly gener-
ated by the RFID equipment with the minimum amount
of contextual information (placement of the reader and
time of read), e.g., “EPC x.y.z is observed at reader A
at time T.”

Captured Context Meaningful context is captured from
single or multiple RFID Events along with other site
specific or contextual information, e.g., “EPC x.y.z
passed docking door D,” which is captured by adding
the information that reader A is at docking door D.

External information In addition to the captured context,

2924
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

with the help of some business information, the system
can determine some business context, e.g., “EPC x.y.z
has been shipped (because it passed docking door D).”
External information may also include database keys
which interface with external business systems.

The minimum information which RFID systems are re-
quired to support is RFID Event and Captured Contexts,
a combination we call “RFID Information.” Note that, in
reality, it is impossible to perfectly read RFID tags every
time, and the deployment environment can be more com-
plex. Some filtering mechanism with multiple readers is
needed, but for brevity of discussion, here we assume per-
fect read.

2.4 EPCglobal Network Standards

The EPCglobal architecture consists of several standards †.
The following standards relate to this paper: the Tag Data
Standard specifies the Identification Number Scheme; the
Low Level Reader Protocol, Reader Protocol and Applica-
tion Level Event provide the functionality for Event Captur-
ing; the EPC Information Services (EPCIS) [9] is the speci-
fication for Repositories; one standard (Object Naming Sys-
tem – ONS [5]) and one developing standard (Discovery
Services – DS) for discovering EPCIS repositories are avail-
able [6]; and although the EPCglobal architecture standards
do not specify how to capture contexts, the EPCglobal event
data model is a mixture of the three categories of informa-
tion we discussed in Sect. 2.3.

2.5 EPCnetwork Repository and Discovery Mechanism

An EPCIS repository is a common component which stores
RFID Events (EPC Event information) keyed by ID (EPC),
and provides a query interface to EPCnetwork clients. Since
EPCIS is distributed among several sites, a discovery mech-
anism is essential. In this section, we discuss the design of
the two currently-available mechanisms, ONS and DS.

2.5.1 Object Naming Service (ONS)

The Object Naming Service service discovery mechanism
uses part (or all) of an EPC and service type as keys to re-
solve a list of service locations. ONS is implemented on top
of the Internet Domain Name System [10], and the list of
service locations is returned by Domain Name.

Figure 2 shows typical information access flow in an
EPCnetwork system using ONS. Initially, a service loca-
tion (i.e., EPCIS repository) for a range of EPCs (typically
assigned to a manufacturer) is preconfigured and stored as
a set of DNS records. Then, at each site, a subsystem with
data to store finds the service location matching the EPC just
read by consulting the ONS(1)(2) ††, and stores the event in-
formation to the server(3). Similarly, to access information, a
client at, e.g., retail company headquarters first asks ONS to
resolve a repository for the ID(4)(5), then asks the repository

Fig. 2 Access flow of ONS based system.

Fig. 3 Access flow of Discovery Services based system.

to retrieve(6)(7). The mapping of EPC with type to service
location is 1 : 1, and does not change.

2.5.2 Discovery Services (DS)

Discovery Services is also a discovery mechanism for EPC-
keyed information, but has different characteristics, and
works much like an Internet search engine. Figure 3 shows
typical information access flow in an EPCnetwork system
using DS. First, the subsystem that read the EPC stores in-
formation in an EPCIS(1), which records in the DS that it has
information about the given EPC(2). When a client asks the
DS about an EPC, the DS will return a list of service loca-
tions which may have information(3)(4). The client then will
ask each service and combine all of the information as the
query result(5)(6). The EPC to service location mapping is
1 : N, and the several service locations are usually physi-
cally distributed among multiple sites.

†For brevity, we do not reference each standard individually.
All EPCglobal standards are available via [8]. As of this writing,
the document on DS is not publicly available from EPCglobal, but
work from the same group can be obtained from the EU Bridge
Project [6].
††Superscript numbers in parentheses represents numbers in

black circles in figures.

SUZUKI et al.: OTEDAMA: A RELOCATABLE RFID INFORMATION REPOSITORY ARCHITECTURE
2925

2.6 Problems with the EPCnetwork Architecture

The distributed nature of information sources in an RFID
system forces difficult design decisions, and both ONS and
DS exhibit some problems with mismatch between design
decisions and actual usage patterns:

ONS: not for item-level use An EPC consists of three
fields: manufacturer ID, product ID and serial num-
ber [7]. ONS uses the manufacturer ID and product ID
to locate the manufacturer’s service location – usually a
repository. When system integrators use item-level in-
formation, since ONS only provides product level ser-
vice location, servers have to deal with all serialized
items for a product. In other words, ONS is not de-
signed to resolve item level information, which needed
to use in Track and Trace scenarios. There is concern
on scalability for repository server.

DS: Placement policy and search key mismatch
Discovery Services provide a way to discover repos-
itories which may have information related to an ID.
However, information generated at a site store the
information to the location near by the information
source, regardless of the observed ID. Client must re-
quest each of the candidate servers which DS resolved,
to get full set of results. In other words, there is a mis-
match between the path of the physical item and how
each of repository stores the information according to
an ID.

Also, for both architectures, the retention policy is unde-
fined, resulting in storage requirements considerably larger
than optimal. These problems cause inefficient use of com-
puting resources and slower responses.

3. Proposal

We propose a novel architecture to overcome the problems
discussed in Sect. 2.6 by making use of the collocation of the
RFID tag and the interested party, as discussed in Sect. 1. To
use this unique property effectively, we propose a relocat-
able information repository architecture, “Otedama,” with
the following properties:

Information as bundles A time series of RFID Informa-
tion keyed by an ID is managed as a bundle.

Shared, coordinated distributed repository Shared, co-
ordinated distributed repositories will exchange bun-
dled information.

Bundles that track RFID tags A bundle is relocated or
replicated between repositories. Push and pull on bun-
dles occur when an ID is observed at a location, caus-
ing effective relocation of the information to the prox-
imity of the tag itself.

Automatic Retention Since bundles can move based on
the client’s interest, suitable retention policies often oc-
cur naturally.

Fig. 4 Example of bundle.

Access control at bundle Access control is enforced at the
bundle level using a DRM-like scheme.

Notifications To update external databases, a bundle may
have notification control parameters set to send update
notification to remote service entities.

Use DS as current location discovery For fallback search,
DS is used for lookup current bundle location.

We made the following assumptions when designing this
proposal:

• The relationships between sites are business relation-
ships which are generally stable for weeks to years.
• The previous hop neighbor can be found based on a

given ID (which includes the manufacturer ID) and
knowledge of those business relationships.
• The size of each record is small: a few hundred bytes

per records at most, usually less than 100 bytes (see
Sect. 3.1).

3.1 Information Model and Bundle

We separate the information handled by Otedama into two
types: RFID-related information and external business in-
formation. Otedama manages only the former, and relies
on external services for the latter by providing notification
mechanisms (see Sect. 3.6). All of the information stored in
Otedama is keyed by an RFID tag’s ID. Otedama treats a
series of RFID information as a bundle, which is the unit of
relocation. Figure 4 depicts an example of a bundle. Each
bundle has an ID for the bundle itself(1), a data series ID
which represents the RFID tag ID (EPC)(2), an access group
ID used for access control (see Sect. 3.5)(3), control data used
for notification and extensions (see Sect. 3.6)(4), and a series
of data entries(5). In a bundle, each RFID Event and its Cap-
tured contexts are expressed as a single entry consisting of
Date/Time, Context and Attributes.

3.2 Bundle Update and Relocation

When a subsystem needs to store an RFID event, it is added
to the bundle for the matching ID. Bundles are automati-
cally discovered (see Sect. 3.3) and, if necessary, relocated
to the local repository prior to update. If the bundle is not
instantiated locally, the system will search for it and pull the
bundle to the local repository. Relocation will be initiated
when a bundle matches a search request, the item physically
arrives at a new location and the ID is observed (pull), or by

2926
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Fig. 5 Example of bundle pull.

using knowledge about the destination on shipment (push).
Figure 5 depicts the pull procedure. Location #1 has

the bundle for an ID. Usually, Location #1 tries to push the
bundle to Location #2(1). When the ID is observed at Lo-
cation #2, a “Receive” event occurs(2). If the bundle is not
found, then, as a fallback scheme, the bundle for the ID is
pulled from Location #1(3), and finally, a new entry is added
to the bundle(4). Since the shipping side of the system knows
about the unique destination location anyway, the cost to
determine the destination server will be minimal. Once the
pull is complete, the destination system will find the infor-
mation locally when needed. Since physical movement of
an item takes time, push can happen asynchronously, putting
the data in place before the actual arrival of the item, elim-
inating the wait for a synchronous pull. When a bundle
moves, to make its location visible to other systems, the
repository location is updated at DS. For combined use with
Otedama, DS can simply keep the latest location of the bun-
dle and can eliminate records for previous locations. Note
that, if DS is used with Otedama, DS is required to return
the latest repository location of the bundle to Otedama, and
repositories which do not participate in the Otedama scheme
must not register with DS. Repositories can voluntarily keep
records, but registering these obsolete locations could create
confusion to Otedama. Therefore, we prohibit this kind of
update. Access control must be enforced accordingly. Due
to the problem’s nature, when the system tries to pull infor-
mation, the bundle usually is located at the previous hop in
a well-defined chain. Note that, since a bundle is always up-
dated at most at a single location, a merge operation is not
necessary. But once that happens, since all of the data is
time-series data, it is possible to merge without problem.

3.3 Search

Figure 6 shows Otedama’s three-way search mechanism.
When a repository receives a request (either a query or a
store request following an RFID event)(1), it first tries to lo-
cate the matching bundle(s) locally(2). If the bundle is not
found, the repository next queries a neighbor(3)(4). In ap-
plications such as TnT, this process works well, because a
single neighbor is typically defined based on business rela-
tionships in the supply chain, as noted in our assumptions

Fig. 6 Otedama search scheme. Steps 3-4 may be skipped if the bundle
is already local. Steps 5-8 are executed only when the bundle is not found
either locally or in the nearest neighbor in the supply chain.

above. As a last resort, DS is used to find the latest bundle
location(5)(6), then the bundle is pulled from the discovered
location(7)(8).

3.4 Automatic Retention

Otedama uses the proximity property to determine the pre-
ferred location for a bundle. After a bundle is relocated, it
is safe to delete older versions; only the site where the ID
was last seen is required to retain the record. However, for
redundancy, historical tracking, or other business purposes,
it might be desirable to retain older records for a time.

3.5 Access Control

Each bundle’s control information and data entries can be
encrypted with a symmetric key called the bundle access key
(BAK), which is shared among entities allowed to access the
bundle’s contents. The access group ID identifies which key
will decrypt the bundle contents. That key is managed using
a PGP-like multiple entity key sharing scheme [11].

Each client has its own PKI public/private key
pair [12]. When a group is created, a unique secret key
is generated. That key is encrypted using the public
key of each group member, and the set of X.509 sub-
ject [12]/encrypted key pairs is stored in the repository as
a bundle. To access the data bundle, a client uses the ac-
cess group ID to find the key bundle, extracts the copy of
the BAK encrypted with its own public key, and uses its
matching private key to decrypt the BAK. The key bundle is
relocated or replicated along with data bundles as necessary.

3.6 Notification

To interact with other systems on the reception of events,
Otedama has a notification mechanism. In a bundle, one
or more callback service locations may be configured as
control data, allowing the system to notify external ser-
vices with selected data. Using this scheme, rich, purpose-
oriented databases can be created at a site, while keeping
bundle management simple.

SUZUKI et al.: OTEDAMA: A RELOCATABLE RFID INFORMATION REPOSITORY ARCHITECTURE
2927

4. Evaluation

In this section, we evaluate Otedama by comparing with two
schemes: ONS and vanilla DS. We analyze two simplified
procedures, storing a captured context bound to an ID, and
retrieving a set of captured contexts based on an ID. We
present the cost in terms of:

• the number of requests required for store and retrieve,
• the number of records stored in each site repository,

and
• the number of records that the DS must store.

To simplify discussion, we use the parameters listed in Ta-
ble 1. First, we discuss some of these parameters.

A client-server based service’s cost, such as response
time, is composed of network cost (communication delays)
and computing cost (processing of a request). Although
precise modeling is difficult, simplified modeling focusing
on some of the factors is possible. For a distributed sys-
tem, network delay is the major factor in the response time.
For a system using databases, performance can be affected
by the amount of of data (in bytes or number of records),
which will affect the number of accesses to secondary stor-
age, which is the major factor in the database systems’ pro-
cessing cost. Since it is difficult to build an analytic model
for throughput independent of an actual system configura-
tion, we primarily focus on response time, which we can
discuss independent of the underlying individual servers.

The parameter pairs of AR - AL, SR - SL, KR - KL dis-
tinguish remote/local request costs for information access,
store and delete. When comparing response time of remote
server request and local server request, the major differen-
tiating factor is network delay. Depending on the network
distance, the delay may vary by several orders of magni-
tude. If both of the nodes are communicating using a local
area network, the round-trip response time of a packet is
less than 0.3 ms even with consumer class gigabit Ethernet
switches. In contrast, if the communicating nodes are con-
nected through a wide area network, the round-trip response
time is 7 to 8 ms†. If the destination is overseas, the delay

Table 1 Parameter notation.

Parameter Description

x Type of site: Factory: F, DC: D or Store: S
I Number of items observed through the supply chain
Ix Number of items observed at site x
L Number of sites handling an item (supply chain depth)
Px Average stock duration at site x (days)
Dx Average data retention duration at site x (days)
E Number of events observed per item at each site

AL, SL, KL Cost to Access(read)/Store/Delete a record at local
server

AR, SR, KR Cost to Access(read)/Store/Delete a record at remote
server

QR, QN Cost to lookup repository for remote/neighbor
RD Cost to register a repository to DS
Ui Number of items factory i ships over lifetime

could be a minimum of 100 ms. We can approximate re-
mote server response time is 20 to 300 times slower than
local server. Reportedly, Walmart is importing 70% of its
commodities from China [13]. If the factory’s servers are
in China, AR, QR or SR can be larger than for US domestic
companies’ servers, making the effect more dramatic. We
also need to estimate the contribution of the request pro-
cessing to our total latency. A typical RFID repository sys-
tem’s implementation relies on some relational database im-
plementation such as PostgreSQL or MySQL. According to
Intel, latest high-end server system’s performance is nearly
0.7Million mixed transaction per minute [14]. Clearly, for a
simple table indexed by a single ID, which is adequate for
our needs, requests on even a much lower performance sys-
tem will still require far less than one millisecond. In any
distributed RFID system, processing time will be negligible
compared to long distance network delay. Similar reasoning
can be applied to store and delete also. We can conclude
that:

AR � AL, SR � SL, KR � KL

The parameter pair QR - QN are costs to locate candi-
date repositories. QR is the cost to locate repositories from
DS or ONS by specific ID. QN is the cost to locate neigh-
bors by specific ID. Service cost for either ONS or DS (both
response time and computing) are unknown and difficult to
model, or even difficult to measure in a reasonable way. If
we likewise assume processing time of less than one mil-
lisecond for both ONS and DS, we can ignore the difference
between ONS and DS because communication delay is far
larger. For this reason, we treat ONS and DS as having the
same locate cost, QR. Note that, ONS is based on DNS,
and DNS data is extensively cached. Since it is too complex
to include such factor into this model, we just treated as a
remote request. Similar discussion can be applied on DS
registration cost, RD. We treat RD as same as QR. For QN ,
as stated in assumption above, the single target neighbor can
be found by product ID. We can use a single, low-frequently
update, relatively low-volume table for the neighbor search.
The size of the table can be determined from the number of
different items available at a large store (Please refer to Ta-
ble 2), and the record size is the size of a URL of a neighbor
server plus the size of an ID. If we allocate 100 bytes for
each record, the amount of data of the whole table will be
142,000 × 100 � 13.5 MBytes. With modern system, all of
that data can be held in memory and lookup time will be
negligible. We can conclude with following expressions:

Table 2 Walmart supply chain parameters [13], [15].

Parameter Value Units
Cases handled in whole company 5.5 billion cases / year
Number of DC 147
Percentages of import from China 70% of commodities

by price
Number of products at large Wal-
mart SuperStore in CA

142,000 Products

†Sampled using 100 Mbps VDSL in Tokyo metropolitan area.

2928
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Table 3 Per-item Performance Cost to Store a Series of E Contexts. The
operation may consist of several phases, depending on the scheme. L, P, S
and R denotes Locate, Pull, Store and Register. The three Otedama lines
are for three separate fallback cases. Phase shows each step’s cost, and total
shows overall costs.

Scheme Phase Total
L P S R (L, P cumulative)

ONS AR 0 E · SR 0 AR + E · SR

DS 0 0 E · SL RD E · SL + RD

Otedama
(Typical)

� 0 0 E · SL 0 E · SL

Otedama
(Neighbor)

QN AR E · SL RD QN + AR
+E · SL + RD

Otedama
(DS)

QR AR E · SL RD QN + QR + 2AR
+E · SL + RD

QR � QN , QR � RD

In addition to the discussion above, we use the figures in
Table 2 [13], [15] to evaluate the system requirements and
workload. We use six for the number of contexts captured
at a site for each ID (receiving, storage, order-picking, ac-
cumulation, sorting and shipping) [16].

4.1 Number of Store Requests

Table 3 shows the expressions for required performance to
store E contexts at a site for a single item. These expressions
capture the importance of the first request, and the amorti-
zation of cost over the set. ONS requires one resolve re-
quest, then stores to a single server. DS, in contrast, requires
the local store cost plus one-time registration cost for DS.
Otedama works in three stages. First, Otedama consults the
local repository if it is an Otedama site. The locate cost is
negligible since Otedama can detect whether the bundle for
the ID to be stored exists when storing the information onto
the local repository. In other words, the cost is absorbed into
SL. This is the typical case, since Otedama pushes bundles
to the next hop neighbor when it ships the product the ID
is referring to. Due to this, Otedama typical does not re-
quire RD, since registration happens on the initial push. If
Otedama can’t find the record locally, it find the neighbor
from local table, then consults it. Otedama requires one pull
cost and local store costs when the bundle is found at the
immediate neighbor. If not, it must consult the DS, result-
ing in two more remote calls (QR and AR). Since SR � SL, it
is clear that ONS, which relies heavily on remote requests,
has big disadvantages.

In the fallback case, Otedama consumes more re-
sources than DS (QN + QR + 2AR or QN + 1AR compared to
zero AR). However, because business relationships are usu-
ally stable, and bundle usually pushed from previous neigh-
bor, we can expect the typical result most of the time. While
non-Otedama participating sites require DS-based search, at
the Otedama sites, which participate in the supply chain, the
typical case applies except in some failure situations. As
long as entire Otedama chain is operating correctly, fallback
will not happen. If we expect 99.99% uptime of the system,
we expect 0.01% fallback rate.

Table 4 Performance cost to retrieve contexts by ID. The three Otedama
lines represent different fallback cases. Requests shows each step’s cost,
and total shows overall costs.

Scheme Requests Total
Locate Retrieve (Cumulative for Otedama)

ONS QR AR QR + 1 · AR

DS QR L · AR QR + L · AR

Otedama
(Typical)

AL AL

Otedama
(Neighbor)

QN AR QN + 1 · AR + AL

Otedama
(DS)

QR AR QR + QN + 2 · AR + AL

Table 5 Number of records at each site by scheme.

Scheme Number of Records Note
ONS E · Ui · L For each factory i
DS E · Ix · Dx For each site, by type x
Otedama E · Ix · Px For each site, by type x

4.2 Number of Retrieve Requests

Table 4 shows the performance impact of retrieving a set of
contexts among supply chain sites for a requested ID. For
ONS, the single remote repository can be found by a sin-
gle request, then the records are retrieved from the server.
For the vanilla DS system, after retrieving the list of servers
from the remote DS server, the client must access at most
L remote servers to fetch the complete set of records across
the supply chain. Otedama initially consults the local repos-
itory. If the bundle is found, the locate phase is done and
no pull is necessary. If the bundle is not found in this step,
Otedama falls back first to neighbor query, then, DS. If there
is no repository nearby, the client first queries DS to find the
correct repository, then accesses it to get all of the records
as a single bundle. If the client is at an Otedama site, the
cost to find a record is either AL when it is found locally, or
an additional QN and AR to fetch from the neighbor site, or
additional QR + AR to use DS as last resort.

From the query cost point of view, because vanilla DS
requires accessing up to L servers remotely to retrieve the
latest information, the system-wide cost is far more than
Otedama. As we discussed in Sect. 4.1, during normal,
fault-free operation, all Otedama requests will correspond
to the typical case, which is very efficient.

4.3 Estimated Number of Records at Repositories

Table 5 shows the expressions for the estimated number of
records at each repository for the three schemes. For DS and
ONS, there is usually no way to know when to delete the
record. Thus, repositories must either 1) keep records for
the foreseeable future, or 2) use a preconfigured retention
duration (Dx). In contrast, Otedama can delete the records
whenever the item itself moves to a different location. For
this reason, for Otedama, the duration for a record at each
site in the supply chain is the same as the item’s stock dura-
tion, Px. Since the preconfigured retention duration Dx for

SUZUKI et al.: OTEDAMA: A RELOCATABLE RFID INFORMATION REPOSITORY ARCHITECTURE
2929

both ONS and DS is larger than expected stock duration, we
can estimate Otedama’s advantage over both DS and ONS
in required storage volume to be a factor of Dx/Px. Because
supply chain management operations try to minimize Px at
any given time, unless there is a good way to estimate, Dx

will be several times larger (Dx � Px). For example, if
Dx = 90 (one quarter) and Px = 14 (2 weeks), the ratio will
be more than a factor of six, a considerable penalty for sites
with large numbers of records. Systems with larger num-
bers of records will have higher search costs, though the de-
tails are beyond the scope of this paper. Of course, Dx may
be managed more carefully, and Px may increase (e.g., for
more durable or slower-selling goods), reducing the advan-
tage of Otedama. However, Otedama’s natural flow reduces
the number of records, improving site management.

4.4 Estimated Number of Records for DS

Vanilla DS requires at least L · I records to be stored in the
DS, because each site retains and manages RFID informa-
tion separately. On the other hand, Otedama only uses DS
to record a pointer to the repository where the latest bundle
exists. It requires at most I DS records, which is 1/L of the
original DS design.

4.5 Estimated Impact on Storage

Now, we evaluate these expressions to see the impact. By
using the numbers in Table 2, we can estimate the number
of cases to go through a single DC, per year, as

ID =
cases per year

number of DCs
=

5.5 × 109

147
= 2.8 × 108.

At the DC, at least six contexts will be recorded per item. If
each context is 128 bytes, we require 768 bytes per item, or
26 GB per year or 6.5 GB per quarter, for the data only, with-
out index. If we estimate average stock duration as 2 weeks,
Otedama will require a little less than 1 GB at each DC,
compared to 6.5 GB for a quarter-based vanilla DS reten-
tion policy. These numbers assume one RFID tag per cases.
If tags are used at the item level, the volume of records can
be ten times larger or more.

Thus, the effect of lowering amount of storage by
Otedama is beneficial.

4.6 Retention Policy and ONS/DS

In this section we discuss possible retention policy exten-
sions for ONS/DS compared with the Otedama scheme.

For Otedama, deletion of a bundle will be initiated by
the loss of the interest in the information. For example, an
actual sales event at a point of sale terminal may trigger final
deletion of a bundle. Otedama can make use of this trigger to
naturally determine when to delete records. As we discussed
in Sect. 4.3, the design of ONS and DS does not introduce
the concept of retention. This effectively forces these sys-
tems to use some fixed duration costs. But, by making use

Table 6 Performance cost to delete records by an ID.

Scheme Requests Total
Locate Request

ONS QR KR QR + 1 · KR

DS QR L · KR QR + L · KR

Otedama
(Typical)

KL KL

of the sales trigger, ONS/DS system also are able to reduce
records – requesting deletion of records bound to an ID on
the point of the sales. Table 6 shows performance cost to
delete records, derived from the discussion of retrieval in
Sect. 4.1. The component of delete request cost is very sim-
ilar to retrieval costs, so the evaluation is: For DS, the client
should send a request to all L servers on each delete sales
trigger on the sales. For ONS, a single server should han-
dle all of the requests. While it is possible to postpone re-
quests and aggregate multiple requests per repository, the
cost seems very high compared to Otedama.

However, delete operations have different characteris-
tics from store/retrieval operations. Their destructive nature
will cause access control issues. An Otedama bundle as a
whole always adds records log-style, and whole bundles are
deleted at the site when the party holding a bundle loses in-
terest in it. In contrast, if some repository needs to handle a
delete request from some other party, the repository needs to
enforce access control, since it is a destructive operation. In
both ONS and DS, every repository has to handle such ac-
cess control for every possible requestor, which may be dif-
ficult. Also, propagating delete requests to multiple repos-
itory will raise reliability concerns. Otedama, in general,
simplifies the issues of distributed transactions by keeping
the locus of control in a single location near the current in-
stance of the bundle. Nevertheless, extending Otedama us-
ing a full distributed transaction mechanism may bring ben-
efits. We leave this for future work.

4.7 Cost of Bundle Push

On the shipment of a product to a destination, a supply chain
location knows about the destination location and its infor-
mation system – the repository. The destination will be
determined by some external system outside of Otedama,
but once we know the destination site, we can determine
the repository of the destination site with help of the ex-
ternal system. When this happens, Otedama will ask DS
or other scheme to find the remote repository, using the
destination location rather than the product ID as a lookup
key. Otedama can push the bundle for the ID to the remote
Otedama, prior to the physical arrival of the product. The
cost of this query will be repository lookup and one time
store:

QR + SR

When look at the total operational cost, push cost should
be considered. But from the response time point of view,
since push operates asynchronously and guarantees the lo-
cal discovery of the information on the product’s arrival,

2930
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Otedama’s push scheme is advantageous.

5. Related Work

Otedama is a kind of RFID middleware. The EPCglobal net-
work specification, the current de-facto standard discussed
in Sect. 2.4, evolved from Savant [17], which was proposed
by the Auto-ID Center. Since the specification only de-
fines interfaces and an abstract data model, software devel-
opers can select their implementation scheme. For example,
Fosstrak [18]† provides a prototyping platform using open
source components; SAP implemented their RFID plat-
form [19] integrated with their ERP platform; and Siemens
developed an RFID information query model focusing on
temporal-based data modeling in Dynamic Relationship ER-
Model [20]. Note that, all of the research above on EPC-
network focuses on the repository, and does not discuss the
distributed data model or their own performance in detail.

The EU Bridge Project developed DS as a possible suc-
cessor to ONS [6]. They categorized and evaluated eight
data discovery mechanisms, and selected “Directory-of-
Resources” and “Notification-of-Resources” as their mod-
els of choice. The former is the DS design described in
Sect. 2.5; the latter provides a notification mechanism by
publish-subscribe model coordinated by an intermediary
DS.

From server mechanism point of view, and its focus on
resource balancing management, our scheme resembles P2P
based Contents Delivery Network (CDN) architecture [21],
especially some of the work focusing on storage resource
management, such as OceanStore [22]. In Sect. 3.6, we
mentioned our notification mechanism. Event monitoring
style architecture has similarity with regard to RFID event
information processing [23], [24] or the notification mech-
anism. It will be possible to incorporate event monitor-
ing scheme to improve notification mechanism. Also, this
mechanisms could be categorized as very simple form of re-
active agents [25].

6. Conclusion

We have presented a novel RFID middleware architecture
designed to overcome issues with existing systems by mak-
ing use of the proximity property of RFID information,
keeping the information close to the RFID tag (and item),
where processing is most likely to occur. Otedama builds
on the developing standard Discovery Services by modify-
ing the behavior of the repositories and clients to operate on
bundles rather than individual events, and migrating those
bundles to track the item location, improving the efficiency
of both queries and storage, and providing a more natural
framework for currently-undefined issues such as retention
policy.

We have evaluated Otedama by comparing it to vanilla
DS and to ONS by calculating the expected request work-
load for store and the volume of records stored in the

†Fosstrak was formerly known as Accada.

repositories and Discovery Services. Store performance
is somewhat worse for Otedama than DS, while retrieve
performance is substantially better – more than a factor
of six. Since the application workload will typically exe-
cute more retrieves than stores, we can say that Otedama
is better than the current developing standard. Searching
the repository will also be faster for large systems, because
each Otedama repository stores only a fraction of the to-
tal records. Otedama places less load on a DS server, as
well, because it stores only a single record per item, com-
pared to the several records required in a vanilla DS sys-
tem. Otedama likewise is expected to provide faster query
response time than ONS.

This analysis suggests that Otedama can provide bet-
ter performance with better resource utilization than DS or
ONS. We plan to extend our study on this architecture by
developing a working prototype in the near future, with the
long-term goal of extending developing RFID standards to-
ward Otedama.

References

[1] M.R. Rieback, B. Crispo, and A. Tanenbaum, “The evolution of
RFID security,” IEEE Pervasive Computing, vol.5, no.1, pp.62–69,
2006.

[2] T. Phillips, T. Karygiannis, and R. Huhn, “Security standards for the
RFID market,” IEEE Security and Privacy, vol.3, no.6, pp.85–89,
2005.

[3] J. Landt, “The history of RFID,” IEEE Potentials, Jan. 2005.
[4] S.E. Sarma, D. Brock, and K. Ashton, “The networked physical

world–proposals for engineering the next generation of computing,
commerce & automatic identification,” MIT Auto-ID Center White
Paper, Oct. 2000.

[5] Object Naming Service (ONS) Standard.
http://www.epcglobalinc.org/standards/ons (Verified 2010/2/23)

[6] “High level design discovery services,” BRIDGE Project, Sept.
2007. http://www.bridge-project.eu/ (Verified on 2009/2/23)

[7] EPC Tag Data Standard (TDS) Standard.
http://www.epcglobalinc.org/standards/tds (Verified: 2010/2/23)

[8] EPCglobal Standards. http://www.epcglobalinc.org/standards/ (Ver-
ified: 2010/2/23)

[9] EPC Information Services (EPCIS) Standard.
http://www.epcglobalinc.org/standards/epcis (Verified: 2010/2/23)

[10] P. Mockapetris, “RFC 1034: Domain names - concepts and facili-
ties,” Internet RFCs, Nov. 1987.

[11] P.R. Zimmermann, The Official PGP User’s Guide, MIT Press,
Cambridge, Mass., 1995.

[12] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and T.
Polk, “RFC 5280: Internet X.509 public key infrastructure certifi-
cate and certificate revocation list (CRL) profile,” Internet RFCs,
May 2008.

[13] “Wal-Mart’s China inventory to hit US$18b this year (News paper
article),” China Daily, Nov. 2004. http://www.chinadaily.com.cn/
english/doc/2004-11/29/content 395728.htm (Verified: 2010/2/23)

[14] Intel, “Server perfomance - Intel processors.” http://www.intel.com/
performance/server/index.htm (Verified: 2010/6/20)

[15] “Walmart facts.” http://walmartstores.com/PressRoom/9689.aspx
(Verified: 2010/6/20)

[16] J.P.V. den BERG, “A literature survey on planning and control of
warehousing systems,” IIE Trans., vol.31, no.8, pp.751–762, Jan.
1999.

[17] “The savant version 0.1,” Auto-ID Lab White Paper, pp.1–46, Jan.
2002. MIT-AUTOID-TM-003.

SUZUKI et al.: OTEDAMA: A RELOCATABLE RFID INFORMATION REPOSITORY ARCHITECTURE
2931

[18] C. Floerkemeier, C. Roduner, and M. Lampe, “RFID application de-
velopment with the Accada middleware platform,” IEEE Syst. J.,
vol.1, no.2, pp.82–94, Jan. 2007.

[19] C. Bornhövd, T. Lin, S. Haller, and J. Schaper, “Integrating au-
tomatic data acquisition with business processes experiences with
SAP’s Auto-ID infrastructure,” Proc. 30th VLDB Conference,
Toronto, Canada, Jan. 2004.

[20] F. Wang and P. Liu, “Temporal management of RFID data,” Proc.
31st VLDB Conference, Trondheim, Norway, Jan. 2005.

[21] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-
peer content distribution technologies,” ACM Comput. Surv., vol.36,
no.4, pp.335–371, Jan. 2004.

[22] J. Kubiatowicz, D. Bindel, and Y. Chen, “Oceanstore: An architec-
ture for global-scale persistent storage,” ACM SIGARCH Computer
Architecture News, vol.28, no.5, pp.190–201, Jan. 2000.

[23] M. Mansouri-Samani and M. Sloman, “GEM: A generalized event
monitoring language for distributed systems,” Distributed Systems
Engineering, Jan. 1997.

[24] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, and A. McNeil,
“Generic support for distributed applications,” Computer, vol.33,
no.3, pp.68–76, Jan. 2000.

[25] H. Nwana, “Software agents: An overview,” Knowledge Engineer-
ing Review, vol.11, no.3, pp.205–244, Oct. 1996.

Shigeya Suzuki is associate director of re-
search and development at Auto-ID Labs Japan
(Keio Research Institute at SFC, 2004). Vis-
iting researcher of USC Information Sciences
Institute (2005-2007). Assistant Professor of
Keio University, Faculty of Media and Gover-
nance (2007). His current recent research fo-
cuses are ubiquitous computing and scalability
issue around distributed computing. He is cur-
rently Ph.D. candidate of Keio University, Grad-
uate School of Media and Governance.

Rodney Van Meter received a B.S. from
the California Institute of Technology in 1986,
an M.S. from the University of Southern Califor-
nia in 1991, and a Ph.D. from Keio University in
2006. His research interests include storage sys-
tems, networking, post-Moore’s Law computer
architecture, and quantum computing. He is an
Assistant Professor of Environment and Infor-
mation Studies at Keio University’s Shonan Fu-
jisawa Campus.

Osamu Nakamura received a B.S. from
Keio University in 1982, an M.S. in 1984, and
a Ph.D. in engineering in 1993. He became
assistant professor in the Faculty of Environ-
ment and Information Studies at Keio Univer-
sity’s Shonan Fujisawa Campus in 1993, asso-
ciate professor in 2000, and professor in 2006.
He has been Associate Director of the Auto-ID
Labs Japan since 2003.

Jun Murai is dean/Professor, Faculty of En-
vironment and Information Studies, Keio Uni-
versity. Founder of WIDE Project. MS for Com-
puter Science from Keio University in 1981, re-
ceived Ph.D. in Computer Science, Keio Uni-
versity, 1987. Former Vice-President of Keio
University from May 2005 to May 2009. He
received Funai Achievement Award 2007 from
Forum on Information Technology on 2007,
Jonathan B.Postel Service Award from the In-
ternet Society on 2005, Personal Award from

Minister of Internal Affairs and Communications on 2004, Personal Award
from Minister of Economy, Trade and Industry on 2002, Personal Award
from Minister for Public Management, Home Affairs, Posts and Telecom-
munications on 2000, The Best Paper of ’90s Award, ISPJ, 2000.

