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SUMMARY Recently, we have proposed a new prefix lookup algo-
rithm which would use the prefixes as scalar numbers. This algorithm could
be applied to different tree structures such as Binary Search Tree and some
other balanced trees like RB-tree, AVL-tree and B-tree with minor modifi-
cations in the search, insert and/or delete procedures to make them capable
of finding the prefixes of an incoming string e.g. an IP address. As a result,
the search procedure complexity would be O(log n) where n is the number
of prefixes stored in the tree. More important, the search complexity would
not depend on the address length w i.e. 32 for IPv4 and 128 for IPv6. Here,
it is assumed that interface to memory is wide enough to access the pre-
fix and some simple operations like comparison can be done in O(1) even
for the word length w. Moreover, insertion and deletion procedures of this
algorithm are much simpler and faster than its competitors. In what fol-
lows, we report the software implementation results of this algorithm and
compare it with other solutions for both IPv4 and IPv6. It also reports on
a simple hardware implementation of the algorithm for IPv4. Comparison
results show better lookup and update performances or superior storage re-
quirements for Scalar Prefix Search in both average and worst cases.
key words: scalar prefix, LPM, LMP, SP-BT, search, update

1. Introduction

One of the main functions of an IP router is forwarding deci-
sion which finds the longest prefix of the destination address
of the incoming IP packet among a set of prefixes stored
in the router tables. To do it, an algorithm is used called
Longest Prefix Matching or LPM. One of the old structures
for LPM is Trie or Radix tree [1]. It is a simple tree with
each edge representative of one bit ‘0’ or one bit ‘1’. The
left child of a node adds a ‘0’ to the string and the right child,
adds a ‘1’. For w bits IP addresses, the main drawback of
this structure is its worst case O(w) node access complex-
ity for search and update procedures. Some improvements
of Trie [2]–[4], were also introduced to solve this problem.
However, most of them suffer from the above disadvantage
or time consuming update procedures.

To become independent from w, range based algo-
rithms were introduced. These algorithms define a range
for each prefix and use the end points of this range. For ex-
ample, if w=4 and p=10*, the range of p will be the binary
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interval [1000,1011] with 1000 and 1011 as its end points.
Some of these range based algorithms store the prefix

end points in a binary search tree and propose a search algo-
rithm based on the resulting structure [5]. However, for up-
dating the tree in the worst case, the whole structure should
be constructed again. To improve these search and update
procedures, MRT was proposed using a B-tree structure [6].
It reduces the lookup complexity to O(log n). However, it
needs still large number of memory accesses for the up-
date procedure. For example, a tree with the branch factor
of 14 and height of 5 needs 455 memory accesses in the
worst case of a prefix update procedure [6]. To solve this
problem, other range-based algorithms [7]–[10] were also
introduced among which, PIBT [10] has the best search per-
formance based on [10]. PIBT stores prefix end points in
a B-tree. Therefore, its search and update complexity is
O(log n). Based on [10], PIBT has better update time and
similar search time comparing to MRT. It should be men-
tioned that PIBT, uses about two additional w bits vectors
for each endpoint. Therefore, since each prefix has two end
points, up to about 6 vectors might be stored for each pre-
fix. One of the most recent range-based lookup algorithms
is BTLPT [11]. This algorithm uses two structures: a B-
tree for disjoint prefixes and a Trie based structure called
LPFST [12] for the remaining prefixes. Simulation results
of [11] show that the performance of BTLPT is better than
PIBT in average search and update times and also for the
storage requirement. However, the node access complex-
ity of BTLPT depends on w unlike PIBT. Prefix Trees and
M-way Prefix Trees are other range-based algorithms which
were proposed in [13] and their main idea is to introduce a
comparison rule for storing and searching the prefixes. The
main drawbacks of these algorithms are the worst case tree
height which is O(w) and the long update procedures.

In [14], we introduced a new algorithm called “Coded
Prefix B-tree” or CP-BT. This scheme considers a coding
concept for prefixes to compare them like numbers with “=”,
“<” and “>”. We call this concept “Coded Prefix Search”.
Importantly this makes the search and update times of the al-
gorithm, independent of IP address length. Also, unlike the
range-based algorithms, CPBT does not consider two end
points or a range of IP addresses for prefixes. A prefix is
stored as a number in a B-tree with only one additional vec-
tor. Therefore, the complexity of search and update will be
O(log n). Also, based on the simulations of current paper, its
required memory will be less than that of PIBT and addition-
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ally, it has comparable search and better update results. The
method which is proposed in this paper called Scalar Pre-
fix Search, is an improved version of [14] and was partially
presented in [15]. The property of comparing prefixes like
numbers which is proposed here, makes the algorithm su-
perior for 32 bits IPv4 addresses and especially for 128 bits
IPv6 addresses. Here, the prefix encoding and comparing
concept of CPBT, is extended and made easier by propos-
ing new store and search methods. The way to implement
this concept on many different types of trees is also intro-
duced. In this paper, the Scalar Prefix Search and Coded
Prefix Search algorithms are applied to BST (Binary Search
Tree), B-tree, RB-tree (Red Black Tree) and AVL-tree. Fi-
nally, it is shown that their performance is comparable to
recent solutions like PIBT, BTLPT and LPFST. It is worth
mentioning that the correctness of Scalar Prefix search is
proved completely by authors. However, parts of the proofs
are removed to make the paper short and readable.

Section 2 introduces the Scalar Prefix Search procedure
and its properties. Section 3 introduces balance tree ver-
sions of the algorithm. The software and hardware results
are shown in Sect. 4. Section 5 concludes the paper.

2. Scalar Prefix Search Procedure

Scalar Prefix Search can be applied to many types of trees.
Although, application of this algorithm to Binary Search
Tree is not efficient in performance, but we will apply it to
just simply describe the procedures. Then, we will extend
this algorithm to other trees such as: B-tree, RB-tree and
AVL-tree. Application of this method to this tree is named
“Scalar Prefix Binary Search Tree” or SP-BST. To describe
the algorithm, special Insertion, Search and Deletion proce-
dures are defined. These procedures are different from sim-
ilar procedures of Binary Search Tree. Following notations
and definitions are used throughout this paper:

• len(p) shows the length of a prefix p.
• p(i) shows ith bit of prefix p.
• key(p) or keyp: For each prefix p with len(p)=k, and

k<w, we add w-k zero padding and we call it key and
show it as key(p) or keyp which will be inserted into the
tree instead of the original prefix. key(p) will be defined
as:

– key(p)=“p(0)p(1)p(2). . . p(k-1)000. . . 0”
For example, if w=4 and p=101∗, then: key(p)=
1010.

• Prefix symbol: The notation p→q shows that p is a pre-
fix of q.
• p!→q This notation shows that p is not a prefix of q.
• If p!→q and q!→p, p and q are called disjoint prefixes.
• Pref: A prefix of p with length of k is shown by

prefk(p).
• LMP: The Longest Matching Prefix of a string S is de-

noted as LMP(S).
• Match Vector: For a key r, a w bit “Match Vector” is

defined and abbreviated to “r.mv”.

– The ith bit of r.mv is called r.mv(i). If r.mv(i)=1, it
means that there exists a prefix q with the length
of i+1 which is also a prefix of r (i.e. len(q)=i+1
or in other words q=prefi+1(r)). Please note that
the indexing of Match Vector bits starts from “0”.

• height: The length of the path from the root of the tree
to a node x is called height(x), e.g. height(root) is zero,
and the height of each child of the root is “one” and so
on.
• MP(key): The longest prefix of each key is called

the “Max-length Prefix” of that key and is shown by
MP(key). The largest i such that key.mv(i)=1, shows
that the length of MP(key) is i+1.
• Predecessor key: The “Predecessor key” of a node key

in a tree, is the largest key in the left sub-tree of this
key and the “Successor key” of a node key in a tree, is
the smallest key in the right sub-tree of this key.
• Others(): If MP(k) is the Max-length prefix of k, then

the set of all other prefixes of the key k whose corre-
sponding bits in k.mv are set to one, is called Others(k).

Please note that although each prefix would be stored
in the form of two vectors called “Match Vector” and “key”,
the procedure may be simply mentioned as storing “the pre-
fix” instead of storing “the key” or “Match Vector”.

Using the above definitions, prefixes can be stored in
any search tree including BST (Binary Search Tree).

2.1 Insert Procedure for SP-BST

To insert a “newPrefix”, or to determine the insertion path,
the algorithm starts from the “root node”. Visiting any node
in the insertion path in which a key r is stored and to make
a decision on insertion or continuing on the insertion path,
the “newPrefix” is compared with r.

If the “newPrefix” is a prefix of the Max-length Prefix
of r, then the corresponding bit in “match vector” of r would
be set to one, and the algorithm returns. In other words:
If “newPrefix”→MP(r), then:

r.mv(len(newPrefix)-1)=1.
But if the Max-length Prefix of r is the prefix of the
“newPrefix”, then the corresponding bit with the length of
len(newPrefix) in the “match vector” of r would be set to
one and the key(newPrefix) is stored as r and algorithms re-
turns. In other words:
If MP(r)→“newPrefix”, then:
r.mv(len(newPrefix)-1)=1 and r= key(newPrefix).
Else if MP(r) and “newPrefix” are disjoint, based on the re-
sult of comparison, the insertion procedure selects the next
node to go through. If “newPrefix”<MP(r), then the proce-
dure goes to the left child of r, else it goes through the right
child.

This procedure will continue till it will be terminated in
a node or it would reach a leaf node but not terminated. Then
a right or left child will be created based on the procedure
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above and the prefix will be inserted in the new node.
For an example of insert procedure with w=4, consider

the following prefixes with their order of arrivals:
p1=001∗, p2=1∗, p3=0∗, p4=000∗, p5=00∗, p6=11∗, p7=01∗.
Based on the scalar comparison method mentioned above it
is clear that:
p3<p5<p4<p1<p7<p2<p6

First of all, to insert p1, key(p1)=0010, p1.mv=0010
will be inserted in the root node as it is depicted in
Fig. 1 (a). Therefore, if the root node key is named kr,
(kr.mv,kr)=(0010,0010). After that, to insert p2, the proce-
dure checks the root node. Since MP(0010) is disjoint with
p2 and also p2>MP(0010), a right hand child will be cre-
ated to insert p2 (Fig. 1 (b)). Since p3→MP(0010), p3 will
be inserted in the root node without changing the root node
key=0010. However, its match vector will become 1010
(Fig. 1 (c)). Insertion of p4 will be similar to p1 and a left
child node will be created (Fig. 1 (d)). Insertion of p5 only
affects the match vector of the root node key and modifies
it to 1110 (Fig. 1 (e)). Insertion of p6 updates the key and
match vector of node A in Fig. 1 (e) from (1000,1000) to
(1100,1100) in Fig. 1 (f). Similar procedure is also done for
insertion of p7 in Fig. 1 (g).

2.2 Search Procedure for SP-BST

The search procedure for the Longest Matching Prefix of the
address d is started from the root and may be finished in a
leaf or non-leaf node.

Consider a match vector d.mv for d. In each node n
that is being searched, if its Max-length prefix is a prefix of
d, then it is the Longest Matching Prefix we look for and the
procedure will be terminated. In another word, let’s consider
keyn as the key which is stored in n.

If MP(keyn)→d, then MP(keyn) will be the LMP(d) and
the procedure will be terminated.

Otherwise, if some other prefixes of keyn match with d,
the corresponding bit in d.mv will be set to one.

Then, if d>keyn, the procedure goes through the right
child of n. Otherwise, it goes through its left child. It then
repeats the procedure at the child node.

As an example, consider d=0011. Starting from the
root node R, Checking the Root node key and its match vec-
tor of Fig. 1 (g) (k.mv=1110, k=0010), results in MP(k)→d.
Therefore, LMP(d)=001∗ and the search will be terminated
in the root node. It means that it does not need to go
to the remaining tree nodes. As another example, con-
sider d=0101. To start the procedure, consider d.mv=0000.
Checking the Root node key and its match vector of
Fig. 1 (g) (k.mv=1110, k=0010), results in “ MP(k)!→d.

However, checking k.mv, the procedure finds 0* which
is a prefix of d. Therefore, d.mv=1000. Then, since
0101>0010 i.e. d>k, it goes through the right child A. In
node A, j=1100 is stored as the key and its main prefix is
11* i.e. MP(j)=11*. Since MP(j)!→d and also no prefix of
j matches with d and d<j, the procedure goes to node C, the
left child of node A which contains (l.mv,l)=(0100, 0100).

Fig. 1 Insertion example of SP-BST.

In this node, 01∗ exists which is a prefix of d. Therefore,
d.mv=1100 and LMP(d) will be the longest prefix among 0∗
and 01∗, i.e. LMP(d)=01∗. Please also note that MP(l)→d
and this is the sufficient condition to conclude that 01* is
LMP(d).

2.3 Delete Procedure for SP-BST

Since the delete procedure sometimes modifies the tree
structure, it should be done in a way that the properties of
the tree will remain intact after a deletion.

To delete a prefix “delPrefix”, the procedure would
start from the root and traverse the path as if it is looking
for delPrefix.

In this path, assume that the algorithm reaches a node
n with a key keyn and with p as its Max-length prefix,
p=MP(keyn). If delPrefix is a prefix of p but it is not the
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p itself, it only resets (sets to zero) the corresponding bit in
the match vector and returns. In other words:
if delPrefix→p and delPrefix�p, then:

p.mv(len(delPrefix)-1)=0 and return.
If the algorithm reaches node n where p is the only prefix
of keyn, then the deletion will be the same as the deletion in
Binary Search Tree.

If delPrefix=p and keyn has some other prefixes in
addition to p, the corresponding bit in match vector,
p.mv(len(delPrefix)-1) will be set to zero and node n’s suc-
cessor (or predecessor) node will be checked. If all of the
prefixes of others(keyn) can be stored in n’s successor (or
predecessor), they will be added to n’s successor (or pre-
decessor) and this node will be pulled up. In pulling up
the successor (or predecessor), for every node m with a key
keym in the path, if there is a prefix of keym which can be
stored in the successor (or predecessor), it will be moved
from keym.mv to the successor (or predecessor).

2.4 Properties

As it was explained in search and insert procedure and also
from the example of Fig. 1, SP-BST has some properties
which are listed below:

1. The Max-length prefixes of all of the node keys in the
tree are disjoint. For example, in Fig. 1 (g), the Max-
length prefixes of the nodes are: 001*, 000*, 11* and
01*. These prefixes are disjoint. This property is a
result of Lemma 1 which will be explained in the Ap-
pendix.

2. In Scalar Prefix Search, any time the search for address
d reaches a key k that its Max-length prefix p is a prefix
of d then p will be the LMP(d) (i.e. if p=MP(k) and
p→d then p = LMP(d)), and therefore the search will
be terminated. This is the Lemma 2 which is explained
in the appendix.

3. A prefix is stored in the match vector of only one key
in the tree. This is the direct result of the insertion
and deletion algorithms which was mentioned above.
For Example, in Fig. 1.g, the prefix 0∗ is prefix of three
keys: 0010: the key of node R, 0000: the key of node
B and 0100: the key of node C. However, 0∗ is stored
only in the match vector of 0010 which is the key of
the root node R.

4. To store a new prefix p in SP-BST, let’s assume that
K={k1, k2, k3,. . . , kn} is the set of all keys stored in the
tree which p is a prefix of them. If among members
of K, k j∈K is the key that its node has the least height,
then the prefix p will be stored only in the match vector
of k j and k j.mv(len(p)-1) will be set to one. This is the
Lemma 3 which is explained in the appendix.

5. Again assume that K={k1, k2, k3,. . . , kn} is the set of
all keys stored in the tree which p is a prefix of them
and among its members, k j is the key whose node has
the least height. Then, for any arbitrary address d such
that p → d, the search path of d will reach the node

containing k j. This is the Lemma 4 which is explained
in the appendix.

6. Consider the same definitions for prefix p, the set K
and the key k j in properties 4 and 5. Also, consider
an address d with the property of p → d. Based on
Property 4, k j is the first member of K which is seen in
the insertion path of p. Also, based on the Property 5,
it is the first member of K which is seen in the search
path of d. Therefore, if the objective is to store p in the
tree, its existence will be indicated in the match vector
of k j. On the other hand, if the objective is to search
d in the tree, the search procedure will reach k j in the
search path of d before any other member of K and
k j.mv(len(p) − 1) will indicate if p is stored in the tree
or not.
Therefore, k j and its match vector have all the informa-
tion about p and make these procedures independent of
the other members of K and their match vectors. There-
fore, with respect to p, we call k j the Master key for all
of the other members of K located in its subtrees. Also,
the other members of K in the subtrees of k j are called
the Slave keys. The reason of this naming is that with
respect to p, k j and its match vector, overrule all of the
information stored in its subtrees.

Based on the above properties, up to w prefixes can be
stored in a key. Therefore, if np is the number of prefixes
and nk is the number of the node keys in the tree, then al-
ways nk≤np. The equality holds only when all of the pre-
fixes are disjoint. Therefore, if the percentage of the disjoint
prefixes decreases, the tree will become more compact, be-
cause each bit of a match vector would be the representative
of one prefix. Even for a high percentage of disjoint prefixes
(about 92%), still we can see the effect of this compression
in comparing the performance of Coded Prefix Trees and
Scalar Prefix Trees in Figs. 9, 10, 11 and 12.

The pseudo code for insert procedure in SP-BST is as
depicted in Fig. 2. Based on the insert procedure, the pseudo
code for search procedure which returns the length of the
LMP(d) in SP-BST is shown in Fig. 3. The delete procedure
is also depicted in Fig. 4. The SP-BST has many advantages
compared to Trie based and range based algorithms. A node
key of SP-BST may contain up to w prefixes. Therefore, the
average height of the tree is reduced. On the other hand,
since all of these prefixes are stored in one key and also this
tree does not need to store both of the prefix end points, the
average storage requirement would be reduced as well.

Since there is no guarantee for the height of the SP-
BST, the concept of Scalar Prefix Search has been applied to
some balanced trees such as B-tree, RB-tree and AVL-tree.
These trees have the property that can guarantee and con-
trol the worst case height of the tree to be O(log n). There-
fore the complexity of the search and update procedures for
these trees are O(log n) as well. These tree structures are
explained in the next section.



2936
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Fig. 2 Insertion pseudo code of SP-BST.

Fig. 3 Search pseudo code of SP-BST.

3. Other Scalar Prefix Balanced Trees

One solution to decrease the worst case node access in
Scalar Prefix Search, is to implement it on balanced trees.
This concept has been applied on three types of trees and
results are explained in the following sub-sections.

3.1 SP-BT

This version of scalar prefix Search uses B-tree to store pre-

Fig. 4 Deletion pseudo code of SP-BST.

fixes and is called SP-BT (Scalar Prefix B-Tree). Its worst
case memory access for lookup and update procedures is
O(logtn) where t is the minimum degree of the B-tree.

Almost all of the properties of SP-BST are true for SP-
BT. The main difference is the point that SP-BT can store
more than one key in each node. Therefore the lookup and
update procedures will be different. Let’s remind that each
node in the B-tree of degree t, except the root node, may
hold from t-1 to 2t-1 keys. Entries are in the form of 2t-1
pairs of (key.mv,key). During the insertion, as long as the
number of the keys in a node is smaller than 2t-1, there is
no necessity for node splitting. Although, if a key is going
to be inserted in a node which already has 2t-1 keys, then
the node should split into two nodes. Similarly, to delete
a key in a node with the number of the keys smaller than t
keys, it is necessary to do merging or borrowing operation
in B-tree [1].

Assuming the properties of SP-BST are still held, to
search for an address d, it would traverse through nodes of
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Fig. 5 Split in SP-BT.

the B-tree. At each node, it examines all the keys in the node
to find the search path. Additionally to keep track of all pre-
fixes of d, it searches their match vectors for the matching
prefixes. It keeps a match vector for the address d and up-
dates it through search. At any point if either it finds a key
that its Max-length prefix is a prefix of d or reaches a leaf of
the tree, it would stop the search and returns the result.

The insert procedure of a prefix p is also derived from
the insert procedure of B-tree with the following differences.
The procedure starts traversing the tree in the search path of
the inserting prefix. When the procedure reaches a node, all
the keys of a node will be checked to find the location of the
prefix among them. Except for the node splitting, it behaves
similar to SP-BST in modifying the existing match vectors.
However, instead of adding a new node to the tree, it adds
key to the existing node. To split a node, some additional
updates should be done. Let’s look at Fig. 5. Figure 5 (a)
shows the tree nodes before split. Figure 5 (b) shows the
tree nodes after split. Figure 5 (c) and Fig. 5 (d) show or-
dering of the prefixes in Fig. 5 (a) and Fig. 5 (b) if they were
implemented on SP-BST. Since in Fig. 5 (a) (Fig. 5 (c)), X, A
and B are the Master keys compared to C, and C is the Slave
key, the relationships of Master/Slave keys should be trans-
ferred to Fig. 5 (b) (Fig. 5 (d)) after splitting and the match
vectors should be updated accordingly.

Similarly, the delete procedure of a prefix p, is derived
from the delete procedure of B-tree again with some differ-
ences.

Again, the procedure starts from the root node by
searching for the deleting prefix. The procedure is continued
until it reaches the node in which the prefix is stored in its
key: “k”. Assume that p�MP(k). In this case, k.mv(len(p)-1)
will be set to zero and the algorithm returns.

However, if p=MP(k), we might need to perform
Merge or Borrow operations at B-tree, when the number of
keys in the node fall below t. Here, some additional updates
are needed. Two examples for these cases are given below.
In an example of the borrow operation, depicted in Fig. 6,

Fig. 6 Borrow in SP-BT.

Fig. 7 Merge in SP-BT.

after deleting the prefix p, it is necessary to move keys B
and D. D should be updated by B and C because their levels
are interchanged. Also, X, Y and Z should be updated by B.
In the merge operation which is depicted in Fig. 7 (d), since
height(B) would be larger than height(C), B should update
C and also Y and Z. Then, it should reset its correspond-
ing bits in B.mv to zero. While there are some more details
and necessary corner cases for these operations to keep the
properties of Scalar Prefix Search intact, they are omitted to
make the paper short and readable.

3.2 SP-BTe

To enhance the software performance of the SP-BT, some
modifications were made to the original SP-BT [15]. These
modifications noticeably speedup the search procedures
within each node, while they do not affect the node accesses
or tree structure [15]. Since, in this paper we have focused
on the node access performance and hardware implementa-
tion, their results would not differ from each other. Hence
we omit more discussion on SP-BTe.
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Fig. 8 Rotations and required updates.

3.3 SP-RB and SP-AVL

SP-RB and SP-AVL are scalar prefix search trees which
store prefixes in RB-tree and AVL-tree. The same idea has
been applied to these trees. The main difference of these two
types of trees with SP-BST is that they try to keep the tree
balanced. Therefore, the worst case height of these trees and
their worst case search times are much less than SP-BST
and with O(log n) order. Basically, the search and update
procedures for these trees are similar to the previous ones.
The only difference is the possible rotation which needs to
be done to keep the tree balanced. Therefore, the required
procedure should be used to keep the SP-BST properties in-
tact. Two types of rotations with their required updates are
shown in Fig. 8. As it is shown in Fig. 8 (a), in this rotation,
X should update Y and then reset its corresponding match
vector bits to zero. In Fig. 8 (b), Y and X will update Z and
their corresponding match vector bits will be reset to zero.
Other search and update parts are similar to SP-BST.

The result of applying the Scalar Prefix Search concept
to these different trees and the comparisons are presented in
the next section.

4. Comparison Results

4.1 Software and Hardware Implementations

We implemented different versions of our proposed algo-
rithms for both IP versions IPv4 and IPv6 in software:

• The B-tree version of Scalar Prefix Search, SP-BT(SP-
BTe) and Coded Prefix search, CP-BT

• SP-RB and SP-AVL

• The Red-Black and AVL tree versions of “Coded Prefix
Search” named CP-RB and CP-AVL.

Additionally, to compare our algorithms with other
solutions, two recent B-tree solutions PIBT [10] and
BTLPT [11] and one Trie based solution LPFST [12] were
implemented in software for both IP versions IPv4 and
IPv6. A simple hardware implementation is also done using
FPGA. Of course, there was not any emphasize on optimiz-
ing its performance through pipeline or parallel implemen-
tation.

Finding the next hop is not the main goal of the lookup
problem and sometimes it is needed to combine the results
of the lookup and some other engines like multi-field packet
classifier to extract the next hop. Therefore, it can be done in
many simple ways e.g. using a good hash function working
in parallel with the main data structures. Using this scheme,
next hop can be extracted in about one or two memory ac-
cesses using the LMP values, while the main data structure
is being searched for the next input address.

It should also be mentioned that it is possible to store
each prefix with its next hop in Coded Prefix Trees such as
CP-BT, CP-RB and CP-AVL. However, this would need an
additional search to locate the LMP and its next hop in the
tree (after finding the LMP value).

Similar scheme might be applied in scalar prefix trees
like SP-BT(SP-BTe), SP-RB and SP-AVL. But, obviously
it required a more complicated memory management to ef-
ficiently store the next hop pointers in accordance with each
bit of the match vector. Since PIBT does not support storing
the next hop pointers in its structure, we did not consider the
next hop pointers in the simulation results to be fair in the
comparisons of storage requirements.

4.2 Used Databases

To compare different solutions for IPv4 databases, three
IPv4 prefix databases AS4637, AS1221 and AS131072 have
been used. The first one which contains 139519 prefixes was
downloaded from [16] in August 2008. The second one con-
tains 191566 prefixes and it was downloaded from [16] in
August 2008. The third one which contains 313453 prefixes
was downloaded from [16] in January 2010.

Also to compare different solutions for IPv6, two IPv6
databases AS1221 and AS131072 have been used. The first
one contains 933 prefixes which was downloaded from [16]
in August 2008 and the second one that contains 2523 pre-
fixes was downloaded in January 2010 from [16].

4.3 Software Test Setup

To make sure that the results are independent from the CPU
model, cache size or other restricting issues, all software
simulations are compared based on the number of required
node accesses for search and update procedures and the stor-
age requirements. These parameters would also give a good
indication of the hardware implementation efficiency and
performance.

To compute the performance parameters, test scenar-
ios were repeated several times using members of those
databases with random ordering and averaged.
The test method is as follows:

First, all of the prefixes of a database were inserted into
the structure to find the storage requirement. After that, each
prefix was deleted and reinserted again. This may change
the tree structure and create another level of randomness.
Each time the insertion or deletion is done, the number of
node accesses was computed. This procedure is done sev-
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Fig. 9 The results of B-tree schemes for IPv4 databases.

Fig. 10 The results of B-tree schemes for IPv6 databases.

eral times for all prefixes using a random ordering of the
prefixes.

Each time a tree is constructed, searches are done us-
ing IP addresses which are constructed using prefixes of the
databases.

4.4 The Results of B-Tree Schemes for IPv4 and IPv6
Databases

In the results presented in this paper, the minimum degree
of the B-tree is t=14. However, similar results have been
obtained for other degrees. Figure 9 shows the search (part
a), update (part b) and memory (part c) results of CP-BT and
SP-BT compared to PIBT and BTLPT for IPv4 databases.

As it is shown in Fig. 9 (a), the required number of node
accesses of the search procedure of SP-BT (or SP-BTe) is
the best for all three databases. The CP-BT has also com-
parable results. Similar update results are also shown in
Fig. 9 (b). Also, Fig. 9 (c) shows the results of storage re-
quirements of these solutions. Figure 10 shows the simi-
lar search, update and storage results of the above B-tree
schemes for IPv6 databases.

In summary comparison to PIBT, the average search
improvement of SP-BT(SP-BTe) might be small, but the up-
date performance has improved substantially. This is due
to the fact that for each prefix update, PIBT needs to tra-
verse the tree three times; i.e. twice to update the prefix end

points and once to update its vectors, however; the proposed
scheme needs to traverse the tree only once. Also, the stor-
age requirements of our algorithms are better than PIBT as
it is shown in Fig. 9.c. The reason is that, in addition to
the child pointers of tree nodes, PIBT needs about six w-
bit vectors to store a prefix, while our algorithm needs two
w-bit vectors in worst case. Obviously, considering its com-
pression capability, the storage requirement reduces further.
This fact was described in Sect. 2.4. Similar results exist for
the worst case performances.

In comparison to BTLPT, the storage requirement of
BTLPT is slightly less than our algorithms, but both search
and update performances of our algorithms have been im-
proved a lot because they do not depend on the prefix length
contrary to BTLPT. Please also note that the presented per-
formances are for the average case. In the worst case, the
search procedure of BTLPT would degrade by a big factor
due to its dependency on Trie based search of its LPFST
part. Similar situation exists for its worst case update proce-
dure. But for the proposed algorithm, the worst case perfor-
mances do not differ much since it does not have any addi-
tional Trie part.

4.5 Results of Other Balanced Tree Schemes for IPv4 and
IPv6 Databases

After extending the idea of CP-BT and SP-BT to Red Black
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Fig. 11 The results of other balanced tree schemes for IPv4 databases.

Fig. 12 The results of other balanced tree schemes for IPv6 databases.

and AVL Binary Balanced trees which were called CP-RB
and CP-AVL, SP-RB and SP-AVL respectively, their results
were compared with LPFST which is a binary Trie. Figures
11 and 12 show their search, update and memory results for
IPv4 and IPv6 prefix databases. As it is depicted in these
figures for average case, although LPFST has slightly better
storage results, but the search results of SP-RB, SP-AVL,
CP-RB and CP-AVL are better than LPFST for all IPv4 and
IPv6 databases and also the update results of SP-RB are the
best among them.

Again, in the worst case scenario, the performance of
LPFST would degrade much more, due to its Trie based ar-
chitecture and possible growing of the tree height as a func-
tion of w.

This dependency of the performance of LPFST to the
Trie height and w does show itself for the IPv6 even for the
average case and small number of prefixes in database.

4.6 Hardware Implementation of SP-BT

To show the efficiency and performance of hardware imple-
mentation of our algorithm, its B-tree version SP-BT has
been implemented in hardware. For this purpose a small
Xilinx Virtex 6 FPGA (xc6vlx75t − 3 − f f 484) was used.
The minimum degree of the B-tree, t, was set to 4 in the de-
sign. This structure can have 16K Nodes, at least 32K and
up to 112K keys. Please remember that each key may con-
tain at least one and at most 32 IPv4 prefixes. Therefore, the
structure can hold from minimum of 32K prefixes to about
2 million prefixes due to its compression capability. Here,

maximum of 8 tree levels i.e. a tree with height of 7 was
considered based on the minimum degree of the tree and the
worst case distribution of the minimum number of prefixes
in the tree.

Of course, using larger FPGA devices, the number of
keys in the tree can be increased based on the selected de-
vice. Again, we note that each key may contain at least one
and at most 32 IPv4 prefixes.

Without using efforts for parallelism or pipelining, the
algorithm uses 10 clock cycles for lookup procedure which
resulted in about 28 million lookups per second with a clock
period of 3.559 ns. Also, a rate of 4.12 million updates per
second was achieved.

Of course efforts might be done to implement the al-
gorithm more efficiently using parallelism and pipelining
schemes to increase the lookup rates to reach about one
lookup per clock cycle.

5. Conclusion

A novel idea for Longest Prefix Search with efficient in-
cremental updates was introduced and its performance was
evaluated on several tree structures both for IPv4 and IPv6.
Its performance was thoroughly evaluated and showed su-
perior results compared to other schemes specially for in-
cremental updates. This scheme compares prefixes just as
if they are scalar numbers using an implicit coding scheme
which makes them suitable to be stored in different tree
structures. It uses a vector of w bits to represent the exis-
tence of up to w prefixes of a w-bit key which compresses
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the tree and makes it more efficient. Additionally, since the
search procedure needs to find the longest prefix (all pre-
fixes) of an address instead of finding just one key, the store,
search and update procedures for this scheme has been mod-
ified compared to ordinary tree structures. A hardware im-
plementation was also presented which shows promising re-
sults for its use in hardware.
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Appendix: Lemma Proofs

Lemma 1: If X is a node of SP-BST containing a key k that
MP(k)= p, and r is a key in X’s right sub-tree and l is a key
in X’s left sub-tree, then:

a. If len(MP(r))≥i and

Fig. A· 1 Proof of Lemma 1.

len(MP(l))≥i and
prefi(MP(l))=prefi(MP(r)), then:
len(p)≥i and prefi(p)=prefi(MP(r)).

b. If prefi(p)=prefi(MP(r)) then r.mv(i-1)=0.
c. If prefi(p)=prefi(MP(l)) then l.mv(i-1)=0.
d. p, MP(r), MP(l) are disjoint.

Proof idea: The proof is done using contradiction.

a. Looking at Fig. A· 1, let’s assume that:
q = pre fi(MP(l)) = pre fi(MP(r))
If lp = len(p) < i, since MP(l) < p, it results in:
pre flp(MP(l)) < p.
Therefore pre flp(MP(r)) < p and it results in:
MP(r) < p which is a contradiction. Therefore
len(p) ≥ i.
Now, let’s consider q′ = pre fi(p) and q′ � q. Two
states would be possible:
q′ > q or q′ < q.
If q′ > q, it means k > r which is a contradiction. If
q′ < q, it means k < l, which is a contradiction. There-
fore, q′ = q.

b. Assume that r.mv(i − 1) = 1. This means that a pre-
fix e.g. z has been added to the tree which is equal to
pre fi(MP(r)). Since there is only one path from the
root to r and this path contains k, the insertion path
of z, should have traversed k before reaching r. Since
z = pre fi(p), when the insertion procedure has reached
k, it should have modified k.mv(i − 1) to one and ter-
minated the insertion. Therefore r.mv(i − 1) would re-
main zero which is a contradiction. Similarly it can
be proved that the delete operation does not affect this
property.

c. The proof is similar to b.
d. It should be proved that each 2 prefixes are disjoint.

The cases are:
MP(l)→ p,MP(r)→ p, p→ MP(l),
MP(r)→ MP(l), p→ MP(r),MP(l)→ MP(r)
Consider MP(l) → p. According to the insertion algo-
rithm, as the insertion procedure of l reaches p, l will be
stored in p.mv, which contradicts storing l in the match
vector of a disjoint key. The proof is similar for the
remaining cases. Similarly, it can be proved that the
delete operation does not affect this property. �

Lemma 2: In Scalar Prefix Search, any time the search for
address d reaches a key k that its Max-length prefix p is a
prefix of d (i.e. if p=MP(k) and p→d), then its Max-length
prefix p will be the LMP(d) and therefore the search will be
terminated.

Proof idea: The proof is done using contradiction. Assume
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that MP(k)→ d and the search is not terminated in the node
containing k. If the search procedure finds another prefix p′
and:
p′ → d , p→ p′
The above relations show that p′ is a prefix whose existence
is indicated in the match vector of a key k′ and we have:
MP(k)→ MP(k′) or p→ k′
The above relations contradict Lemma 1.d. Therefore, the
search procedure is terminated in the node containing k. �
Lemma 3: To store a new prefix p in SP-BST, let’s assume
that K={k1, k2, k3,. . . , kn} is the set of all keys stored in the
tree which p is a prefix of them. If among members of K,
k j∈K is the key that its node has the least height, then the
prefix p will be stored only in the match vector of k j and
k j.mv(len(p)-1) will be set to one.

Proof idea: For the sake of simplicity, if a node x of a
SP-BST contains a key e.g. keyx, we may use the notation
height(keyx) instead of height(x) in the proof.
The insertion process will be completed by setting a bit in a
match vector of a key. Using the definitions of K and k j, it
should be proved that this key is k j. We prove it using con-
tradiction.
Let’s assume that the existence of p is indicated in the match
vector of a key named ku � k j after insertion. Two cases may
exist:
Case A: ku and k j are on the same path.
Case B: ku and k j are not on the same path.
Let’s consider Case A which is also depicted in Fig. A· 2.
Based on the assumption of this case, there are three possi-
bilities:
Case A.1: height(ku) > height(k j): It is shown in
Fig. A· 2 (a) and is against the assumption, since by reach-
ing k j the insertion procedure will be finished after setting
its match vector.
Case A.2: height(ku) < height(k j): It is shown in
Fig. A· 2 (b). Again two sub-cases may exist:
Case A.2.1: ku has been existed before the insertion of p:
This is against the lemma assumption, since it means that
among members of K, ku∈K is the key that its node has the
least height.
Case A.2.2: ku has been stored after the insertion of p:
This means that the node containing ku had been created
before inserting p and should have contained a key e.g.
k′u. Then in the insertion process of p it is modified to ku.
Based on the insertion procedure, this case occurs only when
MP(k′u)→ p. This results in:
MP(k′u)→(all members of K)
Based on Lemma 1.d, the Max-length prefixes of any two
keys in SP-BST are disjoint. Therefore, the above result
contradicts Lemma 1.d.
Case A.3: height(ku) = height(k j): This means that ku has
been stored instead of k j in its node as it is also depicted
in Fig. A· 2.c. Again, based on the insertion procedure,
this case occurs if MP(k j) → p. This means that either
MP(k j) = p or MP(k j) is a prefix of p except p itself. If
MP(k j) = p, it means that p has been existed in the tree

Fig. A· 2 Proof of Lemma 3, Case A.

Fig. A· 3 Proof of Lemma 3, Case B.

before the insertion process. This, contradicts the lemma
assumption that p is a new prefix. If MP(k j) is a prefix of p,
since p is also a prefix of k j, only k j.mv(len(p) − 1) should
be set to ‘1’. This means that ku = k j, which contradicts the
assumption ku � k j.

Now, let’s consider Case B. Based on Case B, ku and k j

are not on the same path. This means that:
Case B: The paths to ku and k j are separated at a node con-
taining a key e.g. ks as it is shown in Fig. A· 3.
By the assumption, the search path of ku is the same as the
insertion path of p. The possible positions of the keys are
given in Fig. A· 3 (a) and Fig. A· 3 (b). We prove the case for
Fig. A· 3 (a). For Fig. A· 3 (b), the proof will be similar.
Based on the lemma assumptions and the definition of ku,
we have:
(a) p→ k j, p→ ku

Using Fig. A· 3.a and based on the tree properties:
(b) k j < ks < ku

Now, two situations may occur:
case B.1: len(MP(ks)) ≥ len(p)
case B.2: len(MP(ks)) < len(p)
We will first consider case B.1. Based on the assumption in
this case:
(c) len(MP(ks)) ≥ len(p)
Therefore, based on (a), (b) and (c) it can be concluded that:
(d) k j[0 : len(p) − 1]≤ks[0 : len(p) − 1]≤ku[0 : len(p) − 1].
But, using (a):
(e) k j[0 : len(p) − 1] = ku[0 : len(p) − 1] = p
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Thus, (d) and (e) result in:
(f) ks[0 : len(p) − 1] = p
which means that:
(g) p→ ks

But, (g) results in:
(h) ks ∈ {k1, k2, k3, . . . , kn}
Also, since, k j is located in a subtree of ks, we conclude

that:
(i) height(ks) < height(k j)
But finally, (h) and (i) contradict the assumption that k j has
the least height among the members of K.
Now, let’s consider case B.2. Based on the assumption in
this case:
(j) len(MP(ks)) < len(p)
Also, based on (a), p is a prefix of both k j and ku and we
have k j < ks < ku based on (b). Therefore, (a), (b) and (j)
result in:
(k) k j[0:len(MP(ks)) − 1]<MP(ks)<ku[0:len(MP(ks)) − 1]
But, based on (a) and (j):
(l) k j[0:len(MP(ks)) − 1] = ku[0:len(MP(ks)) − 1] =
p[0:len(MP(ks)) − 1]
Again, (k) and (l) result in:
(m) MP(ks)=k j[0:len(MP(ks)) − 1]=ku[0:len(MP(ks)) − 1]
and (m) results in (n) and (o):
(n) MP(ks)→ k j

(o) MP(ks)→ ku

Based on Lemma 1.d, it can be easily verified that the Max-
length prefixes of any two keys in a SP-BST are disjoint.
On the other hand, based on (n), MP(ks) is a prefix of k j. It
means that either MP(ks) → MP(k j) or MP(k j) → MP(ks)
which both contradict Lemma 1.d. Using a similar discus-
sion, (o) also contradicts Lemma 1.d.
Therefore, the prefix p would be stored only in the match
vector of k j. It means that k j.mv(len(p)-1) will be set to one.

�
Lemma 4: Assume that K={k1, k2, k3,. . . , kn} is the set of
all keys stored in the tree which p is a prefix of them and
among its members, k j is the key whose node has the least
height. Then, for any arbitrary address d such that p → d,
the search path of d will reach the node containing k j.

Proof idea: The proof is done using contradiction. Assume
that the search patch of d does not meet k j. In this case,
consider ks as the separation point of the search path of d
and k j. The remainder of the proof would be similar to the
Case B in the proof of Lemma 3. �
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