
2962
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

PAPER

The Unification Problem for Confluent Semi-Constructor TRSs∗

Ichiro MITSUHASHI†a), Nonmember, Michio OYAMAGUCHI††, Member,
and Kunihiro MATSUURA††, Nonmember

SUMMARY The unification problem for term rewriting systems
(TRSs) is the problem of deciding, for a TRS R and two terms s and t,
whether s and t are unifiable modulo R. We have shown that the problem is
decidable for confluent simple TRSs. Here, a simple TRS means one where
the right-hand side of every rewrite rule is a ground term or a variable. In
this paper, we extend this result and show that the unification problem for
confluent semi-constructor TRSs is decidable. Here, a semi-constructor
TRS means one where all defined symbols appearing in the right-hand side
of each rewrite rule occur only in its ground subterms.
key words: term rewriting system, decision problem, unification, semi-
constructor

1. Introduction

The unification problem for term rewriting systems (TRSs)
is the problem of deciding, for a TRS R and two terms s
and t, whether s and t are unifiable modulo R. This prob-
lem is undecidable in general, even if we restrict ourselves
to either right-ground TRSs [13] or terminating, confluent,
monadic, and linear TRSs [9]. Here, a TRS is monadic if the
height of the right-hand side of every rewrite rule is at most
one [15]. On the other hand, it is known that unification
is decidable for shallow TRSs [2], canonical right-ground
TRSs [5], semi-linear TRSs [6], linear standard TRSs [12],
and confluent right-ground TRSs [14]. We have shown that
the unification problem is decidable for confluent simple
TRSs [9]. Here, a TRS is simple if the right-hand side of ev-
ery rewrite rule is a ground term or a variable. For the class
of simple TRSs which may not be confluent, it is known that
the unification problem is undecidable, because unification
is undecidable for non-confluent TRSs, even if we restrict
ourselves to right-ground TRSs [13]. In this paper, we ex-
tend the result of [9] and show that unification for confluent
semi-constructor TRSs is decidable. Here, a TRS is semi-

Manuscript received September 1, 2008.
Manuscript revised June 8, 2010.
†The author is with the Center for Information Technologies

and Networks, Mie University, Tsu-shi, 514–8507 Japan.
††The authors are with the Graduate School of Engineering, Mie

University, Tsu-shi, 514–8507 Japan.
∗This paper is an extended version of the latter half of the

paper: I. Mitsuhashi, M. Oyamaguchi, Y. Ohta, and T. Yamada,
“The joinability and unification problems for confluent semi-
constructor TRSs,” in RTA-04 Rewriting Techniques and Applica-
tions, LNCS3091, pp.285–300, 2004 (that of the first half is [10]).
Since a complete proof of the latter half was not presented due to
limited space, a complete one given in this paper is new.

a) E-mail: mitsuhashi@cc.mie-u.ac.jp
DOI: 10.1587/transinf.E93.D.2962

constructor if all defined symbols appearing in the right-
hand side of each rewrite rule occur only in its ground sub-
terms. The class of semi-constructor TRSs was introduced
by the authors in order to explore the border between decid-
able and undecidable classes of the decision problems and
in particular to find nontrivial non-right-linear subclasses of
TRSs which possess the decidability of unification. This
class properly includes the class of simple TRSs. Thus, con-
fluence is a necessary condition to investigate the decidabil-
ity of unification for semi-constructor TRSs.

In this paper, we use a new unification algorithm ob-
tained by refining those of [9], [14] to show the decidabil-
ity of the unification problem for confluent semi-constructor
TRSs. The main difference between the algorithms of the
present paper and of the previous works [9], [14] is that the
previous ones were constructed using decision algorithms
of joinability and reachability, but the present approach uses
only a decision algorithm of joinability for confluent semi-
constructor TRSs [10], since the reachability problem is un-
decidable [11]. Besides, complex typed pairs of terms used
in the previous ones are changed to simplified typed pairs
which are used in the present one. Moreover, using this
new result we give a sufficient condition for ensuring the
decidability of the unification problem for a new subclass
of nonlinear TRSs that are different from semi-constructor
TRSs. As other known results for non-right-linear TRSs,
the unification problem is decidable for shallow TRSs [2]
and semi-linear TRSs [6].

2. Preliminaries

We assume that the reader is familiar with standard defini-
tions of rewrite systems (see [1], [16]) and we just recall here
main notations used in this paper.

We use ε to denote the empty string and ∅ to denote the
empty set. For a Set A, let P(A) be the set of all subsets of
A, and let |A| be the cardinality of A. Let N be the set of
nonnegative integers. For any elements a, b ∈ A, mapping
φ : A → B, and partial or proper order > on B, we write
a >φ b if φ(a) > φ(b) and a =φ b if φ(a) = φ(b).

Let X be a set of variables, F a finite set of function
symbols graded by an arity function ar : F → N, Fn = { f ∈
F | ar(f) = n} and T the set of terms constructed from X and
F. We use x, y, z as variables, c, d as constant symbols, f ,
g as function symbols of non-zero arity, and r, s, t as terms.
Let Lea f = X ∪ F0. Each element in Lea f is called a leaf

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2963

symbol. A term is ground if it has no variable. Let G be the
set of ground terms, and let S = T \ (G∪X). Let V(s) be the
set of variables occurring in s. The root symbol is defined as
root(a) = a if a is a leaf symbol and root(f (t1, . . . , tn)) = f .

A position in a term is expressed by a sequence of pos-
itive integers. Let O(s) be the set of positions of s. We use
u, v as positions. Positions are partially ordered by the pre-
fix ordering ≤. To denote that positions u and v are disjoint,
we use u|v. For a set of positions W, the set of all minimal
positions (w.r.t. ≤) of W is denoted by Min(W).

Let s|u be the subterm of s at position u. Let Psub(s)
be the set of proper subterms of s: Psub(s) = {s|u | u ∈
O(s) \ {ε}}. The domain T of Psub is extended to P(T),
i.e., Psub(T ′) =

⋃
s∈T ′ Psub(s). We use s[t]u to denote

the term obtained from s by replacing the subterm s|u by
t. For a sequence (u1, · · · , un) of pairwise disjoint positions
and terms r1, · · · , rn, we use s[r1, · · · , rn](u1,...,un) to denote
the term obtained from s by replacing each subterm s|ui by
ri (1 ≤ i ≤ n).

A rewrite rule is defined as a directed equation α → β
such that α � X and V(α) ⊇ V(β). A TRS R is a finite
set of rewrite rules. We write s

u→R t when there exist r,
a substitution σ and α → β ∈ R that satisfy s = r[ασ]u

and t = r[βσ]u. Position u is called a redex position. If u
and R are clear from the context, we can drop them. Let←
be the inverse of →, ↔ = → ∪ ← and ↓ = →∗ · ←∗. Let
γ : s1

u1↔ s2 · · · un−1↔ sn be a rewrite sequence. This sequence
is abbreviated to γ : s1 ↔∗ sn and R(γ) = {u1, · · · , un−1} is
the set of the redex positions of γ. For v ∈ O(s1), if u > v or
u|v for all u ∈ R(γ), then γ is called v-invariant. For a set of
positions W, if u ≥ v or u|v for all u ∈ R(γ) and v ∈ W then
γ is called W-frontier. For any sequence γ and position set
W, R(γ) ≥ W if for any v ∈ R(γ) there exists a u ∈ W such

that v ≥ u. If R(γ) ≥ W, we write γ : s1

≥W↔∗ sn.
Let OG(s) be the set of positions of s at which the sub-

terms are ground: OG(s) = {u ∈ O(s) | s|u ∈ G}. For any
set Δ ⊆ X ∪ F, let OΔ(s) = {u ∈ O(s) | root(s|u) ∈ Δ}. Let
Ox(s) = O{x}(s). The set DR of defined symbols for a TRS R
is defined as DR = {root(α) | α → β ∈ R}. If R is clear from
the context, we can drop R. A term s is semi-constructor if
for each defined symbol occurring in s all the occurrences
occur in ground subterms of s.

Definition 2.1: A rule α → β is ground if α ∈ G,
right-ground if β ∈ G, and semi-constructor if β is semi-
constructor. A TRS R is right-ground if every rule in R
is right-ground, and semi-constructor if every rule in R is
semi-constructor. A TRS R is confluent if←∗R · →∗R⊆↓R. A
TRS R is CR if↔∗R⊆↓R. It is known that confluence and CR
are equivalent.

Example 2.2: Let Re = {nand(x, x)→ ¬(∧(x, x)),
nand(¬(∧(x, x)), x)→ t, t→ nand(f, f), f→ nand(t, t)}.
Note that the set of defined symbols DRe is {nand, t, f}. Re is
semi-constructor, non-terminating and confluent [4].

Definition 2.3: We use s ≈ t to denote the pair of terms
s and t. s ≈ t is joinable for a TRS R if s ↓R t. s ≈ t is

unifiable modulo a TRS R (or simply R-unifiable) if there
exist a substitution θ and a rewrite sequence γ such that γ :
sθ ↔∗ tθ. Such θ and γ are called an R-unifier and a proof
of s ≈ t, respectively. This notion is extended to sets of term
pairs: for Γ ⊆ T ×T , θ is an R-unifier of Γ if θ is an R-unifier
of every pair s ≈ t of Γ. In this case, Γ is R-unifiable. As
a special case of R-unifiability, s ≈ t is ∅-unifiable if there
exists a substitution θ such that sθ = tθ, i.e., ∅-unifiability
coincides with usual unifiability.

We use {· · · }m to denote a multiset. Let� be the mul-
tiset extension of usual relation < on N, and � be � ∪ =.
We use � to denote multiset union.

Definition 2.4: For a term t, we define the height of t as
follows.

(1)

height(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 +max{height(ti) | 1 ≤ i ≤ n}
(if t = f (t1, · · · , tn), n > 0)
0 (if t ∈ Lea f)

(2) For B ∈ {F0,G}, we define hDB(t) as follows.

hDB(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wf +max{hDB(ti) | 1 ≤ i ≤ n}
(if t = f (t1, · · · , tn), n > 0)
0 (if t ∈ X ∪ B)

Here, wf = 1 + 2max{height(β) | α → β ∈ R} if f
is a defined symbol for TRS R, otherwise wf = 1. In
this function, every subterm belonging to X ∪ B is not
counted.

(3) For B ∈ {F0,G}, we define HDB(t) = {hDB(t|u) | u ∈
O(t) \ OB(t)}m, which is the multiset of the hDB-values
of all subterms of t except elements of B.

Example 2.5: For TRS M(Re) of Example Appendix
B.3 in Appendix B, hDF0 (x) = hDG(x) = 0,
hDF0 (nand(x,¬(t))) = 6, hDG(nand(x,¬(t))) = 5,
HDF0 (x) = HDG(x) = {0}m, HDF0 (nand(x,¬(t))) =
{0, 1, 6}m, and HDG(nand(x,¬(t))) = {0, 5}m.

For the measure HDB, the following lemma holds.

Lemma 2.6: For any s, t, the following conditions hold.

(1) If s <hDB t then s �HDB t.
(2) If s �HDB t then s ≤hDB t
(3) For any r and u ∈ O(r), if s �HDB t then r[s]u �HDB

r[t]u.

Proof

(1) For any subterm s′ of s, s′ ≤hDB s. By s <hDB t, s �HDB

t holds.
(2) To the contrary, we assume that s >hDB t. By (1),

s �HDB t, a contradiction.
(3) Let ŝ = f (r1, · · · , ri−1, s, ri+1, · · · , rn) and t̂ =

f (r1, · · · , ri−1, t, ri+1, · · · , rn) where f ∈ Fn and i ∈
{1, · · · , n}. It suffices to show that {hDB(ŝ)}m �
HDB(s) � {hDB(t̂)}m � HDB(t). By (2), s ≤hDB t, so
ŝ ≤hDB t̂ holds. If ŝ <hDB t̂ then ŝ �HDB t̂ holds by (1).
If ŝ =hDB t̂ then ŝ �HDB t̂ holds by s �HDB t. �

2964
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

3. Basic Results

In order to show the decidability of unification for conflu-
ent semi-constructor TRSs, we need the algorithm decid-
ing the joinability problem in [10] and some definitions and
lemmata in [10]. We describe these definitions and results
(without the proofs) in this section.

3.1 Standard Semi-Constructor TRSs

We use Rrg and Rnrg to denote the sets of right-ground and
non-right-ground rewrite rules in TRS R, respectively. That
is, R = Rrg ∪ Rnrg.

Definition 3.1: [10] A TRS R is standard if for every α→
β ∈ R, either α ∈ F0 and height(β) ≤ 1 or α � F0 and
OG(β) ⊆ OF0 (β) holds. Note that for any right ground rule
α → β in a standard TRS, α ∈ F0 and height(β) ≤ 1 or
α � F0 and β ∈ F0 hold.

Let R be a confluent semi-constructor TRS. We have
introduced an effectively computable function S which takes
TRS R and produces standard TRS S(R) in [10].† We have
shown that S(R) is standard, confluent and semi-constructor.
The following lemma also holds.

Lemma 3.2: For any confluent semi-constructor TRS R
and terms s, t which do not contain any new constant gener-
ated by S, s ≈ t is R-unifiable iff s ≈ t is S(R)-unifiable.

We can assume that a given confluent semi-constructor TRS
is standardized, hereafter.

3.2 Shortcut Rules and Quasi-Standard Semi-Constructor
TRSs

We add new ground rules called shortcut rules to standard
TRS R, and obtain TRS R′ satisfying that two constants are
joinable in R iff they are joinable by only right-ground rules
of R′. Right-hand sides of added shortcut rules may have
height greater than 1. These rules are called type C rules
and defined as follows.

Definition 3.3: [10]

(1) For TRS R, a rule α → β ∈ R has type C if α ∈ F0,
β � F0, and ODR (β) ⊆ OF0 (β). Let RC be the set of type
C rules in R.

(2) A TRS R is quasi-standard if R \ RC is standard.

Henceforth, we assume that R is confluent, quasi-standard,
and semi-constructor. To describe how to produce shortcut
rules, we need some preliminaries.

Definition 3.4: [10] Let Bud(RC) = F0 ∪ Psub({β | α →
β ∈ RC}).
Lemma 3.5: [10] For any rewrite sequence γ : s →∗Rrg

t
and u ∈ O(t), if there exists v ∈ R(γ) such that v < u,
then there exists s′ ∈ Bud(RC) such that s →∗Rrg

t[s′]u and
s′ →∗Rrg

t|u.

Definition 3.6: [10]

(1) The function linearize(s) linearizes non-linear term s
as follows. For each variable occurring more than once
in s, the first occurrence is not renamed, and the other
ones are replaced by new pairwise distinct variables.
For example, linearize(nand(x, x)) = nand(x, x1). If
function linearize replaces x by x1 then we use x ≡ x1

to denote the replacement relation.
(2) A substitution σ is joinability preserving under relation
≡ for TRS Rrg if xσ ↓Rrg x′σ whenever x ≡ x′.

(3) A substitution σ : V(t′) → Psub(s) ∪ Bud(RC) is a
bud substitution for s and t, where t′ = linearize(t),
if s →∗Rrg

t′σ and σ is joinability preserving under re-
lation ≡ for Rrg. Note that if s is ground then t′σ is
ground. Let BudMapR(s, t) be the set of such bud sub-
stitutions.

Lemma 3.7: [10] Let α → β ∈ Rnrg and γ : s →∗Rrg
αθ

for some θ. Then, there exists σ ∈ BudMapR(s, α) such
that s →∗Rrg

α′σ →∗Rrg
αθ and βσ →∗Rrg

βθ where α′ =
linearize(α).

By Lemma 3.7, for any constant d and rewrite sequence
d →∗Rrg

αθ →Rnrg βθ, there exists α′σ such that d →∗Rrg

α′σ →∗Rrg
αθ and βσ →∗Rrg

βθ where α′ = linearize(α).
So, we have d →∗R′ βθ for R′ = Rrg ∪ {d → βσ}. Thus,
by adding shortcut rules such as d → βσ, we can remove
applications of the non-right-ground rule α → β. Note that
confluence and joinability properties are preserved even if
we add d → βσ since d ↓R βσ. However, shortcut rules may
be added infinitely in this procedure. To avoid this, we ap-
ply a procedure which bounds the number of shortcut rules.
We have introduced an effectively computable function M to
implement this procedure in [10] †† and shown that M(R) is
confluent, quasi-standard and semi-constructor. Moreover,
we have shown that the following lemma holds for M(R).

Lemma 3.8: [10]

(1) For any d and s, if d →∗R s then d →∗M(R)rg
s.

(2) →M(R) ⊆ ↓R.

3.3 Auxiliary Terms

Let s be a ground term.

function Aux(s)
Δ := {s};
for each p ∈ OD\F0 (s),

α→ β ∈ M(R)nrg, and
σ ∈ BudMapM(R)(s|p, α) do

Δ := Δ ∪ Aux(s[βσ]p);
return Δ

Example 3.9: For TRS M(Re) of Example Appendix B.3,
Aux(¬(nand(t, t))) = {¬(nand(t, t)),¬(¬(∧(t, t)))}.

†This function S is given in Appendix A of this paper.
††This function M is given in Appendix B of this paper.

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2965

We have shown that Aux(s) is finite and computable.

Lemma 3.10: [10] For any ground term s,

(1) For any s′ ∈ Aux(s), s′ is a ground term and s′ ↓M(R) s.
(2) If s →∗R t then there exists s′ ∈ Aux(s) such that

s′ →∗M(R)rg
t.

We call s′ in Lemma 3.10 (2) an auxiliary term of (s, t).
Using this term, we can transform non-right-ground rewrite
sequences to right-ground rewrite sequences.

Example 3.11: For the rewrite sequence
¬(nand(t, t))→∗Rerg

¬(nand(nand(f, f), nand(f, f)))
→Re ¬(¬(∧(nand(f, f), nand(f, f)))), we can choose
¬(¬(∧(t, t))) ∈ Aux(¬(nand(t, t))) and
¬(¬(∧(t, t)))→M(Re)rg ¬(¬(∧(nand(f, f), nand(f, f)))).

Lemma 3.12: For any confluent standard semi-constructor
TRS R, s ≈ t is R-unifiable iff s ≈ t is M(R)-unifiable.
Proof Only if part: Since R is confluent, there exists
θ such that sθ ↓R tθ. W.l.o.g., we can assume that sθ
and tθ are ground terms. By Lemma 3.10 (2), there ex-
ist s′ ∈ Aux(sθ), t′ ∈ Aux(tθ) such that s′ ↓M(R)rg t′. By
Lemma 3.10 (1), sθ ↔∗M(R) tθ.

If part: There exists θ such that sθ ↔∗M(R) tθ. By
Lemma 3.8 (2), sθ ↔∗R tθ. �

In this paper, we give an R-unification algorithm for
confluent semi-constructor TRSs. By Lemma 3.12, we
assume that confluent semi-constructor TRS R is quasi-
standard and an output of Algorithm M, that is, M(R) = R
holds.

4. Locally Minimum Unifiers and Typed Pairs of
Terms

In this section, we introduce the notions of locally minimum
unifiers and typed pairs of terms for our unification algo-
rithm.

Definition 4.1:

(1) Let #(t) = (HDF0 (t), ord(t)), where ord : T → N is an
injective mapping. We use lexicographic ordering >#

to compare any pair of terms. We assume that if s ># t
then r[s]u ># r[t]u for any r, s, t. The existence of
such an effectively computable function ord is shown in
Appendix A.2 of [10] for ground terms. We can easily
extend this function to one for non-ground terms [8].

(2) Let L(t) = {s | s↔∗ t}. Note that it is decidable for any
terms s and s′, whether s′ ∈ L(s) holds or not [10].

(3) s0 is minimum if s0 is minimum in L(s0) on >#.

Lemma 4.2: For any minimum term, its subterm is mini-
mum.

This proof is obvious, since if s ># t then r[s]u ># r[t]u for
any r, s, t, so that if r is minimum then r|u must be minimum.

Lemma 4.3: Let s0 be minimum and γ : s0 →∗ t. Then,
R(γ) ≥ OLea f (s0). (That is, only leaf symbols of s0 are

rewritten in γ.)
Proof We show by induction on HDF0 (s0). It is trivial in
case of HDF0 (s0) = ∅ or {0}m. So, we consider the case
HDF0 (s0) � {0}m. If γ is ε-invariant then this lemma holds
by the induction hypothesis. Thus, it is sufficient to show

that γ is ε-invariant. We assume to the contrary that s0

>ε→∗
αθ

ε→ βθ for some rule α → β and substitution θ. Then,
the following conditions (a)–(c) hold: (a) root(s0) ∈ D and
α � F0, (b) β � G, i.e., α → β ∈ Rnrg, (c) s0 →∗Rrg

αθ. The
proof of (a) is obvious by HDF0 (s0) � {0}m. (b) holds, since
if β ∈ G then we have β ∈ F0 by quasi-standardness, which

contradicts that s0 is minimum. To show (c), let δ : s0

>ε→∗
αθ. By the induction hypothesis, R(δ) ≥ OLea f (s0), so that
s0 →∗Rrg

αθ by Lemma 3.8 (1) and M(R) = R. Thus, (c)
holds. By (b), (c) and Lemma 3.7, there exists a substitution
σ ∈ BudMapR(s0, α) such that s0 →∗Rrg

α′σ →∗Rrg
αθ and

βσ→∗Rrg
βθ where α′ = linearize(α). Hence, s0 ↓ βσ holds.

Since root(s0) ∈ D and β is semi-constructor, hDF0 (s0) =
1 + 2max{height(β) | α→ β ∈ R} +max{hDF0 (s|i) | 1 ≤ i ≤
ar(root(s0))} > hDF0 (βσ). By Lemma 2.6 (1) s0 �HDF0

βσ
holds. This contradicts that s0 is minimum. �

Example 4.4: Terms t and nand(t, x) are minimum.
OLea f (nand(t, x)) = {1, 2}. Only leaf symbols of nand(t, x)

are rewritten in a rewrite sequence such as nand(t, x)
1→

nand(nand(f, f), x)
11→ nand(nand(nand(t, t), f), x)

111→ · · · .
Lemma 4.5: The minimum term in L(s) is computable.
Proof Let s0 be the minimum term in L(s). First we show
that V(s0) ⊆ V(s). By confluence of R, there exists some
term r such that s0 →∗ r and s →∗ r. By Lemma 4.3, only
leaf symbols of s0 are rewritten, so that V(s0) = V(r). Thus,
V(s0) ⊆ V(s) as claimed. The set {s′ | s′ ≤# s,V(s′) ⊆ V(s)}
is finite. Since joinability is decidable, s0 is computable. �

Definition 4.6:

(1) A substitution θ is a locally minimum substitution if xθ
is minimum for every x ∈ Dom(θ).

(2) Let Γ ⊆ T × T . A locally minimum substitution θ is a
locally minimum R-unifier of Γ if θ is an R-unifier of Γ.

Our unification algorithm takes a pair s ≈ t as input
and produces a locally minimum unifier θ of s ≈ t iff s ≈ t
is R-unifiable. Different types of pairs are distinguished by
using the notation s � t and s ≈vf t, which are said to be of
type � and of type vf, respectively. These definitions are
similar to those of [14]. Type �U was used in [14], but the
parameter U is not essential, so omitted.

Definition 4.7: Let E0 = {s ≈ t, s ≈vf t, fail | s, t ∈
T } ∪ {s � t | s ∈ T, t ∈ S }. Here, fail is introduced as a
special symbol and we assume that there exists no R-unifier
of fail [14]. For Γ ⊆ E0 and substitution θ, let Γθ = {sθ ≈
tθ | s ≈ t ∈ Γ or s � t ∈ Γ and tθ � S } ∪ {sθ � tθ | s � t ∈
Γ and tθ ∈ S } ∪ {sθ ≈vf tθ | s ≈vf t ∈ Γ} ∪ {fail | fail ∈ Γ}.

R-unifiers of these new pairs are required to satisfy ad-
ditional conditions derived from these types.

2966
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Definition 4.8: A substitution θ is a (locally minimum) R-
unifier of s � t if θ is a (locally minimum) R-unifier of s ≈ t

and there exists a rewrite sequence γ : sθ →∗ r
≥OX (t)
↔∗ tθ

for some term r. A substitution θ is a (locally minimum)
R-unifier of s ≈vf t if θ is a (locally minimum) R-unifier of
s ≈ t and there exists γ : sθ ↔∗ tθ, where γ is OX(t)-frontier.

Note that if t ∈ G then θ is an R-unifier of s ≈vf t iff θ
is that of s ≈ t.

Example 4.9: Let M(Re) be the TRS of Example Ap-
pendix B.3.

1. nand(f,¬(nand(t, t))) � nand(y,¬(y)) is M(Re)-unifia-
ble, since any substitution θ satisfying yθ = f is an

M(Re)-unifier: nand(f,¬(nand(t, t)))
21← nand(f,¬(f)).

2. nand(t, nand(t, t)) ≈vf nand(nand(f, f), y) is M(Re)-uni-
fiable, since any substitution θ satisfying yθ = f is an

M(Re)-unifier: nand(t, nand(t, t))
1→ nand(nand(f, f),

nand(t, t))
2← nand(nand(f, f), f).

To convert typed pairs into the untyped ones, we define
the following function Core.

Definition 4.10: [14] For Γ ⊆ E0, let Core(Γ) = {s ≈ t | s ≈
t ∈ Γ or s � t ∈ Γ or s ≈vf t ∈ Γ} ∪ {fail | fail ∈ Γ}.

The following definition and technical lemma is needed
to show the validity of TT transformation of Stage I of our
unification algorithm described in Sect. 5.

Definition 4.11: A substitution σ : V(t′) → Psub(s) ∪
Bud(RC)∪V(t′) is an abstract one of σ′ ∈ BudMapR(sθ, t) if
the following condition holds: xσ = x if xσ′ ∈ Psub(yθ) ∪
{yθ}, xσ = s|v if xσ′ = s|v for some v ∈ O(s), xσ = xσ′
if xσ′ ∈ Psub(s) ∪ Bud(RC). Here, t′ = linearize(t). Let
BudMapR(s, t) be the set of such substitutions.

Lemma 4.12: Let s ∈ S and U = OX(s) ∪Min(OG(s)).

(1) Let γ : sθ
≥U→∗ t, θ is a locally minimum substitution,

and s|w →∗Rrg
t|w holds for every w ∈ Min(OG(s)). Then,

for any u ∈ O(t), there exists s′ ∈ {s|uθ} ∪ Bud(RC) ∪
{xθ|v | x ∈ V(s), v ∈ O(xθ)} such that sθ

≥U→∗ t[s′]u and
s′ →∗ t|u.

(2) Let α → β ∈ R and γ : sθ
≥U→∗ ασ for some σ

θ is a locally minimum substitution and s|v →∗Rrg
t|v

holds for every v ∈ Min(OG(s)). Then, there ex-
ist ρ ∈ BudMapR(s, α) and a locally minimum sub-
stitution θ′ : V(s) ∪ V(α′) → Psub(sθ) such that

sθ
≥U→∗ α′ρθ′

≥OX (α′)
→∗ ασ and βρθ′

≥OX (β)
→∗ βσ where

α′ = linearize(α).

Proof

(1) Since xθ is minimum for every x ∈ V(s) and

Lemma 4.3, there exists a sequence γ : sθ
≥U′→∗ t, where

U′ = (OLea f (sθ) \OF0 (s))∪Min(OG(s)). Thus, u ≥ v or

u < v for some v ∈ U′ holds.
(a) Case of u ≥ v for some v ∈ OLea f (sθ) \ OF0 (s):
sθ|v →∗ t|v holds. If u = v then we can choose sθ|v
as s′. Otherwise, by sθ|v ∈ F0 and Lemma 3.8 (1),
sθ|v →∗Rrg

t|v holds. By Lemma 3.5, there exists s′′ ∈
Bud(RC) such that sθ|v →∗Rrg

(t|v)[s′′]u′ where u = vu′

and s′′ →∗Rrg
t|u. Thus, we can choose s′′ as s′.

(b) Case of u ≥ v for some v ∈ Min(OG(s)): s|v →∗Rrg
t|v

holds. If u = v or s|v
≥u′→∗ t|v, where u = vu′ then we

can choose sθ|u as s′. Otherwise, by Lemma 3.5, there
exists s′′ ∈ Bud(RC) such that s|v →∗Rrg

(t|v)[s′′]u′ where
u = vu′ and s′′ →∗Rrg

t|u. Thus, we can choose s′′ as s′.
(c) Case of u < v for some v ∈ U′: sθ|u →∗ t|u holds.
If u ∈ O(s) then sθ|u = s|uθ holds, so we can choose
s|uθ as s′. Otherwise, there exists x ∈ V(s) such that
sθ|u = xθ|u′ for some u′, so we can choose xθ|u′ as s′.

(2) Let {u1, · · · , un} be OX(α). For u1, there exists s′1 ∈{s|u1θ} ∪ Bud(RC) ∪ {xθ|v | x ∈ V(s), v ∈ O(xθ)}
such that sθ

≥U→∗ ασ[s′1]u1

≥{u1}→∗ ασ by (1). Let

γ1 : sθ
≥U→∗ ασ[s′1]u1 . By similar arguments, there

exists s′2 ∈ {s|u2θ} ∪ Bud(RC) ∪ {xθ|v | x ∈ V(s), v ∈
O(xθ)} such that sθ

≥U→∗ ασ[s′1]u1 [s′2]u2 and s′2 →∗
(ασ[s′1]u1)|u2 for γ1 by (1). By u1|u2, ασ[s′1]u1 [s′2]u2 =

ασ[s′1, s
′
2](u1,u2) and (ασ[s′1]u1)|u2 = ασ|u2 . Thus, sθ

≥U→∗

ασ[s′1, s
′
2](u1,u2)

≥{u1,u2}→∗ ασ. By repeating similar ar-
guments to the above, there exist s′1, · · · , s′n such that

sθ
≥U→∗ α[s′1, · · · , s′n](u1,··· ,un)

≥OX (α′)
→∗ ασ where for each

i ∈ {1, · · · , n}, s′i = s|uiθ, s′i ∈ Bud(RC), or s′i = xθ|v for
some x ∈ V(s), v ∈ O(xθ). Let ρ′ = {α′|ui

→ s′i | 1 ≤
i ≤ n}. Then, ρ′ ∈ BudMapR(sθ, α). We define ρ as
follows: yρ = y if yρ ∈ {xθ|v | x ∈ V(s), v ∈ O(xθ)},
yρ = s|ui if yρ′ = s|uiθ and y = α′|ui, yρ = yρ′ oth-
erwise. Then, ρ ∈ BudMapR(s, α) and ρ′ = ρθ′ hold
for substitution θ′ : V(s) ∪ V(α′) → Psub(sθ) sat-
isfying that if x ∈ V(s) then xθ′ = xθ, otherwise if
x = α′|ui

then xθ′ = s′i . Note that if s′i = xθ|v for some
x ∈ V(s), v ∈ O(xθ), then s′i is minimum since xθ is
minimum by Lemma 4.2. Hence, θ′ is a locally mini-
mum substitution. Thus, (2) of this lemma holds. �

5. R-Unification Algorithm

We now give our R-unification algorithm for confluent semi-
constructor TRSs which is based on the unification algo-
rithm in [14] applicable to confluent right-ground TRSs.
The algorithm in [14] is constructed by using algorithms
of deciding joinability and reachability for right-ground
TRSs, but only joinability is decidable for confluent semi-
constructor TRSs [10]. (Undecidability of the reachability
has been shown in [11].) Thus, our unification algorithm
can be considered as a refined version of that of [14] in

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2967

the sense that no algorithm of deciding reachability of semi-
constructor TRSs is needed, (though a decision algorithm of
reachability for right-ground TRSs is used) and some prim-
itive operations are unified or simplified.

Each primitive operation Φ of our algorithm takes a
finite set of pairs Γ ⊆ E0 and produces some Γ̃ ⊆ E0, de-
noted by Γ ⇒Φ Γ̃. This operation is called a transforma-
tion. Such a transformation is made nondeterministically:
Γ ⇒Φ Γ1,Γ ⇒Φ Γ2, · · · ,Γ ⇒Φ Γk are allowed for some
Γ1, · · · ,Γk ⊆ E0. In this case, we write Φ(Γ) = {Γ1, · · · ,Γk}
regarding Φ as a function. Let⇒∗

Φ
be the reflexive transitive

closure of ⇒Φ. Our algorithm starts from Γ0 = {s0 ≈ t0}
and makes primitive transformations repeatedly. We will
prove that there exists a sequence Γ0 ⇒∗Φ Γ such that Γ is
∅-unifiable iff Γ0 is R-unifiable.

Our algorithm is divided into three stages. Stage I re-
peatedly decomposes a set of term pairs Γ into another one
Γ̃ by guessing a rewrite rule applied at the root position of a
non-variable subterm of some term appearing in Γ. Finally,
Stage I transforms Γ into a set of type vf pairs Γf , which be-
comes an input of the next Stage II. Stage II is similar to a
usual ∅-unification algorithm and stops when a set of type vf
pairs Γ is in solved form as explained later. The Final Stage
only checks ∅-unifiability of Γ in solved form.

We give the definition related to validity of the algo-
rithm.

Definition 5.1: Substitutions θ and θ′ are consistent if
xθ = xθ′ for any x ∈ Dom(θ) ∩ Dom(θ′).

Definition 5.2: [14] Let Φ : P(E0)→ P(P(E0)) be a trans-
formation. Then, Φ is valid if the following validity con-
ditions (V1) and (V2) hold. For any Γ ⊆ E0, let Φ(Γ) =
{Γ1, · · · ,Γn}.
(V1) If θ is a locally minimum R-unifier of Γ, then there

exists i ∈ {1, · · · , n} and a substitution θ′ such that θ′
is consistent with θ and θ′ is a locally minimum R-
unifier of Γi.

(V2) If there exists i ∈ {1, · · · , n} such that Core(Γi) is R-
unifiable, then Core(Γ) is R-unifiable.

5.1 Stage I

The transformation Φ1 of Stage I takes as input a finite
subset of pairs Γ ⊆ E0 and has a finite number of non-
deterministic choices Γ ⇒Φ1 Γ1, · · · ,Γ ⇒Φ1 Γk for some
Γ1, · · · ,Γk ⊆ E0. We consider all possibilities in order to
ensure the correctness of the algorithm.

We begin with the initial Γ = {s0 ≈ t0} and repeat-
edly apply the transformationΦ1 until the current Γ becomes
a set of type vf pairs with or without fail. This condi-
tion is called the stop condition of Stage I and defined as
Γ ⊆ {fail, s ≈vf t | s, t ∈ T }. If Γ satisfies this condition, then
Γ becomes an input of the next stage.

To describe the transformations used in Stage I, we
need the following auxiliary function.

Dec(f (s1, · · · , sn), f (t1, · · · , tn))

= {si � ti | 1 ≤ i ≤ n, ti ∈ S }
∪ {si ≈ ti | 1 ≤ i ≤ n, si � G, ti � S }
∪ {ti ≈vf si | 1 ≤ i ≤ n, si ∈ G, ti � S }
In Stage I, we nondeterministically apply Conversion

or choose an element p in Γ\(G∪X)×(G∪X) and apply one
of the following transformations (TT, VT) to Γ according to
form of the chosen p = s ≈ t or s � t.

If no transformation is possible, Γ⇒Φ1 {fail}. We write
s � t if s ≈ t or t ≈ s. We say that p = s � t satisfies the TT
condition if s, t � X and either s � G or t � G, and the VT
condition if s ∈ X and t ∈ S . Similarly, we say that p = s� t
satisfies the TT condition if s � X, and the VT condition if
s ∈ X. Note that if p = s � t then t ∈ S .

Let Γ′ = Γ \ {p}. In the following explanations, we
assume that θ is a locally minimum unifier of p and we list
the conditions that are assumed on a proof γ of p. When
applying the transformations we of course lack this infor-
mation and so we just have to check that the conditions of
the transformations are satisfied.

5.1.1 Conversion

If every s ≈ t, s � t ∈ Γ does not satisfy the TT condition,
then

Γ⇒Φ1 Conv(Γ)

where Conv(Γ) = {x ≈vf s | x ≈ s ∈ Γ or s ≈ x ∈ Γ or x�s ∈
Γ or x ≈vf s ∈ Γ} ∪ {s ≈vf t ∈ G ×G | s ≈ t ∈ Γ or s ≈vf t ∈
Γ} ∪ {fail | fail ∈ Γ}. Note that Conv(Γ) satisfies the stop
condition of Stage I.

In the following examples, we use the TRS M(Re) of
Example Appendix B.3.

Example 5.3:

{x ≈ x, t ≈vf t, x ≈ t, x ≈ x′, t ≈ x}
⇒Φ1 {x ≈vf x, t ≈vf t, x ≈vf t, x ≈vf x′, x ≈vf t}
{x ≈ nand(t, x), x ≈ f, f ≈ t}
⇒Φ1 {x ≈vf nand(t, x), x ≈vf f, f ≈vf t}

TT Transformation

1. If p = s � t satisfies the TT condition, we choose one
of the following three cases. Let k = ar(root(s)). We
guess that θ is a locally minimum R-unifier of p and
that there exists a joinable sequence γ : sθ ↓ tθ.

a. If root(s) = root(t), then

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ {s|i ≈ t|i | 1 ≤ i ≤ k}

In this transformation, we guess that γ : sθ ↓ tθ is
ε-invariant.

2968
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

b. If s � G, then we choose a fresh variant of a rule
α→ β ∈ R that satisfies root(s) = root(α) and

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ Dec(s, α) ∪ {β ≈ t}

In this transformation, we guess that ασ → βσ is
the leftmost ε-reduction step in γ : sθ →∗ ασ →
βσ ↓ tθ for some substitution σ (where the subse-
quence sθ →∗ ασ is ε-invariant).

c. If s ∈ G, then we choose a term s′ ∈ Aux(s) and

i. If root(s′) = root(t),

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ {s′|i ≈ t|i | 1 ≤ i ≤ k}

ii. We choose a rule α → β ∈ Rrg that satisfies
s′ →+Rrg

β and

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ {β ≈ t}

and then do a single TT transformation on
t ≈ β as in 1.a or 1.b.

In this transformation, we guess an auxiliary
term s′ satisfying that s ↓ s′ →∗Rrg

←∗ tθ by
Lemma 3.10. Moreover, we guess that γ′ :
s′ →∗Rrg

←∗ tθ is ε-invariant or ασ→ β is the right-
most ε-reduction in the subsequence s′ →∗Rrg

r of
γ′ : s′ →∗Rrg

r ←∗ tθ.

2. If p = s � t satisfies the TT condition, we choose one
of the following three cases. We guess that there exists

a sequence γ : sθ →∗ r
≥OX (t)
↔∗ tθ for some term r.

a. If root(s) = root(t), then

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ Dec(s, t)

In this transformation, we guess that γ : sθ →∗
r
≥OX (t)
↔∗ tθ is ε-invariant.

b. If s � G, we choose a position v ∈ O(s) such that
s|v ∈ S , and terms s1 · · · sn where Min(OG(s|v)) =
{u1, · · · , un} and si ∈ Aux(s|vui) for i ∈ {1 · · · n}.
Let s′ = s|v[s1 · · · , sn](u1,··· ,un). Then, we choose a
fresh variant of a rule α → β ∈ R with root(s′) =
root(α), a substitution ρ ∈ BudMapR(s′, α), and

Γ′ ∪ {p}
⇒Φ1 Γ

′ ∪ Dec(s′, α′ρ)
∪ {xρ ≈ x′ρ | x ∈ V(α), x ≡ x′}
∪ {s[βρ]v � t}

Here, α′ = linearize(α). In this transformation,
we guess the sequence γ′ : s[s′]vθ →∗ sθ[ασ]v →
sθ[βσ]v →∗ r

≥OX (t)
↔∗ tθ for some σ where

sθ[ασ]v → sθ[βσ]v is the first reduction at
non-ground and non-variable position of s, i.e.,

the subsequence s[s′]vθ →∗ sθ[ασ]v is OX(s)-
frontier. By Lemma 4.12 (2), there exist a sub-
stitution ρ ∈ BudMapR(s′, α) and a locally mini-

mum substitution θ′ such that s′θ
≥OX (s′)∪Min(OG(s′))

→∗
α′ρθ′

≥OX (α′)
→∗ ασ and βρθ′

≥OX (β)
→∗ βσ.

c. If s ∈ G, then we choose a term s′ ∈ Aux(s) and

i. If root(s′) = root(t),

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ Dec(s′, t)

ii. We choose a rule α → β ∈ Rrg that satisfies
s′ →+Rrg

β and root(β) = root(t), and

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ {β � t}

Then, we do a single TT transformation on
β � t as in 2.a.
In this transformation, we guess that ασ →
β is the rightmost ε-reduction step in

γ : s′ →∗Rrg
ασ → β →∗ r

≥OX (t)
↔∗ tθ for

some substitution σ. Thus, the subsequence

γ′(of γ) : β→∗ r
≥OX (t)
↔∗ tθ is ε-invariant. This

ensures that case 2.a of the TT transforma-
tion is applicable to β � t.

Example 5.4:

(1) By choosing auxiliary term t ∈ Aux(t) and rule t →
nand(f, f) and applying case 1.c, we get

Γ′ ∪ {t ≈ nand(x, t)}
⇒Φ1 Γ

′ ∪ {nand(f, f) ≈ nand(x, t)}
Then, we apply case 1.a of the TT transformation to
nand(x, t) ≈ nand(t, t) and get

Γ′ ∪ {x ≈ f, f ≈ t}
(2) By applying case 2.a repeatedly, we get

Γ′ ∪ {¬(∧(x′′, x′′)) � ¬(∧(x′, x′))}
⇒Φ1 Γ

′ ∪ {∧(x′′, x′′) � ∧(x′, x′)}
⇒Φ1 Γ

′ ∪ {x′′ ≈ x′}
(3) Let p be nand(x, t) � ¬(∧(x′, x′)). We apply case 2.b.

First, we choose v = ε. Here, Min(OG(nand(x, t))) =
{2}, so we choose auxiliary term t as s1. Next,
we choose rule nand(x′′, x′′) → ¬(∧(x′′, x′′)). Let
linearize(nand(x′′, x′′)) be nand(x′′, x′′1), so that x′′ ≡
x′′1 . Moreover, we choose ρ = {x′′ → x′′, x′′1 → t}, and
we get

Γ′ ∪ {nand(x, t) � ¬(∧(x′, x′))}
⇒Φ1 Γ

′ ∪ Dec(nand(x, t), nand(x′′, t))
∪{x′′ ≈ t} ∪ {¬(∧(x′′, x′′)) � ¬(∧(x′, x′))}
= Γ′ ∪ {x ≈ x′′, t ≈vf t, x′′ ≈ t,

¬(∧(x′′, x′′)) � ¬(∧(x′, x′))}

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2969

VT transformation

1. If p = x � s satisfies the VT condition, we choose a
position v ∈ O(s) such that s|v ∈ S and apply one of the
following two cases.

a. We choose a fresh variant of a rule α→ β ∈ R that
satisfies root(s|v) = root(α) and

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ Dec(s|v, α) ∪ {s[β]v ≈ x}

In this transformation, we guess that sθ[ασ]v →
sθ[βσ]v is the leftmost v-reduction step in
γ : sθ →∗ sθ[ασ]v → sθ[βσ]v ↓ xθ for some
σ and v ∈ Min(R(γ)) (where the subsequence
sθ →∗ sθ[ασ]v is v-invariant).

b. We choose a constant c and

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ {x ≈ s[c]v, c ≈ s|v}

where if s[c]v ∈ G, then x ≈ s[c]v is replaced by
x ≈vf s[c]v. In this transformation, we guess that
there exists γ : xθ →∗ r ←∗ sθ for some r, and
v ∈ Min(R(γ)) ∩ Min(R(γ′)) where γ′ : xθ →∗
r is the subsequence of γ. Note that since xθ is
minimum, only leaf symbols of xθ are rewritten
in γ′ by Lemma 4.3. That is, we guess xθ|v = c
and c ↓ sθ|v.

2. If p = x � s satisfies the VT condition, we choose a
constant c and a position v ∈ O(s) such that s|v ∈ S .
Then

Γ′ ∪ {p} ⇒Φ1 Γ
′ ∪ {x � s[c]v, c � s|v}

If s[c]v ∈ G, then x � s[c]v is replaced by x ≈vf s[c]v.
In this transformation, we guess that there exists γ :

xθ →∗ r
≥OX (s)
↔∗ sθ for some r, and v ∈ Min(R(γ)) ∩

Min(R(γ′)) where γ′ : xθ →∗ r. Note that since xθ is
minimum, only leaf symbols of xθ are rewritten in γ′
by Lemma 4.3. That is, we guess xθ|v = c and c →∗

r|v
≥OX (s|v)
↔∗ sθ|v.

Example 5.5:

(1) By choosing v = ε and rule
nand(¬(∧(x′, x′)), x′) → t and applying case 1.a, we
get

Γ′ ∪ {nand(nand(x, t), x) ≈ x}
⇒Φ1 Γ

′ ∪ Dec(nand(nand(x, t), x),

nand(¬(∧(x′, x′)), x′)) ∪ {t ≈ x}
= Γ′ ∪ {nand(x, t) � ¬(∧(x′, x′)), x ≈ x′,
t ≈ x}

(2) By choosing v = 1 and constant t and applying case 1.b,
we get

Γ′ ∪ {nand(nand(x, t), x) ≈ x}
⇒Φ1 Γ

′ ∪ {x ≈ nand(t, x), t ≈ nand(x, t)}

5.2 Stage II

Below we define the one step transformation Φ2 of Stage II.
We write Γ⇒Φ2 Γ̃ if Φ2(Γ) � Γ̃.

We begin with Γ which is {fail} or produced by Con-
version of Stage I. Hence, Γ ⊆ {fail, s ≈vf t | (s, t) ∈
(X × T) ∪ (G × G)} holds. Then, we repeatedly apply the
transformation Φ2 until the current Γ satisfies the stop con-
dition of Stage II defined below. In Stage II, any pair s ≈vf t
in Γ satisfies s � S . We consider all possibilities in order
to ensure the correctness of the algorithm. If Γ satisfies the
stop condition, then we check the ∅-unifiability of Γ in the
Final Stage.

Definition 5.6: Γ is in solved form if for any x ≈vf s and
x ≈vf t in Γ, s, t � X and s = t hold.

The stop condition of Stage II is that Γ satisfies one of
the following two conditions.

(1) For any s ≈vf t ∈ Γ, we have s ∈ X and Γ is in solved
form.

(2) Γ = {fail}.
(Note. Γ = ∅ satisfies condition (1).)

Definition 5.7:

(1) For any t and set of pairwise disjoint positions U,
gmin(t,U) = t[t1, · · · , tn](u1,··· ,un), where U ∩ OG(t) =
{u1, · · · , un} and ti be the minimum term in L(t|ui) for
i ∈ {1, · · · , n}. Note that OX(t) = OX(gmin(t,U)) and
Min(OG(t)) = Min(OG(gmin(t,U))).

(2) For s, t � X, we define predicate common(s, t) as
follows. Predicate common(s, t) is true if O(s) ∩
O(t) ⊇ Min(OX(s) ∪ OX(t)) and s[c, · · · , c](u1,··· ,un) =

t[c, · · · , c](u1,··· ,un), where Min(OX(s) ∪ OX(t)) =

{u1, · · · , un}. For example, let s = f (s′, x, s′′) and
t = f (s′, t′′, y), where s′ ∈ G. In this example,
Min(OX(s) ∪ OX(t)) = {2, 3}. Since s[c, c](2,3) =

f (s′, c, c) = t[c, c](2,3), common(s, t) holds.

In Stage II, we first choose an element p in Γ nondeter-
ministically and then apply one of the following transforma-
tions to Γ according to the type of the chosen p. If Γ does not
satisfy the stop condition of Stage II and no transformation
is possible, Γ⇒Φ2 {fail}. Let Γ′ = Γ \ {p}.

Decomposition

If p = x ≈vf s with s ∈ S and there exists a pair q = x ≈vf t ∈
Γ such that s � t and t ∈ S , and common(s′, t′), where s′ =
gmin(s,U∪V), t′ = gmin(t,U∪V), U = Min(OX(s)∪OX(t)),
V = Min(OG(s) ∩ OG(t)), then

Γ′′ ∪ {p, q}
⇒Φ2 Γ

′′ ∪ {q′}
∪ {s′|u ≈vf t′|u | u ∈ U and s′|u ∈ X}
∪ {t′|u ≈vf s′|u | u ∈ U and s′|u � X}

2970
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

where Γ′′ = Γ′ \ {q} and q′ = x ≈vf t′. Here, we assume that
s′�HDG

t′.

Example 5.8: Let Γ = {p, q} with p =
x ≈vf nand(nand(¬(y), nand(f, f)), t) and q =
x ≈vf nand(nand(x, t), x). Then, p′ = nand(nand(¬(y), t), t)
and q′ = q, and common(nand(nand(¬(y), t), t),
nand(nand(x, t), x)), because
nand(nand(¬(y), t), t)[c, c](11,2) = nand(nand(c, t), c) =
nand(nand(x, t), x)[c, c](11,2) holds. Moreover,
HDG(nand(nand(¬(y), t), t)) = {0, 1, 6, 11}m � {0, 0, 5, 10}m
= HDG(nand(nand(x, t), x)) holds. So, we can make the

following Decomposition:

{p, q} ⇒Φ2 {q′, x ≈vf ¬(y), x ≈vf t}

Substitution

If p = x ≈vf s or s ≈vf x with s � S , then

Γ′ ∪ {p} ⇒Φ2 Γ
′σ

where σ = {x → s′} and s′ is the minimum term in L(s).
Note that if s ∈ X then s is the minimum term in L(s).

Example 5.9:

{t ≈vf t, x′′ ≈vf t, x′′ ≈vf x′, x ≈vf x′, x ≈vf t}
∪{x ≈vf x′′} ⇒Φ2 {t ≈vf t, x′′ ≈vf t, x′′ ≈vf x′}
{t ≈vf t, x′′ ≈vf x′} ∪ {x′′ ≈vf t} ⇒Φ2

{t ≈vf t, t ≈vf x′}

GT Transformation

If p = s ≈vf t with s ∈ G, t � X, and common(s′, t′) where
s′ = gmin(s,U ∪ V), t′ = gmin(t,U ∪ V), U = OX(t), V =
Min(OG(t)), then

Γ′ ∪ {p} ⇒Φ2 Γ
′ ∪ {t′|u ≈vf s′|u | u ∈ U}

Note that if both s and t are ground then common(s′, t′) iff
s′ = t′ iff s ↓ t. GG transformation of [14] is integrated with
GT transformation in our new algorithm.

Example 5.10:

Γ′ ∪ {¬(∧(t, t)) ≈vf ¬(∧(x′, x′))} ⇒Φ2 Γ
′ ∪ {x′ ≈vf t}

Γ′ ∪ {t ≈vf t} ⇒Φ2 Γ
′

5.3 Final Stage

Let Γ be the output of Stage II. If Γ is ∅-unifiable, then
our algorithm answers ‘R-unifiable’, otherwise Γ⇒Φ {fail}.
(Note that our algorithm is a nondeterministic one.)

Since ∅-unifiability is equal to usual unifiability, any
unification algorithm can be used [3], [7]. In fact, if Γ sat-
isfies (1) of the stop condition of Stage II then Γ is in
solved form, so that it is known that Γ is unifiable iff Γ is
not cyclic [7]. The definition of cyclicity is given as follows
(this definition is similar to that of [14]).

Definition 5.11: For Γ, a relation �→Γ over X is defined as
follows: x �→Γ y iff there exists s ∈ S such that x ≈vf s ∈ Γ
and y ∈ V(s) hold. Let �→+

Γ
be the transitive closure of �→Γ.

Then, Γ is cyclic if there exists x such that x �→+
Γ

x.

We will prove later that Γ is not cyclic if there exists a
locally minimum R-unifier of Γ.
Correctness condition of Φ:

(1) ⇒∗
Φ1
· ⇒∗

Φ2
is terminating and finite branching, and

(2) Γ0 = {M0 ≈ N0} is R-unifiable iff there exist Γ1 and
Γf such that Γ0 ⇒∗Φ1

Γ1 ⇒∗Φ2
Γf , Γ1 satisfies the stop

condition of Stage I, Γf satisfies the one of Stage II, and
Γf is ∅-unifiable (i.e., it is not cyclic and Γf � {fail}).
Note that since Φ is a nondeterministic algorithm, we

need an exhaustive search of all the transformation se-
quences ⇒∗

Φ1
· ⇒∗

Φ2
from Γ0, but it is ensured that we can

decide whether Γ0 is R-unifiable or not within finite time by
(1) and (2) above.

Our algorithm can be easily transformed into one
which produces a locally minimum R-unifier of Γ0 iff Γ0

is R-unifiable, since the information can be obtained when
Substitution in Stage II is made.

5.4 Example

Let Γ0 = {nand(nand(x, t), x) ≈ x}. Our algorithm Φ can do
the following transformations:

Γ0 ⇒VT {nand(x, t) � ¬(∧(x′, x′)), x ≈ x′, t ≈ x}
by Example 5.5 (1)

⇒TT {x ≈ x′′, t ≈vf t, x′′ ≈ t,

¬(∧(x′′, x′′)) � ¬(∧(x′, x′)), x ≈ x′, t ≈ x}
by Example 5.4 (3)

⇒TT {x ≈ x′′, t ≈vf t, x′′ ≈ t,∧(x′′, x′′) � ∧(x′, x′),
x ≈ x′, t ≈ x}
by Example 5.4 (2)

⇒TT {x ≈ x′′, t ≈vf t, x′′ ≈ t, x′′ ≈ x′, x ≈ x′, t ≈ x}
by Example 5.4 (2)

⇒Conv{x ≈vf x′′, t ≈vf t, x′′ ≈vf t, x′′ ≈vf x′, x ≈vf x′,
x ≈vf t}
by Example 5.3

⇒S ub{t ≈vf t, x′′ ≈vf t, x′′ ≈vf x′}
by Example 5.9

⇒S ub{t ≈vf t, t ≈vf x′}
by Example 5.9

⇒S ub{t ≈vf t}
⇒GT∅ by Example 5.10

Obviously, ∅ satisfies the stop condition of Stage II and is
∅-unifiable. Hence, our algorithm decides that Γ0 is M(Re)-
unifiable. By⇒S ub in this example, we obtain a substitution
{x → x′′, x′′ → t, x′ → t}, that is, {x → t} is an M(Re)-
unifier.

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2971

Note that Φ can also do the following transformations:

Γ0 ⇒VT {x ≈ nand(t, x), t ≈ nand(x, t)}
by Example 5.5 (2)

⇒TT {x ≈ nand(t, x), x ≈ f, f ≈ t}
by Example 5.4 (1)

⇒Conv{x ≈vf nand(t, x), x ≈vf f, f ≈vf t}
by Example 5.3

⇒S ub{f ≈vf nand(t, f), f ≈vf t}
⇒{fail}

Let us consider another example.

{¬(x) ≈ ∧(x, x)} ⇒Φ1 {fail}
Since no transformation is possible in Stage I, our algorithm
produces {fail}.

6. Correctness of Algorithm Φ

In this section, we prove the lemmata needed to conclude
the correctness of Algorithm Φ and the main theorem.

6.1 Correctness of Stage I

In order to prove the termination of Stage I, we define
size(Γ) = (#1(Γ), #2(Γ)). Here

#1(Γ) = �s≈t∈Γ(HDG(s) � HDG(t))

� (�s�t∈ΓHDG(s))

#2(Γ) = �s�t∈ΓHDG(t).

We use the lexicographic ordering >size to compare any
Γ,Γ′ ⊆ E0.

We explain the reason why we use the size(Γ) =
(#1(Γ), #2(Γ)). For each pair p in Γ, if p = s ≈ t then
HDG(s) � HDG(t) is included in #1(Γ), and if p = s � t then
HDG(s) and HDG(t) are included in #1(Γ) and #2(Γ), respec-
tively. That is, we give the weight HDG(t) a lower priority
than the other weights. The reason is that when the TT trans-
formation introduces new terms which are subterms of α for
some rule α → β in order to create new pairs added to Γ,
the weight of these new terms are included in #2(Γ), that is,
they are given a lower priority, so that it becomes possible
to avoid an increase of size(Γ). Note that s ≈vf t is counted
neither for #1 nor for #2. Moreover, for the measures HDG

and #1, the following lemma holds.

Lemma 6.1:

(1) s �HDG s|v for any s ∈ S and v ∈ O(s) \ {ε}.
(2) s �HDG s[t]v for any t ∈ G and any v ∈ O(s) such that

s|v � G.
(3) s�HDG

sσ for any s and σ = {x→ t} such that x ∈ V(s)
and t � S .

(4) s �HDG s[βρ]v for any α → β ∈ R, substitution ρ :
V(β) → Psub(s|v) ∪ Bud(RC) ∪ X, and v ∈ OD(s) such
as s|v ∈ S .

(5) Let p = s ≈ t or s � t where s ∈ S , then {p} �#1

Dec(s, r) holds for any r such as root(s) = root(r).

Proof

(1) Since HDG(s) = HDG(s|v)�S m for some non-empty set
S m, the proposition holds.

(2) By the definition of HDG, HDG(s|v) � ∅ and HDG(t) =
∅. By Lemma 2.6 (3), this proposition holds.

(3) If s ∈ G then this proposition holds obviously. Other-
wise, if t ∈ G then s �HDG sσ holds by (2). If t ∈ X
then s =HDG sσ holds obviously.

(4) By Lemma 2.6 (3), it suffices to show that s|v �HDG βρ.
Since β is a semi-constructor, hDG(βρ) ≤ height(β) +
max{hDG(r) | r ∈ Psub(s|v)∪Bud(RC)∪X}. By s|v ∈ S
and v ∈ OD(s), hDG(s|v) > height(β) + hDG(r) for any
r ∈ Psub(s|v) ∪ Bud(RC) ∪ X. Thus, this proposition
holds.

(5) Let k = ar(root(s)). Note that #1(Dec(s, r))�
�1≤i≤k∧r|i∈S HDG(s|i) � #1({s|i ≈ r|i|1 ≤ i ≤ k, s|i �

G, r|i � S }). By (1), s �HDG s|i holds. By s ∈ S , if
r|i � S then s �HDG r|i holds, since |HDG(s)| > 0. Thus,
this proposition holds. �

We are ready to prove the termination of Stage I.

Lemma 6.2: Stage I is terminating and finite-branching.

Proof For every transformation Φ1(Γ) = {Γ1, · · · ,Γk} in
Stage I, we prove that Γ >size Γi for every i ∈ {1, · · · , k} by
showing the following table.

#1 #2

cases 1 and 2.b of TT �
cases 2.a and 2.c of TT � �
case 1 of VT �
case 2 of VT � �

Let Γ⇒Φ1 Γ̃ and Γ′ = Γ \ {p}.

TT Transformation

1. Let p = s � t satisfy the TT condition.

a. Without loss of generality, we can assume that s ∈
S . By Lemma 6.1 (1), we have {p} �#1 {s|i ≈
t|i | 1 ≤ i ≤ ar(root(s))}, so that Γ �#1 Γ̃.

b. By Lemma 6.1 (5), {p} �#1 Dec(s, α) holds.
Since β is a semi-constructor, hDG(β) ≤
height(β). By s ∈ S and root(s) ∈ D, hDG(s) >
height(β). Thus, {p} �#1 {β ≈ t} holds.

c. We replace {p} by {s′ ≈ t} for some term s′ ∈
Aux(s), and {s′ ≈ t} is replaced by either {s′|i ≈
t|i | 1 ≤ i ≤ ar(root(s′))}, where root(s′) = root(t),
or {β ≈ t} for some right-ground rule α → β. And
do a transformation on t ≈ β by case 1.a or 1.b
of the TT transformation, i.e., {t ≈ β} is replaced
by either {t|i ≈ β|i | 1 ≤ i ≤ ar(root(t))}, where
root(t) = root(β), or Dec(t, α′) ∪ {β′ ≈ t} for some
rule α′ → β′. In either case, the #1-value strictly

2972
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

decreases by the arguments of case 1.a and 1.b
since t ∈ S . Note that {p} =size {s′ ≈ t} =size

{β ≈ t} since s′, β ∈ G.

2. Let p = s � t satisfy the TT condition.

a. If s ∈ S , then the #1-value strictly decreases by
Lemma 6.1 (5). Otherwise, s ∈ G holds and
Dec(s, t) = {s|i � t|i | 1 ≤ i ≤ ar(root(s)), t|i ∈ S } ∪
{t|i ≈vf s|i | 1 ≤ i ≤ ar(root(s)), t|i � S , s|i ∈ G},
so that {p} =#1 Dec(s, t) since s ∈ G. By t ∈ S ,
{p} �#2 Dec(s, t) holds by the definition of #2 and
Lemma 6.1 (1).

b. {p} ⇒Φ1 Dec(s′, α′ρ) ∪ {xρ ≈ x′ρ | x ∈ V(α), x ≡
x′} ∪ {s[βρ]v � t}. Here, v ∈ O(s) such that s|v ∈ S ,
s′ = s|v[s1 · · · , sn](u1,··· ,un) where Min(OG(s|v)) =
{u1, · · · , un} and si ∈ Aux(s|vui) for i ∈ {1, · · · , n},
α′ = linearize(α) where α → β ∈ R, and
ρ ∈ BudMapR(s′, α). Note that s�HDG

s′ holds.
By Lemma 6.1 (5), {p} �#1 Dec(s′, α′ρ). By
Lemma 6.1 (4), {p} �#1 {xρ ≈ x′ρ | x ∈ V(α), x ≡
x′} ∪ {s[βρ]v � t}.

c. We replace {p} by {s′ � t} for some term s′ ∈
Aux(s), and {s′� t} is replaced by either Dec(s′, t),
where root(t) = root(β), or {β � t} for some right-
ground rule α→ β. And transform β�t by case 2.a
of the TT transformation, i.e., if root(s′) = root(t)
then {β � t} is replaced by Dec(β, t). In either
case, the size strictly decreases by the same ar-
guments as those of case 2.a. Note that {p} =size

{s′ � t} =size {β � t}.

VT Transformation

1. Let p = x � s with s ∈ S .

a. {p} ⇒Φ1 Dec(s|v, α) ∪ {s[β]v ≈ x} where α → β ∈
R, v ∈ O(s) and s|v ∈ S . By Lemma 6.1 (4), (5),
we have {s ≈ x} �#1 Dec(s|v, α) ∪ {s[β]v ≈ x}.
Thus, the #1-value strictly decreases.

b. If s[c]v � G then {p} ⇒Φ1 {x ≈ s[c]v, c ≈ s|v}
where c ∈ F0, v ∈ O(s) and s|v ∈ S . By
Lemma 6.1 (2), we have {x ≈ s} �#1 {x ≈
s[c]v}. By Lemma 6.1 (1) and x �hDG c, we
have {x ≈ s} �#1 {c ≈ s|v}. Thus, the #1-value
strictly decreases. If s[c]v ∈ G, then {p} ⇒Φ1

{x ≈vf s[c]v, c ≈ s|v} where v ∈ O(s) and s|v ∈ S .
Since #1({x ≈vf s[c]v, c ≈ s|v}) = HDG(s|v), the #1-
value strictly decreases.

2. Let p = x � s and s|v ∈ S . If s[c]v � G then {p} ⇒Φ1

{x � s[c]v, c � s|v}. Then, {p} =#1 {x � s[c]v, c � s|v}
by the definition of #1. By Lemma 6.1 (2), we have
{p} �#2 {x�s[c]v} By Lemma 6.1 (1) and x �hDG c, we
have {p} �#2 {c� s|v}. Thus, the #1-value is unchanged,
but the #2-value strictly decreases. If s[c]v ∈ G, then
{p} ⇒Φ1 {x ≈vf s[c]v, c � s|v} where v ∈ O(s). Since
#1({p}) = {0}m and #1({x ≈vf s[c]v, c � s|v}) = ∅, the
#1-value strictly decreases.

Moreover, if Γ is a finite set, then k is finite, i.e., Stage I
is finite-branching. Thus, this lemma holds. �

Lemma 6.3:

(1) Stage I is valid.
(2) If Γ ⊆ E0 is R-unifiable and does not satisfy the stop

condition of Stage I, then Φ1(Γ) � ∅.
Proof To show that Φ1 satisfies the validity condition (V1)
and Lemma 6.3 (2), let θ be a locally minimum R-unifier
of Γ. We first show that if p = s � t or p = s � t in Γ
satisfies the TT condition, then Φ1 can do a TT transfor-
mation Γ ⇒Φ1 Γ̃ such that there exists a locally minimum
R-unifier θ′ of Γ̃ consistent with θ. Next, we show that in the
remaining case, i.e., if there exists no p in Γ satisfying the
TT condition, Φ1 can do a VT transformation or Conversion
Γ ⇒Φ1 Γ̃ such that there exists a locally minimum R-unifier
θ′ of Γ̃ consistent with θ. It follows that Φ1 satisfies (V1)
and Lemma 6.3 (2). It remains that Φ1 satisfies (V2). The
proof is straightforward as explained below. Now we prove
this lemma. We assume that p ∈ Γ.

TT Transformation

Let p = s � t satisfy the TT condition, i.e., s, t � X and
either s � G or t � G. Let k = ar(root(s)). Then, since
θ is a locally minimum unifier of p and R is confluent, we
have a sequence γ : sθ ↓ tθ. There are two cases: (1) γ is
ε-invariant and (2) ε ∈ R(γ).

In case (1), we have root(s) = root(t) and for any i ∈
{1, · · · , k}, s|iθ ↓ t|iθ. Thus, Φ1 can do a transformation by
case 1.a of the TT transformation:

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ {s|i ≈ t|i | 1 ≤ i ≤ k}(= Γ̃)

Hence, Γ̃ satisfies the required condition: locally minimum
θ is also an R-unifier of Γ̃. Thus, the validity condition (V1)
holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then there
exist sequences γi : s|iθ′ ↔∗ t|iθ′ for any i ∈ {1, · · · , k}. Since
root(s) = root(t), there exists a sequence sθ′ ↔∗ tθ′, i.e., θ′
is an R-unifier of Core({p}). So, (V2) holds.

In case (2), we first consider the case of s � G. In this
case, without loss of generality, we assume that

γ : sθ →∗ ασ→ βσ ↓ tθ

for some rule α→ β and substitution σ. (For the other case,
exchange s and t.) Let the above ε-reduction ασ → βσ
be leftmost, i.e., the subsequence γ′ (of γ) : sθ →∗ ασ
is ε-invariant. Hence, root(s) = root(α) and for any i ∈
{1, · · · , k}, s|iθ →∗ α|iσ holds. Thus, Φ1 can do a transfor-
mation by case 1.b:

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ Dec(s, α) ∪ {β ≈ t}(= Γ̃)

If σ is not locally minimum, then let σ′ be locally minimum
such that xσ′ ↔∗ xσ for every x ∈ Dom(σ). The exis-
tence of σ′ is obvious by the definition of local minimum

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2973

property: let xσ′ be the minimum term in L(xσ). Here, we
assume that Dom(θ) ∩ Dom(σ′) = ∅. So, let θ′ = θ ∪ σ′,
i.e., Dom(θ′) = Dom(θ) ∪ Dom(σ′) and xθ′ = xθ for every
x ∈ Dom(θ) and yθ′ = yσ′ for every y ∈ Dom(σ′). Note that

sθ′
>ε→∗ ασ

≥OX (α)
↔∗ αθ′ → βθ′ ↓ tθ′. It is obvious that θ′ is

locally minimum and θ′ is an R-unifier of Γ̃ by the definition
of Dec(s, α). Hence, the validity condition (V1) holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then
there exist sequences γi : s|iθ′ ↔∗ α|iθ′ for any i ∈
{1, · · · , ar(root(s))} and γ′ : βθ′ ↔∗ tθ′. Since root(s) =
root(α), there exists a sequence sθ′ ↔∗ αθ′. So there exists
a sequence sθ′ ↔∗ tθ′, i.e., θ′ is an R-unifier of Core({p}).
So, (V2) holds.

The remaining case is that s ∈ G. In this case, t ∈ S .
There exists s′ ∈ Aux(s) such that γ′ : s′ →∗Rrg

←∗ tθ, by
Lemma 3.10 (2). If γ′ is ε-invariant, we can do a transfor-
mation by case 1.c.i. The proof is similar to that of case 1.a
since s↔∗ s′ by Lemma 3.10 (1). Otherwise, we have

γ′ : s′ →∗Rrg
ασ→ β ↓ tθ

for some right-ground rule α → β and substitution σ. Let
the above ε-reduction ασ→ β be rightmost, i.e., in the sub-
sequence γ′′ (of γ) : β ↓ tθ there is no ε-reduction from left
to right. Note that s′ →+Rrg

β. Thus, Φ1 can do a transforma-
tion by case 1.c.ii:

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ {β ≈ t}(= Γ̃)

Obviously, θ is a locally minimum R-unifier of Γ̃. It follows
that Φ1 can transform t ≈ β by case 1.a or 1.b of the TT
transformation (i.e., Φ1 can do a transformation by case 1.a
if γ′′ : tθ ↓ β is ε-invariant, otherwise case 1.b). In either
case, (V1) holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then there
exists a sequence γ′ : β ↔∗ tθ′. Since s ↓ s′ and s′ →+ β,
there exists a sequence s ↔∗ tθ′, i.e., θ′ is an R-unifier of
Core({p}). So, (V2) holds.

Let p = s � t satisfy the TT condition, i.e., s � X and
t ∈ S . Let k = ar(root(s)). Since θ is a locally minimum

R-unifier of p, there exists a sequence γ : sθ →∗ r
≥OX (t)
↔∗ tθ

for some term r. There are two cases: (1) γ is ε-invariant
and (2) ε ∈ R(γ).

In case (1), we have root(s) = root(t) and for any

i ∈ {1, · · · , k}, s|iθ →∗ r|i
≥OX (t|i)↔∗ t|iθ. Thus, Φ1 can do a

transformation by case 2.a of the TT transformation:

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ Dec(s, t)(= Γ̃)

It is obvious that θ is also a locally minimum R-unifier of Γ̃.
Thus, (V1) holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then there
exist sequences γi : s|iθ′ ↔∗ t|iθ′ for any i ∈ {1, · · · , k}. Since
root(s) = root(t), there exists a sequence sθ′ ↔∗ tθ′, i.e., θ′
is an R-unifier of Core({p}). So, (V2) holds.

In case (2), we first consider the case of s � G. we can
assume that

γ : sθ →∗ sθ[ασ]v → sθ[βσ]v →∗ r
≥OX (t)
↔∗ tθ

for some rule α → β, substitution σ, and some v ∈ O(s)
such as s|v ∈ S . Let the above v-reduction sθ[ασ]v →
sθ[βσ]v be first reduction at non-ground and non-variable
position of s, i.e., sθ →∗ sθ[ασ]v is OX(s)-frontier. Let
Min(OG(s|v)) = {u1, · · · , un}. By Lemma 3.10 (2), for ev-
ery i ∈ {1, · · · , n}, if s|vui →∗ ασ|ui then there exists
si ∈ Aux(s|vui) such that si →∗Rrg

ασ|ui . So, let s′ =
s|v[s1, · · · , sn](u1,··· ,un). By Lemma 4.12 (2), there exist ρ ∈
BudMapR(s′, α) and a locally minimum substitution θ′ such

that s′θ
≥OX (s′)∪Min(OG(s′))

→∗ α′ρθ′
≥OX (α′)
→∗ ασ and βρθ′

≥OX (β)
→∗

βσ, where α′ = linearize(α). Since α′ρθ′
≥OX (α′)
→∗ ασ,

xρθ′ →∗ xσ ←∗ x′ρθ′ holds for every x ∈ V(α) and
x ≡ x′. Since s′θ →∗ α′ρθ′ is OX(s′)-frontier and s′ ∈ S ,
root(s′) = root(α′ρ) and for any i ∈ {1, · · · , ar(root(s′)},
s′|iθ →∗ α′ρ|iθ′ holds. Thus, Φ1 can do a transformation by
case 2.b:

Γ(= Γ′ ∪ {p})
⇒Φ1 Γ

′ ∪ Dec(s′, α′ρ)
∪{xρ ≈ x′ρ | x ∈ V(α), x ≡ x′}
∪{s[βρ]v � t}(= Γ̃)

θ′ is a locally minimum R-unifier of Γ̃. Thus, (V1) holds.
Conversely, if θ′ is an R-unifier of Core(Γ̃), then

there exist sequences γi : s′|iθ
′ ↔∗ α′ρ|iθ′ for any i ∈

{1, · · · , ar(root(s′))}, γ′ : s[βρ]vθ
′ ↔∗ tθ′, and γx′ : xρθ′ ↔∗

x′ρθ′ for any x ∈ V(α) and x ≡ x′. Since root(s′) = root(α),
there exists a sequence s[s′]vθ

′ ↔∗ s′[α′ρ]vθ
′. Since R is

confluent and xρθ′ ↔∗ x′ρθ′ holds for any x ∈ V(α) and
x ≡ x′, there exists a substitution σ′ : V(α) → T such
that s[α′ρ]vθ

′ ↔∗ sθ′[ασ′]v → sθ′[βσ′]v and sθ′[βρ]v ↔∗
sθ′[βσ′]v. Since sθ′ ↔∗ s[s′]vθ

′, there exists a sequence
sθ′ ↔∗ tθ′, i.e., θ′ is an R-unifier of Core({p}). So, (V2)
holds.

The remaining case is that s ∈ G. There exists s′ ∈
Aux(s) such that γ′ : s′ →∗Rrg

r
≥OX (t)
↔∗ tθ, by Lemma 3.10 (2).

If γ′ is ε-invariant, we can do a transformation by case 2.c.i.
The proof is similar to that of case 1.a since s ↔∗ s′ by
Lemma 3.10 (1). Otherwise, we assume that

γ′ : s′ →∗Rrg
ασ→ β→∗ r

≥OX (t)
↔∗ tθ

for some right-ground rule α→ β and substitution σ. In this
case, let the ε-reduction ασ→ β in the above sequence γ be

rightmost, i.e., in the subsequence γ′′ (of γ) : β →∗ r
≥OX (t)
↔∗

tθ there is no ε-reduction. Since s′ →+Rrg
β holds by γ, Φ1

can do a transformation by case 2.c:

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ {β � t}(= Γ̃)

Obviously, θ is a locally minimum R-unifier of Γ̃. Moreover
Φ1 can transform β� t by case 2.a of the TT transformation,

2974
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

since γ′′ : β→∗ r
≥OX (t)
↔∗ tθ is ε-invariant. Thus, (V1) holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then there
exists a sequence γ′ : β ↔∗ tθ′. Since s ↓ s′ and s′ →+ β,
there exists a sequence s ↔∗ tθ′, i.e., θ′ is an R-unifier of
Core({p}). So, (V2) holds.

By the above arguments, if θ is a locally minimum R-
unifier of Γ and there exists p ∈ Γ satisfying the TT con-
dition, then we can perform a TT transformation Γ ⇒Φ1 Γ̃

such that there exists a locally minimum R-unifier θ′ of Γ̃
consistent with θ.

Thus, this lemma holds in this case.

VT Transformation and Conversion

Let every s ≈ t, s � t ∈ Γ do not satisfy the TT condition,
i.e., every s ≈ t, s � t ∈ Γ \ (G ∪ X) × (G ∪ X) satisfies the
VT condition. Since θ is a locally minimum R-unifier of Γ,
for every x � s and x� s in Γ, γ : xθ ↔∗ sθ holds. For every
such γ, if v|u or u ≤ v for every v ∈ R(γ) and u ∈ OX(s) (i.e.,
OX(s) is a frontier in γ, so that x ≈vf s is R-unifiable), then
Φ1 can do a Conversion

Γ⇒Φ1 Conv(Γ)

and θ is a locally minimum R-unifier of Conv(Γ). Thus,
(V1) holds. Conversely, since Core(Γ) = Core(Conv(Γ)),
(V2) holds.

Otherwise, i.e., there exists p = x � s (or p = x � s)

in Γ such that γ : xθ ↔∗ sθ (or γ : xθ →∗ r
≥OX (s)
↔∗ sθ

for some r) and v < u for some v ∈ Min(R(γ)) and
u ∈ OX(s). So, s|v ∈ S . We first consider the case of
p = x � s. Then, there exist sequences γ′ : sθ →∗ t
and γ′′ : xθ →∗ t for some t. There are two cases
(a)v ∈ R(γ′) and (b)v ∈ R(γ′′) \ R(γ′). If v ∈ R(γ′), we
must have γ : sθ →∗ sθ[ασ]v → sθ[βσ]v ↓ xθ for some rule
α → β and some substitution σ. Let the above v-reduction
sθ[ασ]v → sθ[βσ]v be leftmost, i.e., the subsequence δ(of
γ) : sθ →∗ sθ[ασ]v is v-invariant. Hence, root(s|v) = root(α)
and for any i ∈ {1, · · · , ar(root(s|v))}, s|viθ →∗ α|iσ holds.
Thus, Φ1 can do a transformation

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ Dec(s|v, α) ∪ {s[β]v ≈ x}(= Γ̃)

If σ is not locally minimum, then let σ′ be a locally mini-
mum R-unifier such that for any y ∈ Dom(σ), yσ′ ↔∗ yσ
holds as in the proof concerning the TT transformation. Let
θ′ = θ ∪ σ′. Then θ′ is a locally minimum R-unifier of

Dec(s|v, α), since s|viθ
′ →∗ α|iσ

≥OX (α|i)↔∗ α|iσ′. Substitution
θ′ is also a locally minimum R-unifier of s[β]v ≈ x, since
s[β]vθ

′ ↓ xθ′. Hence, θ′ is a locally minimum R-unifier of
Γ̃. Thus, (V1) holds. Conversely, if θ′ is an R-unifier of
Core(Γ̃), then there exist sequences γi : s|viθ

′ ↔∗ α|iθ′ for
any i ∈ {1, · · · , ar(root(s))} and γ′ : s[β]vθ

′ ↔∗ xθ′. Since
root(s|v) = root(α), there exists a sequence sθ′ ↔∗ s[α]vθ

′,
so that there exists a sequence sθ′ ↔∗ xθ′, i.e., θ′ is an R-
unifier of Core({p}). So, (V2) holds.

The remaining case is that v � R(γ′), i.e., v ∈ R(γ′′).
By v ∈ Min(R(γ)), we must have sθ|v →∗ t|v. By minimum
of xθ and Lemma 4.3, there exists c such that xθ|v = c and
c→∗ t|v, so that Φ1 can do a transformation

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ {x ≈ s[c]v, c ≈ s|v}(= Γ̃)

(or if s[c]v ∈ G then

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ {x ≈vf s[c]v, c ≈ s|v}(= Γ̃))

and θ is also a locally minimum R-unifier of Γ̃. Thus, (V1)
holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then
xθ′ ↔∗ s[c]vθ

′ and c ↔∗ s|vθ′. So there exists a sequence
xθ′ ↔∗ sθ′, i.e., θ′ is an R-unifier of Core({p}). So, (V2)
holds.

Next, we consider the case of p = x � s. Since γ :

xθ →∗ r
≥OX (s)
↔∗ sθ and there exists v ∈ Min(γ) such that v < u

for some u ∈ OX(s), there exist sequences γ′ : sθ
≥OX (s)
→∗ t

and γ′′ : xθ →∗ r
≥OX (s)
→∗ t for some t such that v ∈ Min(γ′′).

By minimum of xθ and Lemma 4.3, there exists c such that

xθ|v = c and c →∗ r|v
≥OX (s|v)
→∗ t|v. By γ′ and s|v ∈ S , we have

s|vθ
≥OX (s|v)
→∗ t|v, so that Φ1 can do a transformation

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ {x � s[c]v, c � s|v}(= Γ̃)

(or if s[c]v ∈ G then

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′ ∪ {x ≈vf s[c]v, c � s|v}(= Γ̃))

and θ is also a locally minimum R-unifier of Γ̃. Thus, (V1)
holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then there
exist sequences γ′ : xθ′ ↔∗ s[c]vθ

′ and γ′′ : c ↔∗ s|vθ′. So
there exists a sequence xθ′ ↔∗ sθ′, i.e., θ′ is an R-unifier of
Core({p}). So, (V2) holds.

We have proved this lemma for all the cases of Γ, so
this lemma holds. �

6.2 Correctness of Stage II

Let E2 = {s ≈vf t | s � S }. Note that for the Conversion
Γ ⇒Φ1 Conv(Γ) in Stage I, we have Conv(Γ) ⊆ E2, and for
every transformation Γ ⇒Φ2 Γ̃ in Stage II, Γ ⊆ E2 implies
Γ̃ ⊆ E2. The proof is straightforward, so omitted.

Lemma 6.4: Stage II is terminating and finite-branching.

Proof For Γ ⊆ E2, we define size(Γ) = ($1(Γ), $2(Γ)).
Here

$1(Γ) = �s≈vf t∈Γ(HDG(s) � HDG(t))

$2(Γ) = |Γ|
We use the lexicographic ordering >size to compare any
Γ,Γ′ ⊆ E2.

For every transformationΦ2(Γ) = {Γ1, · · · ,Γk} in Stage
II, we prove that Γ >size Γi for every i ∈ {1, · · · , k} by veri-
fying the following table.

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2975

$1 $2

Decomposition, Substitution �
GT � >

Let Γ⇒Φ2 Γ̃ and Γ′ = Γ \ {p}.

Decomposition

Let p = x ≈vf s and q = x ≈vf t be such that s � t, s, t ∈
S , common(s′, t′), and s′�HDG

t′, where s′ = gmin(s,U∪V),
t′ = gmin(t,U ∪ V), U = Min(OX(s) ∪ OX(t)), V =

Min(OG(s) ∩ OG(t)). Then Decomposition replaces {p} by
{s′|u ≈vf t′|u | u ∈ U and s′|u ∈ X}∪{t′|u ≈vf s′|u | u ∈ U and s′|u �
X} and {q} by {x ≈vf t′}(= {q′}), respectively. Here, t =HDG t′
and s =HDG s′ hold, since only ground subterms are re-
placed by other ground terms. Since s′ �HDG s′|u and
s′�HDG

t′ �HDG t′|u holds for every u ∈ U by Lemma 6.1 (1),
the $1-value strictly decreases.

Substitution

If p = x ≈vf s or s ≈vf x is such that s � S , then Substitution
replaces Γ′ ∪ {p} by Γ′σ such that σ = {x→ s′} and s′ is the
minimum term inL(s). By Lemma 6.1 (3), Γ′�$1

Γ′σ holds.
Thus, $1(Γ′ ∪ {p}) = $1(Γ′) � HDG(x) � HDG(s′)�$1(Γ′σ)
holds, so that the $1-value strictly decreases.

GT Transformation

Let p = s ≈vf t be such that s ∈ G, t � X and common(s′, t′),
where s′ = gmin(s,U ∪ V), t′ = gmin(t,U ∪ V), U = OX(t),
V = Min(OG(t)). Then the GT transformation replaces
{p} by {t′|u ≈vf s′|u | u ∈ U}. If t′ ∈ S then $1({p}) =
HDG(t′) � HDG(t′|u) = $1({t′|u ≈vf s′|u}) for every u ∈ OX(t′)
by Lemma 6.1 (1) and HDG(s′|u) = ∅, so that the $1-value
strictly decreases. If t′ ∈ G then {t′|u ≈vf s′|u | u ∈ U} = ∅,
so that the $1-value is unchanged and the $2-value strictly
decreases.

Moreover, if Γ is a finite set, then k is finite, i.e., Stage II
is finite branching. Thus, this lemma holds. �

Lemma 6.5:

(i) Stage II is valid.
(ii) If Γ ⊆ E2 is R-unifiable and does not satisfy the stop

condition of Stage II, then Φ2(Γ) � ∅.
Proof We first show that Φ2 satisfies (ii) of Lemma 6.5. For
Γ ⊆ E2, if Γ contains p = x ≈vf s or s ≈vf x with s � S
then we can obviously do Substitution, and if Γ contains
p = s ≈vf t with s ∈ G, t � X, then we can do the GT trans-
formation since common(s′, t′) where s′ = gmin(s,U ∪ V),
t′ = gmin(t,U ∪ V), U = OX(t), V = Min(OG(t)) by R-
unifiability of Γ. Thus, the remaining case is that Γ ⊆
{x ≈vf t | t ∈ S }. In this case, if Γ does not satisfy the
stop condition of Stage II, i.e., Γ is not in solved form,
we can do Decomposition since common(s′, t′) where s′ =
gmin(s,U∪V), t′ = gmin(t,U∪V), U = Min(OX(s)∪OX(t)),

V = Min(OG(s)∩OG(t)) by the R-unifiability of Γ as we will
prove later. Thus, (ii) of Lemma 6.5 holds.

Next we show that every transformation in Stage II sat-
isfies the validity conditions (V1) and (V2). To show (V1),
we assume that θ is a locally minimum R-unifier of Γ and
Γ⇒Φ2 Γ̃.

Decomposition

Let p, q ∈ Γ, p = x ≈vf s and q = x ≈vf t be such that s, t ∈ S
and s � t. Since θ is a locally minimum R-unifier of p, there
exist sequences γxs : xθ ↔∗ sθ, where γxs is OX(s)-frontier.
Let s′ = gmin(s,U ∪ V), where U = Min(OX(s) ∪ OX(t)),
V = Min(OG(s) ∩ OG(t)), then there exists a sequence
γss′ : sθ ↔∗ s′θ, where γss′ is OX(s)(= OX(s′))-frontier.
Thus, xθ|w ↔∗ s′|w for any w ∈ Min(OG(s′)). By Lemma 4.2
and the definition of s′, xθ|w and s′|w are minimum, so xθ|w =

s′|w. Thus, xθ
≥OX (s′)
↔∗ s′θ. Since θ is also a locally minimum

R-unifier of q, xθ
≥OX (t′)
↔∗ t′θ where t′ = gmin(t,U ∪ V). So,

s′θ
≥U↔∗ t′θ holds. Thus, common(s′, t′) and Φ2 can do a

Decomposition transformation

Γ(= Γ′ ∪ {p, q})
⇒Φ2 Γ

′ ∪ {q′}
∪ {s′|u ≈vf t′|u | u ∈ U and s′|u ∈ X}
∪ {t′|u ≈vf s′|u | u ∈ U and s′|u � X}(= Γ̃)

where q′ = x ≈vf t′. For any u ∈ U, s′|uθ
≥OX (s′|u)

↔∗ xθ|u
≥OX (t′|u)

↔∗
t′|uθ. By Lemma 4.2, xθ|u is minimum. If s′|u ∈ X then
s′|uθ = xθ|u since s′|uθ is minimum. Thus, θ is also a lo-
cally minimum R-unifier of s′|u ≈vf t′|u. Similarly, if s′|u � X
then θ is a locally minimum R-unifier of t′|u ≈vf s′|u. Thus, the
validity condition (V1) holds.

Conversely, let θ′ be an R-unifier of Core(Γ̃). It suffices
to prove that θ′ is an R-unifier of x ≈ s. Since θ′ is an R-
unifier of Core(Γ̃), for any u ∈ U, s′|uθ

′ ↔∗ t′|uθ
′ holds, and

common(s′, t′) so that s′θ′ ↔∗ t′θ′ and xθ′ ↔∗ tθ′. Thus,
xθ′ ↔∗ tθ′ ↔∗ t′θ′ ↔∗ s′θ′ ↔∗ sθ′. So, θ′ is an R-unifier of
x ≈ s. Thus, (V2) holds.

Substitution

Let p = x ≈vf s, where s � S . Let s′ be the minimum term
in L(s). Since θ is a locally minimum R-unifier of x ≈vf s,
xθ = s′θ holds. Thus, Φ1 can do a transformation

Γ(= Γ′ ∪ {p})⇒Φ1 Γ
′σ(= Γ̃)

where σ = {x → s′}. For any t ≈vf r ∈ Γ′, there exists a
sequence γ : tσθ ↔∗ rσθ, where γ is OX(r)-frontier, so that
θ is a locally minimum R-unifier of tσ ≈vf rσ. Thus, (V1)
holds.

Conversely, let θ′ be an R-unifier of Core(Γ′σ), and θ′′
be a substitution such that xθ′′ = s′θ′ and for any y ∈ X \{x},

2976
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

yθ′′ = yθ′. For any t ≈ r ∈ Core(Γ′), tθ′′ = tσθ′ ↔∗ rσθ′ =
rθ′′ holds. Since s′ ∈ L(s), xθ′′ = s′θ′ ↔∗ sθ′ holds. Thus,
θ′′ is an R-unifier of Core(Γ′ ∪ {p}). So, (V2) holds.

GT Transformation

Let p = s ≈vf t ∈ Γ, where s ∈ G and t � X. Note that
since θ is a locally minimum R-unifier of p, there exists a
sequence γ : s ↔∗ tθ, where γ is U-frontier and U = OX(t).
Let s′ = gmin(s,U ∪ V) and t′ = gmin(t,U ∪ V), where
V = Min(OG(t)), then there exist sequences γss′ : s ↔∗ s′
and γtt′ : tθ ↔∗ t′θ, where γtt′ is U(= OX(t′))-frontier. Thus,
s′|v ↔∗ t′|v for any v ∈ V . By the definition of s′ and t′, s′|v

and t′|v are minimum, so s′|v = t′|v. Then, s′
≥U↔∗ t′θ. Thus,

common(s′, t′) and Φ2 can do a GT transformation

Γ(= Γ′ ∪ {p})⇒Φ2 Γ
′ ∪ {t′|u ≈vf s′|u | u ∈ U}(= Γ̃)

and θ is also a locally minimum R-unifier of Γ̃. So, the va-
lidity condition (V1) holds.

Conversely, if θ′ is an R-unifier of Core(Γ̃), then there
exist sequences γu : s′|u ↔∗ t′|uθ

′ for any u ∈ U. Since
common(s′, t′), there exists a sequence s′ ↔∗ t′θ′. By
s ↔∗ s′ and tθ′ ↔∗ t′θ′, θ′ is an R-unifier of Core({p}).
So, (V2) holds.

�

6.3 Correctness of Final Stage

Lemma 6.6: Assume that Γ satisfies the stop condition
of Stage II. Then Γ is not cyclic if there exists a locally
minimum R-unifier θ of Γ.

Proof Let θ be a locally minimum R-unifier of Γ. We first
show that for any x ≈vf s ∈ Γ and y ∈ V(s), if s � X then
xθ >height yθ. Let y = s|u for some u � ε. Then xθ|u ↔∗ yθ
holds, since θ is an R-unifier of Γ. The local minimum of θ
ensures that xθ|u ≥height yθ. Hence, xθ >height yθ. It follows
that for any x, y ∈ X, if x �→Γ y, then xθ >height yθ holds.
Therefore, it is impossible that we have x �→+

Γ
x. Hence Γ is

not cyclic. �

Lemma 6.7: If Γ satisfies the stop condition of Stage II
and there exists a locally minimum R-unifier of Γ, then Γ is
∅-unifiable.

Proof Obviously, Γ � {fail}, so that Γ is in solved form. By
Lemma 6.6, Γ is not cyclic and hence Γ is ∅-unifiable. �

6.4 Main Theorem

Now, we can deduce our main theorem.

Theorem 6.8: The unification problem for confluent
semi-constructor TRSs is decidable.
Proof By Lemmata 6.2 and 6.4, part (1) of the correctness
condition of Φ holds and by Lemmata 6.3 and 6.5, Stages
I and II are valid, so that if Γ0 = {s0 ≈ t0} is R-unifiable,
then there exist Γ1 and Γf such that Γ0 ⇒∗Φ1

Γ1 ⇒∗Φ2
Γf , Γ1

satisfies the stop condition of Stage I, Γf satisfies the one
of Stage II, and there exists a locally minimum R-unifier of
Γf . Hence, by Lemma 6.7, the only-if-part of part (2) of
the correctness condition of Φ holds. Conversely, the if-
part is ensured by validity of the transformations of Φ1 and
Φ2. Thus, part (2) of the correctness condition of Φ holds.
Therefore, the theorem follows from the decidability of ∅-
unifiability. �

7. Application of Main Theorem

In this section, we give a sufficient condition for ensuring
the decidability of the unification problem for a new sub-
class of nonlinear TRSs using our main theorem in the pre-
vious section. For example, R = {c → g(c, c), g(x, x) →
f(x, g(x, h(x))), f(x, x) → a} is not a semi-constructor TRS
since the second rule is not. Furthermore, R is not shal-
low, semi-linear, or linear standard. Here, we introduce
a new function symbol f1 and divide the rule as follows:
R′ = {c → g(c, c), g(x, x) → f1(x), f(x, g(x, h(x))) →
f1(x), f(x, x)→ a}. TRS R′ is a semi-constructor and we can
show that R′ is confluent, so that the unification problem is
decidable for R′. Moreover, we can show that two terms are
R′-unifiable iff they are R-unifiable. Now, we formalize this
approach.

Definition 7.1: Let R be a non-semi-constructor TRS and
Rnsc = {α → β ∈ R | α → β is not semi−constructor} =
{αi → βi | 1 ≤ i ≤ m}. For each αi → βi ∈ Rnsc, let Ui =

Min{u ∈ O(βi) \ OG(βi) | root(βi |u) ∈ DR} = {ui1, · · · , uiki }.
Note that Ui � ∅. Let F′i = { fi1, · · · , fiki | ki = |Ui|} and
F′ =

⋃
1≤i≤m F′i , where F ∩ F′ = ∅. Let ti j = fi j(x1, · · · , xl),

fi j ∈ F′i where V(βi |ui j
) = {x1, · · · , xl}. Then, TRS Ψ(R) is

constructed as follows:

Ψ(R) = (R \ Rnsc) ∪⋃

1≤i≤m

{αi → βi[ti1, · · · , tiki](ui1,··· ,uiki)
,

βi |ui j
→ ti j | ki = |Ui|, 1 ≤ j ≤ ki}

Note that DR = DΨ(R) and DΨ(R) ∩ F′ = ∅, so that Ψ(R) is a
semi-constructor TRS.

We define φ : T → T as follows.

φ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βi |ui j
σi j

(if t = fi j(t1, · · · , tl), fi j ∈ F′)
f (φ(t1), · · · , φ(tl))
(if t = f (t1, · · · , tl), f ∈ F)
t (if t ∈ X)

Here, βi |ui j
→ fi j(x1, · · · , xl) ∈ Ψ(R) and σi j = {xk → φ(tk) |

1 ≤ k ≤ l}.
For TRSs R and Ψ(R), the following lemmata hold.

Lemma 7.2: If s→Ψ(R) t then φ(s)→∗R φ(t) for every s, t.
Proof By induction on the structure of s.
Basis: Since s ∈ X, s →Ψ(R) t is impossible, so that this
lemma holds.

MITSUHASHI et al.: THE UNIFICATION PROBLEM FOR CONFLUENT SEMI-CONSTRUCTOR TRSS
2977

Induction step: Let s
p→Ψ(R) t.

Case of p > ε: Let s = f (s1, · · · , sl), then t =
f (t1, · · · , tl) and either sk →Ψ(R) tk or sk = tk for every k ∈
{1, · · · , l}. By the induction hypothesis, φ(sk) →∗R φ(tk) for
every k ∈ {1, · · · , l}. Thus, if f ∈ F then φ(s)→∗R φ(t) holds.
Otherwise, since f = fi j for some βi |ui j

→ fi j(x1, · · · , xl) ∈
Ψ(R), φ(s) = βi |ui j

σ and φ(t) = βi |ui j
σ′ where σ = {xk →

φ(sk) | 1 ≤ k ≤ l} and σ′ = {xk → φ(tk) | 1 ≤ k ≤ l}. Thus,
φ(s)→∗R φ(t) holds.

Case of p = ε: Let s = αθ →Ψ(R) βθ = t where α → β
is a rewrite rule. Obviously, αθ′ →Ψ(R) βθ

′ holds for θ′ =
{x → φ(r) | x → r ∈ θ}. If α → β ∈ R then φ(s) =
αθ′ →R βθ

′ = φ(t) holds. Otherwise, if α = αi for some
i ∈ {1, · · · , n} then β = βi[ti1, · · · , tik](ui1,··· ,uik). Here, φ(t) =
φ(βi[ti1, · · · , tik](ui1,··· ,uik)θ) = βiθ

′ by the definition of φ, so
that φ(s) = αiθ

′ →R βiθ
′ = φ(t) holds. If α = βi |ui j

for some
i ∈ {1, · · · ,m} and j ∈ {1, · · · , k} then β = fi j(x1, · · · , xl), so
that φ(s) = βi |ui j

θ′ = φ(t) holds. �

Lemma 7.3: For any s, t which do not contain function
symbols in F′, s and t are unifiable for R iff s and t are
unifiable for Ψ(R).
Proof If part: By Lemma 7.2. Only if part: Obvious. �

By Lemma 7.3, we can deduce the following theorem.

Theorem 7.4: Let C = {R | TRS Ψ(R) is confluent}. Then,
the unification problem for C is decidable.

It is known that strongly weight-preserving and non-
E-overlapping (or root-E-closed) TRSs are confluent [4].
We can easily show that every semi-constructor TRS is
strongly weight-preserving, so that we can obtain the fol-
lowing corollary.

Corollary 7.5: Let C′ = {R | TRS Ψ(R) is non − E −
overlapping or root−E−closed}. Then, the unification prob-
lem for C′ is decidable.

8. Conclusion

In this paper, we have shown that the unification problem is
decidable for semi-constructor TRSs by assuming the con-
fluence as our main theorem. Moreover, we give a suffi-
cient condition for ensuring the decidability of the unifica-
tion problem for a new subclass of nonlinear TRSs using our
main theorem.

References

[1] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge
University Press, 1998.

[2] H. Comon, M. Haberstrau, and J.-P. Jouannaud, “Syntacticness,
cycle-syntacticness and shallow theories,” Inf. Comput., vol.111,
no.1, pp.154–191, 1994.

[3] N. Dershowitz and J.-P. Jouannaud, “Rewrite systems,” in Hand-
book of Theoretical Computer Science, ed. J. van Leeuwen, vol.B,
pp.243–320, Elsevier Science Publishers B.V., 1990.

[4] H. Gomi, M. Oyamaguchi, and Y. Ohta, “On the church-rosser
property of root-E-overlapping and strongly depth-preserving term
rewriting systems,” Trans. IPS Japan, vol.39, no.4, pp.992–1005,
1998.

[5] J.-M. Hullot, “Canonical forms and unification,” Proc. 5th Conf. on
Automated Deduction, pp.318–334, LNCS 87, 1980.

[6] F. Jacquemard, C. Meyer, and C. Weidenbach, “Unification in exten-
sions of shallow equational theories,” Proc. 9th RTA, LNCS 1379,
pp.76–90, 1998.

[7] A. Martelli and G. Rossi, “Efficient unification with infinite terms
in logic programming,” Proc. 5th Generation Computer Systems,
pp.202–209, 1984.

[8] I. Mitsuhashi, Decision Problems for Non-Linear Term Rewriting
Systems, PhD thesis, Graduate School of Engineering, Mie Univer-
sity, 2006.

[9] I. Mitsuhashi, M. Oyamaguchi, Y. Ohta, and T. Yamada, “On the
unification problem for confluent monadic term rewriting systems,”
Trans. IPS Japan on Programming, 44 (SIG 4 (PRO 17)), pp.54–66,
2003.

[10] I. Mitsuhashi, M. Oyamaguchi, Y. Ohta, and T. Yamada, “The join-
ability and related decision problems for semi-constructor TRSs,”
Trans. IPS Japan, vol.47, no.5, pp.1502–1514, 2005.

[11] I. Mitsuhashi, M. Oyamaguchi, and T. Yamada, “The reachabil-
ity and related decision problems for monadic and confluent semi-
constructor TRSs,” Inf. Process. Lett., vol.98, pp.219–224, 2005.

[12] R. Nieuwenhuis, “Basic paramodulation and decidable theories,”
Proc. 11th IEEE Symp. Logic in Computer Science, pp.473–482,
1996.

[13] M. Oyamaguchi, “On the word problem for right-ground term-
rewriting systems,” IEICE Trans., vol.E73, no.5, pp.718–723, May
1990.

[14] M. Oyamaguchi and Y. Ohta, “The unification problem for confluent
right-ground term rewriting systems,” Inf. Comput., vol.183, no.2,
pp.187–211, 2003.

[15] K. Salomaa, “Deterministic tree pushdown automata and monadic
tree rewriting systems,” J. Comput. Syst. Sci., vol.37, pp.367–394,
1988.

[16] Terese, Term Rewriting Systems, Cambridge University Press, 2003.

Appendix A: Function S

Let R0 be a confluent semi-constructor TRS. The corre-
sponding standard TRS is constructed as follows. The con-
struction has a loop structure. We use k as the loop counter.
First, we choose α→ β ∈ Rk(k ≥ 0) that does not satisfy the
standardness condition. If α ∈ F0 then let {u1, · · · , um} be
{1, · · · , ar(root(β))} \ OF0 (β). Otherwise, let {u1, · · · , um} be
Min(OG(β)) \ OF0 (β). Let Rk+1 = (Rk \ {α → β}) ∪ {α →
β[d1, · · · , dm](u1,··· ,um)} ∪ {di → β|ui | 1 ≤ i ≤ m} where
d1, · · · , dm are new pairwise distinct constants which do not
appear in Rk or T . This procedure is applied repeatedly un-
til the TRS satisfies the condition of standardness. Let S be
this construction procedure and S(R0) be the output of S for
input R0. It is obvious that S is terminating.

Example Appendix A.1: Let R0 = {f1(x) → g(x, g(a, b)),
f2(x) → f2(g(c, d))}. Since either f1(x) and f2(x) are
not constant symbols, R1 = {f1(x) → g(x, d1), d1 →
g(a, b), f2(x) → d2, d2 → f2(g(c, d)}), where d1 and d2

are new constant symbols. Since d2 is a constant symbol,
R2 = {f1(x) → g(x, d1), d1 → g(a, b), f2(x) → d2, d2 →
f2(d3), d3 → g(c, d)}, where d3 is a new constant symbol.
Since R2 is standard, S(R0) returns R2.

2978
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Appendix B: Function M

Definition Appendix B.1:

(1) For a term α, let Rhs(α,R) = {β | α→ β ∈ R}.
(2) For Δ ⊆ G, let Cut(Δ) = {(u, d) | u ∈ Min(∪s∈ΔOF0 (s))

and d ≤ord s|u for every s ∈ Δ}. (The mea-
sure ord is defined in Definition 4.1) For example,
Cut({¬(¬(t)),¬(f)}) = {(1, f)}.

Definition Appendix B.2: Let
Rhs(d,RC) = {s1, · · · , sm} and Cut(Rhs(d,RC)) =

{(u1, d1), · · · , (un, dn)}.
Then we define Normalize(d,RC) =
{d → s1[d1, · · · , dn](u1,··· ,un)} ∪ {d j → si |u j

| 1 ≤ i ≤
m, 1 ≤ j ≤ n, dj � si |u j

}. For example, Normalize(t, {t →
¬(¬(t)), t→ ¬(f)}) = {t→ ¬(f), f→ ¬(t)}.

Each of the following functions takes as input a quasi-
standard confluent and semi-constructor TRS R. Note that if
R′ = Determinize(R) then |Rhs(d,R′C)| ≤ 1 for any d by the
termination condition of Determinize. Henceforth, we use
(A ◦ B)(x) to denote A(B(x)) for functions A, B.

function M(R)
R′ := (Determinize ◦ AddShortcut)(R);
if R = R′

then return R
else return M(R′)

function AddShortcut(R)
R′ := R;
for each d ∈ F0 and α→ β ∈ Rnrg do

R′ := R′ ∪
{d → βσ | σ ∈ BudMapR(d, α)};

return R′

function Determinize(R)
if ∃d ∈ F0 such that |Rhs(d,RC)| > 1

then return Determinize(
(R \ {d → s | d → s ∈ RC})
∪ Normalize(d,RC))

else return R

Example Appendix B.3: For TRS Re of Example 2.2,
M(Re) is computed as follows. AddShortcut(Re) is first
called and a new shortcut rule t → ¬(∧(f, f)) is added
to Re since t → nand(f, f), nand(x, x) → ¬(∧(x, x)) ∈
Re. By f → nand(t, t) ∈ Re, f → ¬(∧(t, t)) is also
added. Thus, AddShortcut(Re) = R′ where R′ = Re ∪
{t → ¬(∧(f, f)), f → ¬(∧(t, t))}. Next, Determinize(R′) is
called and returns the same R′ as output. Since R′ � Re,
(Determinize ◦ AddShortcut)(R′) is computed. Note that
R′C = {t → ¬(∧(f, f)), f → ¬(∧(t, t))}. AddShortcut(R′)
returns the same R′ and so Determinize(R′). Thus, this al-
gorithm halts. M(Re) returns R′ as output. That is, M(Re) =
Re ∪ {t→ ¬(∧(f, f)), f→ ¬(∧(t, t))}.

Note that M(R) = (Determinize◦AddShortcut)l(R) for

some l ≥ 1, Rnrg = M(R)nrg, and M(M(R)) = M(R) when
M(R) halts. In the produced TRS M(R), the heights of some
right-hand side terms of type C rules may become greater
than 1.

Ichiro Mitsuhashi was born in 1978. He re-
ceived the Dr. Eng. degree from Mie University
in 2006. He is now an Assistant Professor of the
Center for Information Technologies and Net-
works of Mie University. His current research
interest is term rewriting systems.

Michio Oyamaguchi was born in 1947.
He received the Dr. Eng. degree from Tohoku
University in 1977. He is now a Professor of
the Graduate School of Engineering of Mie Uni-
versity. His current research interests are the-
oretical computer science and software. Dur-
ing 1985–1986, he worked at Passau University,
F.R.G. as a research fellow of the AvH Founda-
tion.

Kunihiro Matsuura was born in 1970. He
received the Ms. Eng. degree from Mie Univer-
sity in 1993. He is now a student of the Graduate
School of Engineering of Mie University. His
current research interest is term rewriting sys-
tems.

