
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010
2979

PAPER

Multiplier-less and Table-less Linear Approximation for
Square-Related Functions

In-Cheol PARK†a), Member and Tae-Hwan KIM†b), Nonmember

SUMMARY Square-related functions such as square, inverse square,
square-root and inverse square-root operations are widely used in digital
signal processing and digital communication algorithms, and their efficient
realizations are commonly required to reduce the hardware complexity. In
the implementation point of view, approximate realizations are often de-
sired if they do not degrade performance significantly. In this paper, we
propose new linear approximations for the square-related functions. The
traditional linear approximations need multipliers to calculate slope off-
sets and tables to store initial offset values and slope values, whereas the
proposed approximations exploit the inherent properties of square-related
functions to linearly interpolate with only simple operations, such as shift,
concatenation and addition, which are usually supported in modern VLSI
systems. Regardless of the bit-width of the number system, more impor-
tantly, the maximum relative errors of the proposed approximations are
bounded to 6.25% and 3.13% for square and square-root functions, respec-
tively. For inverse square and inverse square-root functions, the maximum
relative errors are bounded to 12.5% and 6.25% if the input operands are
represented in 20 bits, respectively.
key words: square, square-root, inverse square, inverse square-root, com-
puter arithmetic, approximation, linear interpolation

1. Introduction

Square and square-root operations are commonly used in
many digital signal processing systems. For example, vec-
tor quantization determines the representative codeword by
calculating the Euclidean distance [1] using square oper-
ations, Viterbi decoding computes branch metrics using
square operations [2], and the maximum-likelihood (ML)
estimation for Gaussian distortions, such as sphere detection
for multi-input multi-output (MIMO) antenna systems [3],
needs square operations. The square-root function is also
important in many applications such as the distance calcula-
tion between two points in three-dimensional graphics and
the calculation of Euclidean norm in vector median filter-
ing [4].

In such applications, approximate square and square-
root functions have more advantages than the exact ones.
Especially for estimation algorithms dealing with input val-
ues corrupted by noise, exact calculations are less impor-
tant than achieving efficient implementations. Therefore, it
is desired to approximate the functions without sacrificing
the error performance significantly. There have been a few

Manuscript received April 2, 2010.
Manuscript revised June 7, 2010.
†The authors are with Electrical Engineering, Korea Advanced

Institute of Science and Technology, Daejeon, 305–701, South
Korea.

a) E-mail: icpark@ee.kaist.ac.kr
b) E-mail: bestcorean@gmail.com

DOI: 10.1587/transinf.E93.D.2979

works on the approximations. Some of the works are de-
voted to approximate square operations in the viewpoint of
optimizing logic circuits [5]–[9], and others are focused on
the algorithms to approximate Euclidean norm [10]–[12].

In this paper, we propose a new method to approximate
square-related functions based on linear interpolation. This
paper extends our previous work [13] for square and square-
root by including the approximations of inverse square and
inverse square-root. The proposed method exploits the fol-
lowing properties of the operations: 1) if the input value is a
power of 2, its square and square-root can be calculated eas-
ily by shifting the input value, and 2) if the slope of every
interpolating line is approximated as a power of 2, the slope
multiplication can be replaced with a shift operation. There-
fore, the proposed method enables both square and square-
root functions to be approximated with simple operations
such as shift, concatenation and addition. These operations
are basically supported in most of modern VLSI systems,
and can be shared for the proposed method. Note that the
proposed method can be implemented without employing
any tables and multipliers, whereas the traditional linear ap-
proximation necessitates them. The relative errors of the
approximate square and square-root functions are bounded
to 11.11% and 6.07%, respectively. Additionally, efficient
compensation techniques are proposed to further reduce the
maximum relative errors to 6.25% and 3.13%. The proposed
multiplier-less, table-less linear approximation can be ap-
plied to approximate inverse square and inverse square-root
functions, too.

The rest of the paper is organized as follows. In Sect. 2,
we briefly describe previous works presented to approxi-
mate square and square-root functions. In Sect. 3, we ex-
plain the concept of the proposed multiplier-less, table-less
linear approximations for the square-related functions. In
Sects. 4 and 5, we present in detail how the proposed method
can be applied to the square-related functions, and analyze
their performances. In Sect. 6, we compare the performance
of the proposed approximations with those of the previ-
ous works, and then discuss the advantages of the proposed
method. Concluding remarks are made in Sect. 7.

2. Previous Works

In this section, we briefly review the previous works of
square and square-root approximations. First of all, it is a
well-known fact that the calculation of x2 is simpler than the
general multiplication because the number of partial prod-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

2980
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

ucts can be reduced by half [14]. This property has been
actively utilized to approximate square functions in the esti-
mation hardware such as Viterbi decoders. In [15], x2 is ex-
actly calculated by recursively decomposing x, and the de-
composition results in a cellular logic array that can reduce
hardware complexity compared to the general multiplier.

An N-bit positive number, x can be decomposed into
{xN−1, (N − 1)b0} and xN−2:0 as in [15], where xi is the i-th
bit of x, xi: j is a part of x from the j-th bit to the i-th bit (0 ≤
j ≤ i), {x, y} is the concatenation of x and y, and Nb0 is the
N-bit binary representation of 0. Then x2 can be expressed
as {xN−1, (N −1)b0}2+2·{xN−1, (N −1)b0}·xN−2:0 + (xN−2:0)2.
By removing non-dominant terms, we can approximate x2

as {xN−1, (N − 1)b0} ·({xN−1, (N − 1)b0} + {xN−2:0, 1b0}) [8].
In order to improve the error performance of this approxi-
mation, a compensation scheme is introduced in [5], which
adds a regular bit-pattern to the approximation result. The
carry propagation mechanism occurring in summing the par-
tial product terms of x2 is investigated in [9] to derive a sys-
tematic approach to compensate the approximate error. In
[7], the logic function for each bit in x2 is approximated to a
regular one and then followed by a heuristic compensation.

Although many applications require square-root oper-
ations, there have been few works on approximating the
square-root operation. Possible solutions are to remove
square-root operations by transforming the algorithm or to
calculate them by using look-up tables. Compared with the
square operation that can generate all the partial products
simultaneously, the square-root operation is usually calcu-
lated iteratively as its computation is very similar to divi-
sion [14]. To approximate the square-root operation, we can
employ iterative solvers such as Newton-Rapshon, bisec-
tion and so on. As the iterative solvers need multiple cy-
cles to produce the final result, they suffer from the converg-
ing speed, and are not appropriate for hardware implemen-
tation [16]. It is hard to find some previous works directly
related to the approximation, since the square-root opera-
tion is serial in nature. Instead, we can find some works on
the approximation of composite operations which contain
square-root operations. In [11] and [12], the Euclidean norm
(�2-norm) required in the vector median filtering is approxi-
mated as a linear combination of the components of a vector.
In [10], the Euclidean norm is approximated as a linear com-
bination of other norms such as �1- and �∞-norm. However,
a number of complicated operations such as division and
multiplication are used in those approximations [11], [12].

3. Multiplier-less and Table-less Linear Approxima-
tion

The value of a point between two known points can be lin-
early approximated by drawing a straight line between the
two points. This method is widely used to piecewise ap-
proximate complicated functions. Figure 1 illustrates a gen-
eral piecewise linear approximation, where the input range
is partitioned into several segments and each segment is lin-
early approximated. To compute the output value for an in-

Fig. 1 General piecewise linear approximation.

put belonging to a segment, the difference between the input
and the left end-point is multiplied by the slope and then it
is added to the initial offset of the segment. Thus, piecewise
linear approximation generally requires tables to store the
initial offset and the slope for each segment and a multiplier
to do the slope multiplication.

As the piecewise linear approximation usually requires
multipliers and tables, it seems to be inappropriate to be
applied for the square-related functions. For example, the
square function is exactly computed with one multiplication
which is also required in a general linear approximation.
Therefore, it seems to be meaningless to apply the linear
approximation to the square function. If we can remove the
table and the multiplication, however, the linear approxima-
tion can be a good candidate for efficient implementation.

The proposed method is based on the piecewise linear
approximation, but it can be performed without any multi-
plications and tables. The fundamental concept behind the
proposed method is to approximate square-related functions
under two constraints. First, if the input is a power of 2, say
2k, where k is a non-negative integer, we can calculate the
square-related functions by shifting the input. For example,
the square of 2k can be calculated by shifting the input left
by k bits. We can eliminate the offset table if the input range
is segmented in such a way that the segment boundaries are
at 2k. Secondly, if the slope of a segment is restricted to a
power of 2, we can also remove the multiplier, because the
slope multiplication can be replaced with shifting the input
difference. In Sects. 4 and 5, square-related functions such
as square, square-root, inverse square and inverse square-
root are approximated under the above constrains to achieve
table-less and multiplier-less implementation.

4. Proposed Approximations for Square and Inverse
Square

In this section, we propose new approximations for the
square and the inverse square functions based on the
multiplier-less and table-less interpolation technique. Sim-
ple error compensation techniques are also proposed based

PARK and KIM: MULTIPLIER-LESS AND TABLE-LESS LINEAR APPROXIMATION FOR SQUARE-RELATED FUNCTIONS
2981

Fig. 2 Proposed piecewise linear approximation of x2 for 2i ≤ x < 2i+1.

on the analyses of the proposed approximations.

4.1 Proposed Linear Interpolation for Square

Let x be an N-bit positive number, where N > 1. The range
of x is partitioned into N segments, each of which ranges
from 2i to 2i+1, where i is an integer from 0 to N − 1. At
the two end-points of the i-th segment, the square values are
22i and 22i+2 as shown in Fig. 2. If we use a single line for
the approximation of the segment, its slope is not a power
of 2, as (22i+2 − 22i)/(2i+1 − 2i) = 3·2i. At the middle point
in the segment, (2i+1 + 2i)/2 = 2i + 2i−1, its square can be
approximated as

(2i + 2i−1)2 = 22i+1 + 22i−2 ≈ 22i+1. (1)

With the approximation of (1), the segment whose in-
put ranges from 2i to 2i+1 can be interpolated with two lines
denoted as α and β in Fig. 2. In this case, their slopes can be
calculated as

slope of α =
22i+1 − 22i

2i + 2i−1 − 2i
=

22i

2i−1
= 2i+1, (2)

and

slope of β =
22i+2 − 22i+1

2i+1 − (2i + 2i−1)
=

22i ·2
2i/2

= 2i+2. (3)

Note that both of the slopes are powers of 2. Therefore,
the slope multiplication in the linear interpolation can be
replaced with shifting, as multiplication by 2i is the same as
shifting left by i bits.

Let f1(x) be the square approximation based on the pro-
posed linear interpolation. According to (2) and (3), f1(x)
can be expressed with a number of line equations as follows:

f1(x)=

⎧⎪⎪⎨⎪⎪⎩
22i+(x − 2i)·2i+1 for 2i≤ x <2i+2i−1

22i+1+
(
x−(2i+2i−1)

)
·2i+2 for 2i+2i−1≤ x< 2i+1 .

(4)

Alternatively, this can be expressed as

Fig. 3 Proposed method to calculate the approximate square. (a) 2i ≤
x < 2i + 2i−1, (b) approximate square of (a), (c) 2i + 2i−1 ≤ x < 2i+1, and
(d) approximate square of (c).

f1(x)=

⎧⎪⎪⎨⎪⎪⎩
(
2i−1+(x −2i)

)
·2i+1 for 2i≤ x <2i+2i−1(

2i−1+
(
x −(2i+2i−1)

))
·2i+2 for 2i+2i−1≤ x< 2i+1 .

(5)

The additions in (5), 2i−1 + (x − 2i) and 2i−1 + (x −
(2i + 2i−1)), cause no carry propagation and thus can be re-
placed with simple concatenations. Considering the range of
x specified in the first equation of (5), xi:i−1 is 2b10, where
2b10 means the 2-bit binary number 10. This means that
x − 2i can be expressed as xi−2:0 as shown in Fig. 3 (a). It is
clear that adding 2i−1 to xi−2:0 does not cause any carry prop-
agation. Similarly, x−(2i+2i−1) in the second equation of (5)
is xi−2:0, because xi:i−1 = 2b11 in the input range as shown
in Fig. 3 (c). Hence, the addition contained in the second
equation of (5), 2i−1 + xi−2:0, does not cause carry propaga-
tion, either. With these properties, the above equations can
be simplified with adopting concatenations as follows:

f1(x) =

⎧⎪⎪⎨⎪⎪⎩
{1, xi−2:0}·2i+1 for 2i ≤ x < 2i + 2i−1

{1, xi−2:0}·2i+2 for 2i + 2i−1 ≤ x < 2i+1 . (6)

Suppose that the left most non-zero position in x is i.
The proposed approximate square can be made by concate-
nating 1 in front of xi−2:0 and then shifting it left by the left
most non-zero position plus a constant. The constant is de-
termined by xi−1. More specifically, the constant is 1 when
xi−1 is 0, or 2 when xi−1 is 1. Therefore, the proposed square
approximation can be simplified as follows:

f1(x) =

⎧⎪⎪⎨⎪⎪⎩
{1, xi−2:0}·2i+1 for xi−1 = 0

{1, xi−2:0}·2i+2 for xi−1 = 1
. (7)

Figures 3 (b) and (d) are the proposed approximation of the
number presented in Figs. 3 (a) and (c), respectively.

4.2 Error Analysis and Error Compensation of the Ap-
proximate Square

As the proposed square approximation has errors compared
to the exact square values, we analyze the relative error de-
fined below,

RE(f1(x)) =
∣∣∣ f1(x) − x2

∣∣∣ /x2. (8)

2982
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Fig. 4 Relative error of the proposed approximate square for
2i ≤ x < 2i+1.

Table 1 Relative error of the proposed approximate square.

Bit-width of x MAX(RE(f1(x))) AVG(RE(f1(x)))
4 0.1111 0.0352
8 0.1111 0.0375

12 0.1111 0.0382
16 0.1111 0.0383
20 0.1111 0.0383

Substituting (4) into (8), we obtain

RE(f1(x))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣−x2+x·2i+1+22i−22i+1
∣∣∣

x2
for 2i≤ x<2i+2i−1

∣∣∣−x2+x·2i+2−22i+2
∣∣∣

x2
for 2i+2i−1≤ x<2i+1

.

(9)

Figure 4 shows the plot of RE(f1(x)) for 2i ≤ x < 2i+1.
RE(f1(x)) is maximized when x is equal to 2i + 2i−1, which
is calculated as

MAX(RE(f1(x)))=

∣∣∣ f1(2i+2i−1)−(2i+2i−1)2
∣∣∣

(2i + 2i−1)2
=

1
9
≈ 0.1111.

(10)

Additionally, average relative error of f1(x) is defined as

AVG(RE(f1(x))) =

⎛⎜⎜⎜⎜⎜⎜⎝
2N−1∑
x=1

RE(f1(x))

⎞⎟⎟⎟⎟⎟⎟⎠ /
(
2N − 1

)
. (11)

The average relative errors in (11) are evaluated by a com-
puter program. In Table 1, these are listed together with the
maximum relative errors for various bit-widths of x. Note
that the maximum relative error of the proposed approxi-
mation is constant regardless of the bit-widths, and the av-
erage relative error is almost constant. The relative error
constancy is due to the inherent property of the proposed
linear approximation, which guarantees good performance
even for large numbers.

The proposed square approximation, f1(x), is always

Fig. 5 Relative error of the proposed approximate square with the error
compensation for 2i ≤ x < 2i+1.

smaller than or equal to the exact value of x2, and its rel-
ative error can be 11.11% maximally. Therefore, we can
scale up f1(x) by a factor of 17/16 when the smaller rel-
ative error is required in some applications. This scaling
can be achieved by simply adding f1(x) ·2−4 to f1(x). Let
f2(x) be the error-compensated approximation of x2; that is,
f2(x) = f1(x) + (f1(x) ·2−4). Figure 5 illustrates the relative
errors resulting from f2(x) and f1(x) for the i-th segment,
where we can see that the maximum relative error of f2(x)
is reduced to almost a half compared to that of f1(x), but
their average errors are almost equal to each other. In Ta-
ble 2, the maximum and average relative errors of f2(x) are
listed for various bit-widths.

4.3 Proposed Linear Interpolation for Inverse Square

We can apply the proposed multiplier-less, table-less linear
interpolation to inverse square function. Similar to the ap-
proximation proposed for square function, 1/x2 can be ap-
proximated by piecewise linear interpolations as illustrated
in Fig. 6. We assume that x is greater than zero, as we
are dealing with the reciprocal function in this sub-section.
Simple operations such as shifting and concatenation are
also enough in the proposed linear interpolation. For ex-
ample, if x = 2k, where k is an integer not less than 0, 1/x2

can be approximated by shifting x right by 3k. In addition,
the slopes of the lines employed in the linear interpolations
are also powers of 2, making it possible to replace the slope
multiplications with shift operations.

Let f3(x) be the proposed approximation of 1/x2,
where x is an N-bit positive number. This approximation
can be expressed with a number of line equations as follows,

f3(x)

=

⎧⎪⎪⎨⎪⎪⎩
2−2i−(x−2i)·2−3i for 2i≤ x< 2i+2i−1

2−2i−1−(x−2i−2i−1)·2−3i−1 for 2i+2i−1 ≤ x < 2i+1 ,

(12)

where i is an integer ranging from 0 to N−1. In the 2’s com-
plement representation, the difference between the negated

PARK and KIM: MULTIPLIER-LESS AND TABLE-LESS LINEAR APPROXIMATION FOR SQUARE-RELATED FUNCTIONS
2983

Table 2 Relative error of the proposed approximate square with error compensation.

Bit-width of x MAX(RE(f2(x))) AVG(RE(f2(x))) MAX(RE(f2(x)))
MAX(RE(f1(x)))

AVG(RE(f2(x)))
AVG(RE(f1(x)))

4 0.0625 0.0466 0.5625 1.3238
8 0.0625 0.0383 0.5625 1.0213

12 0.0625 0.0373 0.5625 0.9764
16 0.0625 0.0372 0.5625 0.9712
20 0.0625 0.0372 0.5625 0.9712

Table 3 Relative error of the proposed approximate inverse square.

Bit-width of x MAX(RE(f3(x))) AVG(RE(f3(x))) MAX(RE(f4(x))) AVG(RE(f4(x)))
4 0.1816 0.0917 0.1250 0.0572
8 0.1852 0.1232 0.1250 0.0346

12 0.1852 0.1272 0.1250 0.0317
16 0.1852 0.1278 0.1250 0.0314
20 0.1852 0.1276 0.1250 0.0314

Fig. 6 Proposed piecewise linear approximation of 1/x2 for
2i ≤ x < 2i+1.

one and the inverted one is only one. We adopt the inversion
to replace the subtraction in (12) with addition, and then the
addition can be achieved by a simple concatenation as in
the case of the proposed square approximation. Moreover,
the range of x in (12) can be determined by examining the
left-most non-zero bit-patterns. Suppose that the most sig-
nificant N − i − 1 bits are zeros in the binary representation
of x. In this case, the proposed approximation of 1/x2 can
be expressed as

f3(x) ≈
⎧⎪⎪⎨⎪⎪⎩
{2b10,∼ xi−2:0}·2−3i for xi−1 = 0

{2b10,∼ xi−2:0}·2−3i−1 for xi−1 = 1
, (13)

where ∼ x means the inversion of x. Figure 7 illustrates the
proposed approximation of inverse square corresponding to
(13). In the proposed approximation, we detect the leading
non-zero bit-pattern of x, invert its sub-bits, and shift it after
attaching a prefix determined by the leading non-zero bit-
pattern.

For various bit-widths, the relative errors of f3(x) are
listed in Table 3. Different from the square approximations,
the relative error is not maximized at the middle point of a
segment. As the maximum relative error is dependent on
the segment location, it is not constant but close to a con-
stant value; about 18.5%. Like the previous sub-section,

Fig. 7 Proposed method to calculate the approximate inverse square.
(a) 2i ≤ x < 2i + 2i−1, (b) approximate inverse square of (a), (c) 2i + 2i−1 ≤
x < 2i+1, and (d) approximate inverse square of (c).

we can apply simple compensation techniques to reduce the
relative error. Let f4(x) = f3(x) − (f3(x) ·2−3) be the error-
compensated approximations for 1/x2. As shown in Table 3,
the suggested error compensations improve the maximum
relative errors to 12.5%.

5. Proposed Approximations for Square-Root and In-
verse Square-Root

In this section, we propose new approximations for the
square-root and the inverse square-root functions, and an-
alyze their error performances. The proposed methods are
also based on piecewise linear approximations, and do not
need any multiplications and tables.

5.1 Proposed Linear Interpolation for Square-Root

Let x be a 2N-bit positive number, where N > 1. The entire
range of x is partitioned into N segments, each of which
ranges from 22i to 22i+2, where i is an integer from 0 to N−1.
The i-th segment is shown in Fig. 8. At the middle point in
this segment, 22i+1, its square-root can be approximated as

2(2i+1)/2 =
√

2·2i ≈ (1 + 1/2)·2i = 2i + 2i−1. (14)

By taking (14), the curve of
√

x in the i-th segment can
be linearly approximated with two lines, γ and δ, as depicted
in Fig. 8. Let f5(x) be the proposed linear interpolation of

2984
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Fig. 8 Proposed piecewise linear approximation of
√

x for
22i ≤ x < 22i+2.

Fig. 9 Proposed method to calculate the approximate square-root.
(a) 22i ≤ x < 22i+1, (b) approximate square-root of (a), (c) 22i+1 ≤ x <
22i+2, and (d) approximate square root of (c).

the square-root of x. Then, f5(x) can expressed with a num-
ber of line equations as follows:

f5(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2i + (x − 22i)·2−i−1

=
(
22i+1 + (x − 22i)

)
·2−i−1 for 22i ≤ x < 22i+1

2i + 2i−1 + (x − 22i+1)·2−i−2

=
(
22i+2+22i+1+(x−22i+1)

)
·2−i−2 for 22i+1≤ x<22i+2

(15)

If x is less than 22i+1, x − 22i in (15) can be replaced
with x2i−1:0, and if x is less than 22i+2, x − 22i+1 in (15)
can be replaced with x2i:0. Figures 9 (a) and (c) correspond
to these cases, respectively. In (15), 22i+1 + x2i−1:0 and
22i+2+22i+1+ x2i:0 can be achieved by doing simple concate-
nations, {2b10, x2i−1:0} and {2b11, x2i:0}, respectively. For a
given x, the binary bit-pattern of x is divided into groups of
two adjacent bits starting from the least significant bit, and
then we search for the left-most non-zero group to find the
range of x. If the group is x2i+1:2i, f5(x) can be expressed as
follows:

f5(x) =

⎧⎪⎪⎨⎪⎪⎩
{2b10, x2i−1:0}·2−i−1 for x2i+1 = 0

{2b11, x2i:0}·2−i−2 for x2i+1 = 1
. (16)

The proposed square-root approximations corresponding to
Figs. 9 (a) and (c) are shown in Figs. 9 (b) and (d), respec-
tively.

Fig. 10 Relative error of the proposed approximate square-root for
22i ≤ x < 22i+2.

5.2 Error Analysis and Error Compensation of the Ap-
proximate Square-Root

The relative error of f5(x) is defined below:

RE(f5(x)) =
∣∣∣ f5(x) − √x

∣∣∣ /√x. (17)

Substituting (15) into (17), we obtain

RE(f5(x))=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣x·2−i−1−√x−2−i−1+2i
∣∣∣

√
x

for 22i ≤ x < 22i+1

∣∣∣x·2−i−2−√x+2i
∣∣∣

√
x

for 22i+1 ≤ x < 22i+2

,

(18)

where x is in the i-th segment. Figure 10 shows the plot of
(18), the relative error is maximized when x is 22i+1, which
is calculated as

MAX(RE(f5(x)) =

∣∣∣ f5(x) − √(22i+1)
∣∣∣

√
22i+1

=
3/2 − √2√

2
≈ 0.0607.

(19)

Similar to (11), the average relative error of f5(x) is defined
as

AVG(RE(f5(x))) =

(∑22N−1

x=1
RE(f5(x))

)
/
(
22N − 1

)
.

(20)

The average relative errors evaluated for various bit-widths
are listed in Table 4 along with the maximum relative errors.
Note that the maximum relative error is constant regardless
of the bit-widths of the number systems, like the proposed
approximate square described in the previous section.

f5(x) is always larger than or equal to the exact square-
root value and its relative error is up to 6.07% as shown
in Table 4. To reduce the maximum error, we can apply a

PARK and KIM: MULTIPLIER-LESS AND TABLE-LESS LINEAR APPROXIMATION FOR SQUARE-RELATED FUNCTIONS
2985

Table 5 Relative error of the proposed approximate square-root with error compensation.

Bit-width of x MAX(RE(f6(x))) AVG(RE(f6(x))) MAX(RE(f6(x)))
MAX(RE(f5(x)))

AVG(RE(f6(x)))
AVG(RE(f5(x)))

4 0.0313 0.0197 0.5157 1.0314
8 0.0313 0.0193 0.5157 1.0105

12 0.0313 0.0193 0.5157 1.0105
16 0.0313 0.0193 0.5157 1.0105
20 0.0313 0.0193 0.5157 1.0105

Table 4 Relative error of the proposed approximate square-root.

Bit-width of x MAX(RE(f5(x))) AVG(RE(f5(x)))
4 0.0607 0.0191
8 0.0607 0.0191

12 0.0607 0.0191
16 0.0607 0.0191
20 0.0607 0.0191

Fig. 11 Relative error of the proposed approximate square-root with the
error compensation for 22i ≤ x < 22i+2.

compensation technique similar to that used in the previous
section. As f5(x) is always larger than

√
x, we can scale

down f5(x) by a factor of 31/32 to achieve the smaller max-
imum relative error. Let f6(x) be the compensated one; that
is, f6(x) = f5(x) − (f5(x) ·2−5). Figure 11 compares the er-
ror performances of f5(x) and f6(x). Applying the proposed
compensation reduces the maximum relative error to almost
a half, while maintaining the average relative error perfor-
mance. In Table 5, the maximum and average relative errors
of f6(x) are listed for various bit-widths.

5.3 Proposed Linear Interpolation for Inverse Square-Root

A similar method can be applied to approximate inverse
square-root. As shown in Fig. 12, the proposed approxima-
tion of the inverse square-root of a 2N-bit positive number
x, f7(x), can be expressed with a number of line equations
as follows:

f7(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2−i − (x − 22i)·2−3i−2 for 22i ≤ x < 22i+1

2−i−1 + 2−i−2 − (x − 22i+1)·2−3i−3

for 22i+1 ≤ x < 22i+2

,

(21)

where i is an integer ranging from 0 to N − 1. For a given

Fig. 12 Proposed piecewise linear approximation of 1/
√

x for
22i ≤ x < 22i+2.

Fig. 13 Proposed method to calculate the approximate inverse square-
root. (a) 22i ≤ x < 22i+1, (b) approximate inverse square of (a), (c) 22i+1 ≤
x < 22i+2, and (d) approximate inverse square of (c).

x, the binary bit-pattern of x is divided into groups of two
adjacent bits starting from the least significant bit. The left-
most non-zero group is searched to find the range of x. If
the group is x2i+1:2i, f7(x) can be expressed as

f7(x) ≈
⎧⎪⎪⎨⎪⎪⎩
{3b100,∼ x2i−1:0}·2−3i−2 for x2i+1 = 0

{2b11,∼ x2i:0}·2−3i−3 for x2i+1 = 1
.

(22)

Figure 13 illustrate the proposed approximation of inverse
square-root corresponding to (22). For various bit-widths,
the relative errors of f7(x) are listed in Table 6. A sim-
ple compensation technique can also be applied to reduce
the relative errors. Let f8(x) = f7(x) − (f7(x) ·2−4) be the
error-compensated approximation for 1/

√
x. As shown in

Table 6, the maximum relative errors can be improved to
6.25% when the suggested error compensation is used.

2986
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Table 6 Relative error of the proposed approximate inverse square-root.

Bit-width of x MAX(RE(f7(x))) AVG(RE(f7(x))) MAX(RE(f8(x))) AVG(RE(f8(x)))
4 0.0887 0.0571 0.0625 0.0214
8 0.0887 0.0621 0.0625 0.0174

12 0.0887 0.0628 0.0625 0.0169
16 0.0887 0.0628 0.0625 0.0168
20 0.0887 0.0629 0.0625 0.0168

6. Comparison and Discussion

In Figs. 14 and 15, we compare the relative error perfor-
mance of the proposed square approximation with those of
previous works. In fact, the error performances in large
number systems are much more important than those in
small number systems, as the exact square calculation can
be realized with a few logic gates when the number sys-
tem is represented in a small number of bits. We can see in
the figures that the proposed method is associated with con-
stant error performance, while those of the previous works
are severely degraded as the bit-width increases. In the
proposed square-root approximation, the relative errors of
the compensated one are always less than 3.13%. In con-
trast to the iterative approximations, the proposed methods
have no convergence problems, as they can be computed
at once. In addition, it is worth noting that the proposed
approximations maintain the monotonic behaviors; that is,
f1(a) ≥ f1(b), f3(a) ≤ f3(b), f5(a) ≥ f5(b) and f7(a) ≤ f7(b)
if a ≤ b. These monotonic properties are significant in com-
paring two approximated values.

The proposed approximations for square and square-
root functions can be understood by employing the 1st-order
Taylor series expansion under the first constraint that the
segment boundaries are at 2i. For example, the proposed
approximate square in (4) is the same as the composition of
the 1st-order Taylor expansions for 2i ≤ x < 2i + 2i−1 and
2i + 2i−1 ≤ x < 2i+1. This is a coincidence, since the pro-
posed method is not derived from the Taylor series expan-
sion. In addition, the proposed method has a contribution
in selecting specific evaluation points of the Taylor expan-
sion that can result in multiplier-less and table-less imple-
mentations. Moreover, simple calculation methods are de-
rived as expressed in (7) and (16). Contrary to the cases
of square and square-root functions, the proposed approxi-
mations for inverse square and inverse square-root functions
are quite different from those based on the Taylor expansion,
because the slope of the proposed interpolation is different
from that of the tangent line resulting from the Taylor expan-
sion. As exemplified in Fig. 16, both the proposed method
and the Taylor expansion consist of line segments whose
slopes are powers of 2 for the inverse square function, but
their slopes are different to each other. If the slopes re-
sulting from the 1st order Taylor expansion are used, the
middle point where two adjacent slopes are met has an x-
coordinate of 2i + 2i+1/7. As the x-coordinate has a long
series of 1 s and 0 s in the binary representation, we have to
compare the given input to the x-coordinate of the middle

Fig. 14 Comparison of the maximum relative errors of square
approximations.

Fig. 15 Comparison of the average relative errors of square
approximations.

point to decide which line segment should be used. There-
fore, employing the Taylor expansion under the first con-
straint leads to a more complicated implementation than the
proposed method.

The proposed method produces approximation results
of square-related functions in a non-iterative way, which
is invaluable in particular for the computations of square-
root, inverse square, and inverse square functions. Since

PARK and KIM: MULTIPLIER-LESS AND TABLE-LESS LINEAR APPROXIMATION FOR SQUARE-RELATED FUNCTIONS
2987

Fig. 16 Comparison between the proposed inverse square approximation
one and that based on the 1st order Taylor series expansion.

Table 7 Comparison of 32-bit square-root implementations.

Exact Proposed
Gate count 4152.4 1126.4

Critical path length 9.95 ns 1.87 ns
Max. relative error 0 3.13%

the square-root and inversion are usually performed in it-
erative ways [14], their circuit implementations are associ-
ated with long delay if implemented in combinational cir-
cuits. To evaluate the proposed method in the perspective
of real circuits, a 32-bit square-root function was imple-
mented and compared with the exact square-root unit pro-
vided in Synopsys DesignWare [17]. Both the exact and the
proposed square functions were described in Verilog HDL,
and synthesized using Synopsys Design Compiler [18] with
a 0.18 μm CMOS cell library. The gate count and the criti-
cal path delay estimated with the logic synthesis results are
summarized in Table 7. In the table, the gate counts are esti-
mated by counting the smallest two-input NAND as one. As
shown in Table 7, the proposed method requires much less
logic gates, and its critical path is very short. These merits
will be more prominent when the bit-width becomes larger.

The proposed multiplier-less, table-less linear interpo-
lation requires simple basic operations, such as shift, con-
catenation and detection of the leading non-zero bit, which
are usually supported in modern VLSI systems. To compen-
sate the relative errors, an addition is needed additionally.
Therefore, it is possible to realize the proposed method by
sharing the basic operators provided in the VLSI systems.
For example, instructions for shifting and counting leading
zeros are supported in most of contemporary processor ar-
chitectures, as specified in [19], [20]. Hence, the proposed
approximations can be efficiently implemented with the as-
sistance of those pre-defined instructions.

7. Conclusion

Square-related functions are fundamental operations that are
widely used in many digital signal processing systems. In

many cases, it is desired to efficiently approximate them
without degrading the performance severely, rather than to
calculate them exactly. In this paper, we have proposed
new methods to approximate square-related functions in a
fixed point number system. Though the proposed method is
based on the piecewise linear approximation, it can be im-
plemented without employing tables and multipliers. Sim-
ple operations such as shift, concatenation, and addition,
which are commonly supported in VLSI systems, are only
used in the proposed approximation. For the proposed ap-
proximate square and square-root functions, the mathemat-
ical analysis reveals that the proposed approximations have
no convergence problems, the maximum relative errors are
constant irrespective of bit-widths, and the average relative
errors are also almost constant. In addition, simple compen-
sation techniques are proposed to further reduce the maxi-
mum relative errors. If the simple compensation techniques
are employed, the maximum relative errors are 6.25% and
3.13% for the approximate square and square-root func-
tions, respectively. The proposed method can be applied to
inverse square and inverse square-root functions, and for 20-
bit numbers their maximum relative errors are up to 12.5%
and 6.25%, respectively.

References

[1] M.R. Soleymani and S.D. Morgera, “A fast MMSE encoding tech-
nique for vector quantization,” IEEE Trans. Commun., vol.37, no 6,
pp.656–659, June 1989.

[2] A.J. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Trans. Inf. Theory,
vol.IT-13, no.2, pp.260–269, April 1967.

[3] B.M. Hochwald and S.T. Brink, “Achieving near-capacity on a
multiple-antenna channel,” IEEE Trans. Commun., vol.51, no.3,
pp.389–399, March 2003.

[4] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filter,” Proc.
IEEE, vol.78, no.4, pp.690–710, April 1990.

[5] A.A. Hiasat and H.S. Abdel-Aty-Zohdy, “Combinational logic ap-
proach for implementing an improved approximate squaring func-
tion,” IEEE J. Solid-State Circuits, vol.34, no.2, pp.236–240, Feb.
1999.

[6] J.-T. Yoo, K.F. Smith, and G. Gopalakrishnan, “A fast parallel
squarer based on divide-and-conquer,” IEEE J. Solid-State Circuits,
vol.32, no.6, pp.909–912, June 1997.

[7] J.M.P. Langlois and D. Al-Khalili, “Carry-free approximate squar-
ing functions with O(n) complexity and O(1) delay,” IEEE Trans.
Circuits Syst. II, Express Briefs, vol.53, no.5, pp.374–378, May
2006.

[8] A. Eshraghi, T.S. Fiez, K.D. Winters, and T.R. Fischer, “Design of a
new squaring function for the Viterbi algorithm,” IEEE J. Solid-State
Circuits, vol.29, no.9, pp.1102–1107, Sept. 1994.

[9] M.-H. Sheu and S.-H. Lin, “Fast compensative design approach for
the approximate squaring function,” IEEE J. Solid-State Circuits,
vol.37, no.1, pp.95–97, Jan. 2002.

[10] C. Seol and K. Cheun, “A low complexity Euclidean norm approx-
imation,” IEEE Trans. Signal Process., vol.56, no.4, pp.1721–1726,
April 2008.

[11] M. Barni, F. Buti, F. Bartolini, and V. Cappellini, “A quasi-Euclidean
norm to speed up vector median filtering,” IEEE Trans. Image Pro-
cess., vol.9, no.10, pp.1704–1709, Oct. 2000.

[12] M. Barni, V. Cappellini, and A. Mecocci, “Fast vector median fil-
ter based on Euclidean norm approximation,” IEEE Signal Process.
Lett., vol.1, no.6, pp.92–94, June 1994.

2988
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

[13] I.-C. Park and T.-H. Kim, “Multiplier-less and table-less linear ap-
proximation for square and square-root,” Proc. IEEE Int’l Conf.
Compuer Design, pp.373–383, Oct. 2009.

[14] B. Parhami, Computer arithmetic — Algorithms and hardware de-
signs, Oxford University Press, 2000.

[15] M. Shammanna, S. Whitaker, and J. Canaris, “Cellular logic array
for computation of squares,” Proc. 3rd NASA Symp. VLSI Design
pp.2.4.1–2.4.7, 1991.

[16] E.K.P. Chong and S.H. Zak, An introduction to optimization, 2nd
ed., Wiley, 2001.

[17] Synopsys Co. Ltd., DesignWare IP,
http://www.synopsys.com/IP, accessed June 6, 2010.

[18] Synopsys Co. Ltd., Design Compiler,
http://www.synopsys.com/Tools/Implementation/RTLSynthesis, ac-
cessed June 6, 2010.

[19] ARM Ltd., ARM DSP instruction set extensions,
http://www.arm.com/products/CPUs/cpu-arch-DSP.html, accessed
April 1, 2010.

[20] IBM Co. Ltd., Power ISATM Version 2.05,
http://www.power.org/resources/reading/PowerISA V2.05.pdf, ac-
cessed April 1, 2010.

In-Cheol Park received the B.S. degree
in electronic engineering from Seoul National
University, Seoul, Korea, in 1986, the M.S.
and Ph.D. degrees in electrical engineering from
Korea Advanced Institute of Science and Tech-
nology (KAIST), Daejon, Korea, in 1988 and
1992, respecttively. Since June 1996, he has
been an Assistant Professor and is now a Pro-
fessor in the School of Electrical Engineering
and Computer Science at KAIST. Prior to join-
ing KAIST, he was with IBM T.J. Watson Re-

search Center, Yorktown, NY, from May 1995 to May 1996, where he
researched on high-speed circuit design. His current research interest in-
cludes computer-aided design (CAD) algorithms for high-level synthesis
and VLSI architectures for general-purpose microprocessors. He received
the Best Paper award at ICCD in 1999, and the best design award at ASP-
DAC in 1997.

Tae-Hwan Kim received the B.S. degree
in electrical engineering from Yonsei Univer-
sity, Seoul, Korea, in 2005, the M.S. degree
in electrical engineering from Korea Advanced
Institute of Science and Technology (KAIST),
Daejon, Korea, in 2007. Currently, he is work-
ing toward the Ph.D. degree in the Department
of Electrical Engineering and Computer Science
at KAIST. His current research interest includes
VLSI architectures for communication systems.

