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PAPER

LSH-RANSAC: Incremental Matching of Large-Size Maps

Kanji TANAKA†a), Member, Ken-ichi SAEKI†, Mamoru MINAMI†, and Takeshi UEDA††, Nonmembers

SUMMARY This paper presents a novel approach for robot localiza-
tion using landmark maps. With recent progress in SLAM researches,
it has become crucial for a robot to obtain and use large-size maps that
are incrementally built by other mapper robots. Our localization approach
successfully works with such incremental and large-size maps. In litera-
ture, RANSAC map-matching has been a promising approach for large-size
maps. We extend the RANSAC map-matching so as to deal with incremen-
tal maps. We combine the incremental RANSAC with an incremental LSH
database and develop a hybrid of the position-based and the appearance-
based approaches. A series of experiments using radish dataset show
promising results.
key words: mobile robot, self-localization, incremental map-matching,
RANSAC, LSH

1. Introduction

Self-localization using landmark maps is an important task
for mobile robot environments [1]-[3]. With recent progress
in SLAM researches, it has become possible for a robot to
obtain and use large-size maps that are incrementally built
by other mapper robots [4]. For instance, such an online
information sharing network has attracted much interest
in recent years, in the context of networked robots, sensor
networks as well as robot GIS. As a result, it has become
crucial for a robot to estimate the self-position in real-time
with respect to such incremental maps. A challenge is self-
localization using large-size maps, where the increasing
the number of self-position hypotheses as well as perceptual
aliasing becomes a serious problem [1], [5], [6].

In this paper, we study the self-localization problem
from the perspective of large-size and incremental maps.
Self-localization using large-size maps has been studied in
literature. However, most of them rely on a batch assump-
tion that a complete map is a priori given (e.g. familiar en-
vironments) or fixed during the self-localization task (e.g.
static environments). In such cases, it is straightforward to
build the map structure in a batch manner using typical op-
timization techniques. On the other hand, we consider more
general environments where the map may be built or incre-
mentally updated even during the self-localization task. In
such cases, the batch assumption is no longer relevant. To
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deal with the problem, we present a novel scheme for self-
localization as well as map representation that successfully
works with large-size and incremental maps.

Approaches to self-localization are broadly classi-
fied into appearance-based [6]–[8], position-based [1], [3],
[9] and combinations of both [10]–[12]. Appearance-
based approaches efficiently prune the robot pose hypothe-
ses by using the appearance of observed landmarks as a
cue. They evaluate the likelihood of a robot pose hypothesis
by comparing appearance of an actually observed landmark
and the appearance of a landmark in the map that should
be observed at the hypothesized viewpoint. Position-based
approaches verify each hypothesis by using the geometric
constraints among observed landmarks as a cue. They eval-
uete the likelihood of a robot pose hypothesis by comparing
the position-relationship of actually observed landmarks and
prediction from the map. Both approaches play important
roles in dealing with large numbers of hypotheses and con-
straints in large-size problems.

Appearance-based methods typically employ high di-
mensional descriptors of local features (e.g. SIFT [13], spin
image [14], shape context [15]) to represent the appear-
ance of landmark. For instance, 120-dim shape features
from laser scanners will be considered in our experiments.
Due to the high dimensionality, we have to employ effi-
cient databases for information retrieval, for example, PCA
with kd-tree [11], visual vocabulary with inverted file and
words statistics [8], vocabulary with ANN and feature se-
lection [6]. Unfortunately, most of existing databases are
based on batch structures and thus require expensive pre-
processing. To overcome, our map structures are based on
hash tables. Unlike other structures such as trees, a hash ta-
ble is essentially an incremental structure. More formally,
a new element can be inserted by an incremental manner
with an additional space/time cost bounded by a constant.
In our previous work [16], we have developed incremental
maps using an incremental locality sensitive hashing (iLSH)
database [17].

Position-based methods seek a reliable coordinate
transformation from the local map built by the map user
robot to the global map built by mapper robots. When
the size of the global map is large, the map is usually rep-
resented as a set of submaps. As a difficulty, the com-
putational complexity grows exponentially with the num-
ber of landmarks in the maps. A standard solution to the
difficulty is RANSAC map-matching. In [1], successful
map-matching using large scale maps have been achieved
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with purely position-based RANSAC by Neira, Tardós and
Castellanos [1]. In [18], map-matching has been robust even
when the ratio of outlier observations is high. Unfortunately,
they are essentially batch algorithms and thus take as in-
put fixed maps. To overcome, we pose the real-time lo-
calization problem as incremental map-matching problem.
We have introduced the notation of incremental RANSAC
(iRANSAC) in [19] and further developed with an efficient
batch database in [20].

In this paper, we combine the advantages of the above
two methods, iLSH and iRANSAC, and introduce a novel
scheme called LSH-RANSAC [21]. This paper proposes
a method for multi-robot large-size mapping problem us-
ing LSH-RANSAC. The method combines traditional meth-
ods: LSH, RANSAC and SLAM algorithms. The primary
contribution of this paper is the development of a localiza-
tion system that is fully incremental and scales to large-size
environments. We will conduct experiments on the pro-
posed scheme in large-size environments with over 10 map-
per robots by using radish dataset [22].

Self-localization has been a central research area in
robotics. It is difficult here to cover all the literature. Much
effort has been focused on the accuracy issue of robot lo-
calization. One popular approach is to generate and track
hypotheses of the robot pose over time in a pose track-
ing framework [3], [5], [10]–[12], [16], [23]. In particular,
particle filter has received considerable attentions in recent
years [10], [11], [23]. In [16], we also developed an effi-
cient particle filter algorithm. Unfortunately, their compu-
tational cost grows linear to the size of pose space. The
computational efficiency is an important issue of on-going
researches [21].

In object recognition, the combination of LSH and
RANSAC also has been recently studied for large-size prob-
lems [24]–[26]. There are important applications includ-
ing image retrieval [24], epipolar geometry [25] and shape
database [26]. Only a few use LSH as an incremental
database [27]. Our contribution is incremental extension of
LSH-RANSAC as well as its application to SLAM and lo-
calization problems.

In place recognition, visual dictionaries are used to in-
terpret a high-dimensional feature to a 1D visual word [6].
Most of the vocabularies are conditioned on a specific fea-
ture type, parameter setting as well as training environ-
ments. Such conditional vocabularies increase the risk of
overfitting/overgeneralization. Incremental building of a vo-
cabulary is not a trivial problem [28], [29]. Our approach is
rather similar with approaches in [30], [31] for object recog-
nition, in a sense that we directly discretize the feature space
without any dictionary.

In SLAM, localization using an incremental map is
studied in the context of loop closure [32]. Most of them
rely on prior knowledge (typically in the form of probability
distribution) obtained from usual pose-tracking in SLAM.
In such revisiting problems, the robot pose is often repre-
sented simply as a 1D space of visited place ID instead of
the full pose space (e.g. 3D) considered in this paper.

In computer vision, RANSAC is a standard algorithm
for robust estimation [33]. To speed up for large problems,
a series of randomized RANSAC algorithms (rRANSAC)
as well as the probabilistic variants and the batch optimiza-
tion have been studied in recent years [25], [26], [34]–[36].
The objective of most rRANSAC (e.g. Td,d test [35]) is sim-
ilar with original RANSAC, in a sense that they iterate the
hypothesize-and-test until they find some reliable hypothe-
ses. On the other hand, preemptive RANSAC (pRANSAC)
proposed by Nister [36] deals with real-time applications
where the computation time is always limited and typically
constant. This property is appealing for the real-time prob-
lem of robot localization. Our iRANSAC is an incremental
extension of the pRANSAC scheme.

2. Map-Matching Strategies

This section explains our basic strategies for map-matching
in the RANSAC formulation. Let L denote a local map.
The map is built by the target robot it-self with its mo-
tion measurements (e.g. odometry) and perceptual measure-
ments (e.g. laser scan) using map-building techniques such
as FastSLAM [37] as well as scan matching [38]. Let G
denote a global map. The global map is a set of R met-
rical submaps G = {G1, · · · ,GR} built by R mapper robots
and shared via some information sharing network (typically
wireless networks [4]). The maps represent the configura-
tion of landmarks or features in the individual robot coordi-
nates. The objective of map-matching is to identify which
submap Gi the local map L corresponds to and to find a re-
liable coordinate-transformation ψ (i.e. translation and rota-
tion) from the local map L to the global map Gi by which
the two maps maximally overlap.

Figure 1 illustrates the notation of map-matching prob-
lem. In this figure, there are the target robot as well as sev-
eral mapper robots exploring their own environments. Some
of the robots may be located near to each other while some
others far apart. The target and the other mapper robots re-
spectively maintain so-called local map and global submaps.
The position-relationship among the local map as well as
global submaps are initially unknown.

Fig. 1 Map matching problem.
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2.1 RANSAC

The general RANSAC algorithm is described as follows. N
denotes the number of datapoints. U = {xi} denote a set of
N datapoints. fm : S → P denotes a model function that
computes the model parameters P from a sample set S of
datapoints. c(p, x) denotes the score function for a single
datapoint x with model parameters p, and takes 1 if x is
an inlier to the model or 0 otherwise. The objective is to
find a “best” model parameter p∗, which should maximize
the score function, with its associated cost value C∗. The
RANSAC algorithm iterates the following steps until it finds
some reliable hypotheses.

1. Select randomly a small subset S k ⊂ U of data-
points and compute a model parameter hypothesis pk =

fm(S k).
2. Compute score Ck =

∑
x∈U c(pk, x).

3. If Ck > C∗ then C∗ ← Ck, p∗ ← pk.

2.2 RANSAC in Map-Matching

It is straightforward to apply the above RANSAC algorithm
to a batch map-matching problem. In the setting, we can
interpret the above parameters as follows.

• N: the number of features on the local map L.
• x: a feature on the local map L.
• p: a transformation from the local map L to the global

map G.
• c(p, x): the score function. c(p, x) takes 1 if a feature

point x on the transformed map Lp matches a feature
point on the global map G or 0 otherwise. Here, Lp

is the local map rotated and translated according to the
transformation p.

• fm : the model function. fm outputs a transformation
candidate from the local map to a global map based on
some local matches.

The function fm can be viewed as a map retrieval function.
Given a local feature as a query, it searches similar features
from global submaps. For each retrieved feature, it outputs a
transformation from the local feature to the retrieved feature.

2.3 Preemptive RANSAC Scheme

The random sampling in naive RANSAC generates a large
number of useless hypotheses. The preemptive RANSAC
(pRANSAC) scheme aims to avoid excessive scoring of
such useless hypotheses. It maintains the history H =

{(p j, x j,C j)} of every feature-hypothesis pair (p j, x j) scored
so far and its corresponding scoring result C j = c(p j, x j).
It employs two user-defined rules, order rule and preference
rule. The order rule

(p, x) = fo(H) (1)

decides which pair should be scored next according to the

history H of scoring results. The preference rule

p∗ = fp(H) (2)

decides which hypothesis is best according to H. Suppose
we have been given a set of features

U = {xi} (3)

and already generated a set of hypotheses

V = {p j}. (4)

pRANSAC iterates the following steps until the computa-
tion time is exhausted:

1. Select a feature-hypothesis pair (pk, xk)= fo(H) and
compute the score c(pk, xk),

2. Update the history H incorporating the scoring results.

If necessary, it outputs the best hypothesis p∗ = fp(H).

2.4 Preemptive Breadth-First Rule

The performance of pRANSAC depends strongly on the or-
der rule fo(H). The preemptive breadth-first order rule pro-
posed by Nister has some appealing properties [36]. Firstly,
its computation time is bounded by a constant proportional
to the size of hypothesis set. Secondly, it compares the hy-
potheses against each other, rather than against some abso-
lute quality measure (which is often sub-optimal or unavail-
able). Thirdly, its stability is analyzed using inlier-outlier
model [36].

To save the computation time, it limits the number of
hypotheses to be considered (”active hypotheses”) using a
decreasing preemption function

fb(i). (5)

As a preparation, it randomly permutes the sequence of fea-
ture ids 1, · · · ,N as well as the sequence of hypotheses ids
1, · · · ,M and initializes the score C j = 0 for every hypothe-
sis j(1 ≤ j ≤ M). After the preparation, it performs the fol-
lowing steps for each iteration i until the computation time
is exhausted:

1. Compute the scores C j ← C j+ (̧p j, xi) for each hypoth-
esis j(1 ≤ j ≤ fb(i)),

2. Reorder the hypothesis ids 1, · · · ,M so that the range
1, · · · , fb(i) contains the best fb(i) active hypotheses ac-
cording to the accumulated score C j.

The preemption function fb(i) is in the form:

fb(i) = 	M2−	
i
B 

 (6)

where 	·
 denotes downward truncation and B is a preset
constant called “block size” [36]. Note that the size of hy-
pothesis set reduces to the half every Bth iteration. This re-
sults in an approximately O(BM) time cost.
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3. Incremental Map-Matching Algorithm

We now turn to more general case of incremental map-
matching tasks. The main process of incremental map-
matching is initialized only once at the beginning of the
localization task at the start viewpoint. After that, it con-
tinues to search for answers using latest maps. There are
two types of events by which the maps are modified. The
first event is arrival of new features into the global map. In
the event, the new features are added to the corresponding
submap, then each of the new features is inserted into the
appearance database. Section 3.1 will describe the details of
the appearance database. The second event is arrival of new
features into the local map. In the event, the new features are
added to the feature set, and new hypotheses are generated
by retrieving the appearance database using each of the new
feature as a query, then added to the hypothesis set. Section
3.2 will describe the details of the map-matching algorithm.

Figure 2 illustrates the incremental map-matching sys-
tem. This system is incremental in such a sense that the tar-
get and the mapper robots are incrementally updating the lo-
cal and the global submaps. Our method queries the appear-
ance database to search relevant transformation hypotheses
as well as matches the geometric constraints among land-
marks to verify each hypothesis.

3.1 Appearance Database

The appearance database employs an approximate near
neighbor technique called locality sensitive hashing
(LSH) [39]. LSH uses a continuous representation of data-
point, and searches points that are near from the query point
in l2 space. More formally, the E2LSH addresses an (R, cR)-
Near Neighbor problem, where the goal is to report a point
within distance cR from a query q, if there is a database point
within distance R from q [40].

Unlike other structures such as trees, a structure based
on hash tables has strong advantages in an incremental set-
ting. The database element can be frequently added to or
deleted from hash tables. This strongly motivates us to use
LSH as a basis of the incremental database. In the pre-
processing of E2LSH, L hash functions with K dimensions
are probabilistically generated using a p-stable distribution,
in our case, the normal distribution. When a new feature ar-
rives in global maps, the database is updated in the following
procedure:

• Memorizes the real-world location of the feature,
• Hashes the feature using the E2LSH function and ac-

cesses the corresponding bins,
• Associates the real-world location of the feature to the

accessed bins.

Loosely following [41], we do not memorize the high-
dimensional features themselves (but only the hash codes)
and also not use them in the retrieval task. This is a sim-
ple modification but quite effectively reduces the space and

Fig. 2 Incremental map-matching system.

the time costs of a database [39]. In [16], we have applied
this technique to Monte Carlo localization and reported its
performance. With this modification, the above process for
updating the database (i.e. learning and dimensionality re-
duction) can be performed in an incremental manner.

We also adapt the hash maps [16]. In conventional
systems, the real-world location of features are commonly
memorized on grid maps. In large-size environments,
naive implementation of a grid map consumes a significant
amount of memory, in proportional to the number of grid
cells. To overcome, we adapt universal hash (UH) tables and
map the real-world space (e.g. 3D space) onto 1D hash-code
space. The size of hash table should be determined so that
the probability of collision is sufficiently low, taking into
account the spatial density of features. In consequence, the
space cost of such an approximated grid map can be practi-
cally low, for example, 3% of the original grid map in our
experimental settings.

3.2 Map-Matching Algorithm

The iRANSAC algorithm is summarized as follows. At the
beginning of the task, it initializes the feature and the hy-
pothesis sets to empty sets U ← φ, V ← φ. During the task,
it iterates the following steps:

1) When new features Unew arrive, modify the feature set

U ← Unew ∪ U, (7)

2) When new hypotheses Vnew arrive, modify the hypoth-
esis set

V ← Vnew ∪ V, (8)

3) Perform the steps 1,2 of pRANSAC.

The modified breadth-first rule performs the following
steps for each iteration i:

1) Perform the steps 1,2 of the iRANSAC algorithm,
2) Perform the steps 1,2 of the original breadth-first rule.
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The preemption function fb(i) is in the form:

fb(i) =
{

m(i − 1)/2 (i mod B = 0)
m(i − 1) (i mod B � 0)

, (9)

where m(i) denotes the number of hypotheses at the end of
i-th iteration.

We have to slightly modify the preference rule. In the
incremental setting, the number Nj of scored can be very dif-
ferent among individual hypotheses. It tends to be smaller
for younger hypotheses than older ones. For fair compar-
ison, we use a normalized measure to compare among the
hypotheses

C j/Nj (10)

in place of the conventional measure C j. In addition, we do
not consider a young hypothesis as a candidate of the best
hypothesis when its score is smaller than a threshold Co.

The modified breadth-first rule degenerates to the orig-
inal breadth-first rule in a special case where the hypothesis
set is fixed. It is known that the performance of rRANSAC
(including pRANSAC) is maximized when a randomly per-
muted sequence is used [36]. However, it is no longer pos-
sible to permute the hypothesis set beforehand in the incre-
mental setting. The process of random permutation of a set
U (or V) is implemented as an O(|Unew|) cost process of in-
serting each element in Unew at a random point in U given U
has been already permuted. The actual performance of our
scheme will be evaluated in the experimental section.

4. Experiments

We evaluate our approach through robot localization exper-
iments using radish dataset [22]. For each dataset, there are
sequences of motion and perception measurements. Each
motion measurement indicates the robot’s movements from
one viewpoint to the next and represented in a forward-
sideward-rotate (FSR) format in our system. Each percep-
tion measurement is a single scan by the front laser scanner
and represented by a set of 180 datapoints in a robot centric
coordinate. As appearance feature, shape feature is usually
used in the case of laser datapoints [24]. In particular, we use
a shape feature called generalized shape context (GSC) [15]
which is found to be stable and useful for robot localiza-
tion applications in our previous experiments [16], [20]. We
use a simple scan matching algorithm as a technique for
SLAM i.e. local mapping and pose-tracking. The number
of new features and new hypotheses are set to |Unew| = 10
and |Vnew| = 1, 000. The block size used for preemption is
simply set as B = |Unew|. The parameters for LSH are set
empirically to K = 30 and L = 20. We later investigate the
sensitivity of our system against these parameters.

We consider a typical scenario where R mapper robots
are exploring R different buildings. The buildings shown
in the maps in Fig. 3 (a)-(c) are three different environments
where a series of localization tasks take place. The solid and
the dotted curves respectively are the trajectories of the tar-
get robot and the mapper robots. Shown in Fig. 3 (d) are the

Fig. 3 Maps generated and used in experiments.

16 buildings where the 16 mapper robots are exploring in
the case of Fig. 3 (a). Among these buildings, the building
at third column and second row is the one where the target
robot locates. No a priori knowledge is given on the build-
ings as well as on which buildings the individual robots lo-
cate. Each submap Gr (1 ≤ r ≤ R) is initialized to an empty
map at the beginning of the map building task. Then, it is in-
crementally built by the corresponding mapper robot during
the task. Every time a novel scan arrives, a set of appearance
features are extracted from the scan points. Then, the grid
maps as well as the appearance database are updated with
the extracted features. Figure 4 (a) shows the time consumed
by this updating process per feature for different size global
maps for three different environments “albert”, “fr079” and
“fr101”. It can be seen that the required time is independent
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Fig. 4 Time costs [msec] for (a) database updating (feature ID vs. cost
per feature), (b) database retrieval (feature ID vs. cost per feature) and
(c) RANSAC map-matching (viewpoint ID vs. cost per feature-hypothesis
pair) for three different environments, “albert”, “fr079” and “fr101” from
left to right panels.

Fig. 5 Estimated trajectory.

of the map size and bounded by a constant. As discussed in
Sect. 3.1, the naive implementation of a submap consumes
a significant amount of space. In our case, 2.1 × 107 cells in
the 3D xyθ pose space and the global map consumes around
3.4×108 cells in total. With the modified implementation us-
ing UH tables, the space costs are reduced down to 1 × 107

bins. The size of UH table is less than 3% of the original
grid map. The LSH table consumed by the LSH database is
at most 7.2 × 106 bins in this experiment. It could be said
that our structure is fully incremental and scales to large-size
maps.

Figures 5, 6 illustrate localization tasks. In Fig. 5,
the dots are datapoints obtained from the laser scanner and

Fig. 6 Evolution of map-matching as we get more viewpoints from the
target robot.

Fig. 7 Scoring results. The black and gray curves are correct and wrong
hypotheses.

the thick dashed lines are the robot trajectory. In Fig. 6,
the gray dots are datapoints in the global submap while the
black ‘o’ and ‘x’ respectively are inlier and outlier points
in the local map. At the beginning of the localization task,
the local map is initialized to an empty map. Every time a
novel scan arrives, the local map is modified incorporating
the scan points. Then, a set of appearance features are ex-
tracted from the scan points. Then, the appearance database
is retrieved using each feature as a query. Then, new hy-
potheses are generated based on the retrieval results. The
time consumed by the retrieval process is actually bounded
by a constant as explained in the previous section and as
shown in Fig. 4 (b). The results shown in Fig. 6 (a),(b) and
(c) include two typical cases where the map-matching is not
yet successful. The first case is that the local map is not
yet informative. The second case is that most part of the
local map is originated from unknown region that is not de-
scribed in the global map. As a result, all the matching re-
sults are caused by false matches, for example, the local map
is matched with a wrong building. Figure 6 (d) shows that
the matching finally becomes successful. In the case, the
local map now grows informative and reliable. Sufficiently
large part of the map is originated from known region in
the global map. Figure 4 (c) shows that the time consumed
by the map-matching process is also bounded by a constant.
The time cost is independent of the size of map database.

Figure 7 illustrates scoring results. In the figure, “rank”
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Fig. 8 Localization errors [m] (y-axis) when the amount of measure-
ments or iterations (x-axis) increases, for (a) “fr101”, (b) “albert” and (c)
“fr079”. The panels from left to right correspond to 1, 4, 9 and 16 submaps.

is a relative measure that indicates the height of score of
one hypothesis against others. For the sake of clarity, only
those hypotheses that are top-ranked (i.e. assigned highest
rank) at least once are shown in the figure. The scoring
by iRANSAC is performed in a preemptive manner simi-
lar with other rRANSAC schemes such as [26] and [36].
Good hypotheses supported by many datapoints tend to be
efficiently detected. Bad hypotheses contaminated by noises
tend to be quickly weeded out. Once a good hypothesis is
high-ranked it tends to stay in the high-rank group for a long
period of time. A key difference from typical rRANSAC
schemes is that the rate (or the ranking) of a hypothesis tend
to decrease (or increase) as the robot navigates. This is be-
cause of that old hypotheses tend to be inconsistent with new
datapoints due to the accumulation of errors in the odome-
try as well as in the local map. In consequence, old and new
hypotheses are compared against each other in a preemptive
manner and the top-ranked hypothesis supported by many
recent datapoints tends to be output as a best hypothesis at
each viewpoint.

Figure 8 reports the localization performance in several
experiments. A series of localization tasks are conducted in
12 different scenarios, for three different local maps (corre-
sponding to “albert”, “fr079”, “fr101”) shown in Fig. 3 (a)-
(c), and for four different size global maps respectively com-
posed of 1, 4, 9 and 16 submaps. The target robot is assumed
to be located in the same building as one of the mapper
robots. A pair of non-overlapping measurement sequences
can be created from a single dataset with a procedure de-
scribed in [16] and respectively assigned to the target robot
and the mapper robot located in the same building. In all the
cases of Fig. 8 (a)-(c), it can be seen that localization errors
finally become small, less than 1 m. The global map size 16
corresponds to over 3.5 × 105 appearance features. In the
Figure 8, it can be seen that the localization task is success-

Fig. 9 Comparison of localization performance for (a) K=10, (b) K=20,
(c) K=30, (d) K=40 and (e) K=50 for L=5, L=10, L=20 and L=30 from
left to right panels.

ful even for 16 submaps environments. This is a large-size
map compared with previously published works on fully in-
cremental systems. It is noted that the proposed incremental
scheme is successful even for such a large-size map. We also
conducted additional experiments to investigate the param-
eter sensitivity and the scalability of our scheme. Figure 9
summarizes the sensitivity against LSH parameters. It can
be seen that our system is stable for a wide range of pa-
rameters. We also conducted experiments with much larger
global maps using synthesized datasets, and found that our
scheme is successful as much as 40 submaps (1.2× 106 fea-
tures) environments. From above results, it is concluded that
the proposed scheme is fully incremental and scales to large-
size problems.

5. Conclusion

We have studied the problem of robot localization from
the perspective of incremental map-matching. In con-
trast to most map-matching approaches, our approach does
not assume fixed maps but considers more general cases
where the maps are incrementally modified during the task.
We based our system on LSH appearance database and
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RANSAC map-matching and developed an incremental ex-
tension of the LSH-RANSAC scheme. In experiments, we
have demonstrated that the system is efficient even with
large-size maps that are incrementally built by other mapper
robots. In future, we plan to apply the proposed scheme to
some other platforms including robot GIS as well as vision-
guided mobile robots.
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