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PAPER

Noise Reduction in CMOS Image Sensor Using Cellular Neural
Networks with a Genetic Algorithm

Jegoon RYU†a), Student Member and Toshihiro NISHIMURA†, Member

SUMMARY In this paper, Cellular Neural Networks using genetic al-
gorithm (GA-CNNs) are designed for CMOS image noise reduction. Cellu-
lar Neural Networks (CNNs) could be an efficient way to apply to the image
processing technique, since CNNs have high-speed parallel signal process-
ing characteristics. Adaptive CNNs structure is designed for the reduction
of Photon Shot Noise (PSN) changed according to the average number of
photons, and the design of templates for adaptive CNNs is based on the
genetic algorithm using real numbers. These templates are optimized to
suppress PSN in corrupted images. The simulation results show that the
adaptive GA-CNNs more efficiently reduce PSN than do the other noise
reduction methods and can be used as a high-quality and low-cost noise
reduction filter for PSN. The proposed method is designed for real-time
implementation. Therefore, it can be used as a noise reduction filter for
many commercial applications. The simulation results also show the feasi-
bility to design the CNNs template for a variety of problems based on the
statistical image model.
key words: cellular neural network, genetic algorithm, CMOS image sen-
sor, photon shot noise

1. Introduction

The noise properties of digital cameras are under intensive
research worldwide in an effort to advance image quality.
Recently, CMOS image sensor has attracted public attention
because of the various benefits such as lower power con-
sumption, random access of each pixel, and simple manu-
facturing process, although it also has several drawbacks in-
cluding low sensitivity and high noise level. Understanding
the relationship between the image output of a CMOS im-
age sensor and noise sources has also required a high-quality
solution design with CMOS technology. Figure 1 shows the
main noise sources in the CMOS image sensor [1]–[3].

Some of the noise characteristics in digital images can
be reduced by using the extended exposure times and high
ISO (International Standards Organization) sensitivity set-
tings. High-speed settings in digital camera produce more
noise than low ISO settings. In a CMOS image sensor, the
charge-to-voltage conversion occurs in each pixel, and most
of the functions are integrated on the chip. This technique
has significant implications in sensor architecture. There
are limitations such as smaller pixel size which will lead
to lower dynamic range, higher dark voltage and lower fill
factors. As a result, the number of noise sources in a CMOS

Manuscript received June 10, 2009.
Manuscript revised October 11, 2009.
†The authors are with the Graduate School of Information, Pro-

duction, and Systems, Waseda University, Kitakyushu-shi, 808–
0135 Japan.

a) E-mail: jkryu@ruri.waseda.jp
DOI: 10.1587/transinf.E93.D.359

Fig. 1 Noise sources in the CMOS image sensor.

image sensor, including the PSN, dark current noise, and
Photo-Response Non-Uniformity (PRNU) noise, which to-
gether create the main problems [4], and the overall image
quality will be reduced.

In this study, we consider the problem of restoring im-
ages degraded by the region-dependent PSN. The PSN re-
sults from the uncertainty in the number of photons col-
lected in the photosite which is unavoidable and always ex-
ists in all imaging applications. The property of PSN is that
when the signal increases, so does the amount of the noise.
However, the PSN increases at a rate slower than the sig-
nal thus, as the signal increases, the SNR of PSN improves.
This implies that the PSN will be a bigger problem in the
shadows of underexposed images [5]–[7].

Recent noise reduction methods for the digital image
are based on median filtering [8], [9], Lee filtering [10] or
Wiener filtering [11]. Median filter is a simple and very ef-
fective noise reduction filtering process, but the performance
is just effective for the noise induced by strong spike-like
isolated values. Lee’s filter can smooth noise and preserve
edges efficiently, and it is efficient in smoothing Gaussian
white noise, but it is not good at smoothing PSN. In Pavlovic
and Tekalp [11], Wiener filter is applied for the restoration
of image recorded by photographic film. But, the filtering
is inadequate for removing PSN since it is designed mainly
for Gaussian noise suppression.

In this paper, we propose a PSN reduction algorithm
based on adaptive GA-CNNs. The genetic algorithm (GA)
is used to determine the elements of CNNs in a template
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and is preferred to overcome the problems of stability and
adaptation in the CNN [12]–[14]. The effectiveness of this
learning algorithm is also confirmed by our computer simu-
lated result.

Our motivation for the use of CNNs is based on their
potential ability to provide reduced noise in a digital com-
putational system and high-speed parallel signal processing
that supports practical applications. The complete CNNs al-
gorithm could also be easily implemented by using a Very
Large Scale Integrated circuit (VLSI) where the connections
between the processors are determined by a cloning tem-
plate. Although the size of the CNNs cell array is small,
it is also capable to handle large image sizes. The adaptive
CNNs proposed in this study consists of five control and five
feedback templates and five biases for reducing noise flexi-
bly, since PSN image is changed according to the number of
photons.

This paper is organized as follows. Section 2 shows the
PSN modeling on CMOS image sensor. The CNNs model
and the design of CNNs templates based on GA are dis-
cussed in Sect. 3. Experimental results are summarized in
Sect. 4. Finally, the conclusion is presented in Sect. 5.

2. PSN Modeling on CMOS Image Sensor

The statistical property of photon shot noise is clearly elu-
cidated in Goodman’s works [15]. The PSN originates from
the particle property of photon. Each photon emission and
absorption is considered as an independent occurrence. The
income number of photons fluctuate, and this fluctuation fol-
lows Poisson distribution [16], [17]. This fluctuation is ob-
served as PSN.

If x denotes the number of photoevents occurring in a
given time interval, or the number of photocounts, the prob-
ability Prob(x) in Fig. 2 that x impulses fall within the time
interval can be represented as:

Prob(x, λ) =
λx

x!
e−λ (1)

where λ is the average number of photons detected at the
photosite, and it is given by:

Fig. 2 Photon shot nose. (a) represents Poisson distribution of photon
shot noise and (b) is the relation between income photons and absorption
photons.

λ = αIAτ (2)

where α is a proportionality constant, I is the intensity of
light incident on the photosite of illuminated area A during
the measurement time of interest τ. An important property
of Poisson distribution is that its variance is equal to its av-
erage:

σ2
x = λ (3)

The signal to noise ratio associated with this distribu-
tion, as defined by the ratio of mean to standard deviation,
is given by:

S NR =
λ

σx
=
√
λ (4)

The uncertainty in the number of photons collected
during the given period of time is simply the photon shot
noise given by:

σph = σx =
√
λ (5)

As a CMOS image sensor is operated under PSN-
dominated region, the absorption of N photons on average

Fig. 3 PSN image and one-dimensional signal by Poisson distribution
according to the nubmer of photons: (a) Noise-free image, (c) is PSN image
of 32 photons, (e) 128 photons, and (g) 512 photons.
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for a photo-sensor is accompanied with a standard deviation
of
√

N photons as in Fig. 2 (b). The magnitude of PSN de-
pends on the signal level and exposure time, as predicted by
Poisson Statistic. Figure 3 illustrates the characteristics of
PSN according to the average number of photons.

3. Genetic Learning for Templates of CNNs

3.1 Architecture of CNNs

CNNs are characterized by the parallel computing of simple
processing elements locally interconnected. They were ini-
tially proposed as continuous time architecture by Chua and
Yang [18] and later a discrete-time extension (DTCNN) was
introduced by Harrer and Nossek [19]. In this paper, two di-
mensional DTCNN is considered. The DTCNN is a clocked
system, whose dynamical behavior is described by a set of
discrete state equations. At a discrete time k, the state xc

of a cell c = (c1, c2) depends on the time-independent in-
put ud applied to its neighboring cells d = (d1, d2) and the
time-varying output yd(k). The cell state equation is given
as follows [19]:

xc(k) =
∑

d∈Nr(c)

ac
dyd(k) +

∑
d∈Nr(c)

bc
dud + ic (6)

The real-valued coefficients ac
d are called the feedback

coefficients and determine how the state of a cell c depends
on the output of its neighboring cells d. Likewise, the con-
trol coefficients bc

d means how the state of a cell c depends
on the input of its neighbors d. For each cell, a real-valued
cell bias ic is added to adjust its threshold. A significant
feature of CNNs is that it has two independent input capa-
bilities, i.e., the generic input and the initial state of the cells.
Normally they are bounded by:

|ud | ≤ 1 and |xc(0)| ≤ 1 (7)

Each coefficient can be represented by the matrices A
and B, known as cloning templates.

ac
d = Ad1−c1,d2−c2 , b

c
d = Bd1−c1,d2−c2 , ic = I (8)

where A and B are called the feedback and control template,
respectively. The matrices A and B are (2r+1)× (2r+1) real
matrices and I is a scalar number in two dimensional CNNs.
To avoid clutter, the Θ operator is introduced.

PΘgc(k) =
∑

d∈Nr(c)

Pd1−c1,d2−c2 gd(k) (9)

Using Eq. (8) and (9), the Eq. (6) can be rewritten as:

xc(k) = AΘyc(k) + BΘuc + I (10)

Finally, the output of cell c at time step k > 0 is ob-
tained by thresholding the state of c at time step k − 1:

yc(k) = f (xc(k − 1))

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 f or xc(k − 1) ≥ 1
xc(k − 1) f or − 1 ≤ xc(k − 1) < 1
−1 f or xc(k − 1) < −1

(11)

Fig. 4 Block diagram of the proposed DTCNN.

The real valued range of y(k) is limited to [−1, +1],
where −1 represents a white pixel, and +1 represents a black
pixel. Values between the range [−1, +1] represent gray
levels. The block diagram of the proposed CNNs is shown
in Fig. 4. Images corrupted by PSN are influenced by the
average number of photons. So, according to the range of
the average number of photons, feedback template, con-
trol template, and bias are designed as {A0, A1, A2, A3, A4},
{B0, B1, B2, B3, B4}, and {I0, I1, I2, I3, I4}, respectively, and
computed.

3.2 Separable Templates

Assuming that the control and feedback templates are any
symmetric two dimensional templates, large templates can
be decomposed into a set of small-size templates. It plays a
key role to be easily implemented in VLSI. For having the
simplicity of design, symmetric templates are used in this
system. If the given control and feedback templates A and
B are two dimensional discrete convolution of two vectors,
the template A and B can be separated into outer product of
two 1-D templates: A = Ac ∗ Ar, B = Bc ∗ Br: (Ac and Bc

which are column vectors act along the vertical directions
of the image plane, Ar and Br which are row vectors act
along the horizontal directions of the image plane). Here
the symbol ∗ stands for both outer product of two vectors
and 2-D convolution of two matrices.

For the symmetrical 1 × N templates Ac = [ack ... ac1

ac0 ac1 ac2 ... ack]T and Ar = [ark ... ar1 ar0 ar1 ar2 ... ark], (k
is (N−1)/2), the following N×N two dimensional feedback
template and control template result through outer product:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ackark . . .ackar1 ackar0 ackar1 . . .ackark
...
. . .

...
...

...
. . .

...
ac1ark . . .ac1ar1 ac1ar0 ac1ar1 . . .ac1ark

ac0ark . . .ac0ar1 ac0ar0 ac0ar1 . . .ac0ark

ac1ark . . .ac1ar1 ac1ar0 ac1ar1 . . .ac1ark
...
. . .

...
...

...
. . .

...
ackark . . .ackar1 ackar0 ackar1 . . .ackark

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)
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B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bckbrk . . . bckbr1 bckbr0 bckbr1 . . . bckbrk
...
. . .

...
...

...
. . .

...
bc1brk . . . bc1br1 bc1br0 bc1br1 . . . bc1brk

ac0brk . . . bc0br1 bc0br0 bc0br1 . . . bc0brk

bc1brk . . . bc1br1 bc1br0 bc1br1 . . . bc1brk
...
. . .

...
...

...
. . .

...
bckbrk . . . bckbr1 bckbr0 bckbr1 . . . bckbrk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

3.3 Genetic Learning

Genetic Algorithm is a kind of adaptive search methods that
are modeled after the genetic evolutionary process. One of
the most important part of GA is the evaluation of the so
called “fitness function”, objective or cost function, to al-
locate a quality value to every solution produced. Another
important feature of GA is intrinsically parallel. In place
of using a single point and local gradient information, they
evolve a generation of candidate solutions where each in-
dividual represents a specific solution not related to other
solutions. Therefore, many real-world applications includ-
ing the DTCNN template learning problem can be easily
implemented on parallel machines resulting in a significant
reduction of the required computation time [12]. GA has
been widely used for DTCNN templates learning tasks, min-
imization of the objective function, called optimization [20].
It has also been shown the influence and robustness in the-
ory and practice [21]–[23].

A. Real-Coded Chromosome
The implementation of GA begins with the design of the
decision variables and the encoding scheme of the chromo-
some. Encoding method must guarantee the effective trans-
fer of information between chromosome strings. In this pa-
per, we confine ourselves to floating point (real-coded) chro-
mosomes [24]. The original GA uses a binary-coded for-
mat of chromosomes. The choice of the real-coded chromo-
somes improve the flexibility and accuracy of chromosomes
representation. Moreover, there is no loss in precision when
discretize to binary or other values. There is also greater
opportunity to use different genetic operators.

The symmetrical 1×N templates Ac = [ack ... ac1 ac0 ac1

ac2 ... ack] and Ar = [ark ... ar1 ar0 ar1 ar2 ... ark] are
treated as a starting point in the representation problem that
gives rise to a floating point chromosome. To represent the
DTCNN IIR filter, the chromosome contains the symmetri-
cal elements of the templates A and B. For N × N DTCNN
templates learning, the floating point chromosome of length
(2N + 3) is given by:{

ack, . . . , ac1, ac0, ark, . . . , ar1, ar0,
bck, . . . , bc1, bc0, brk, . . . , br1, br0, i

}
(14)

where k is (N − 1)/2 and the chromosome is illustrated in
Fig. 5. Each component has the floating point value with
the precision up to 0.0001. The GA generates the starting
population of length (2N + 3) containing random real num-
bers in [−2, +2] except for the ac0, ar0, bc0 and br0 elements

Fig. 5 Structure of the chromosome.

which are chosen in [−2.235, +2.235] because of the sta-
bility constraint for CNNs circuits, the [−5, +5] range that
corresponds to the expected VLSI technological limits, and
adaptive searching for DTCNN IIR filter.

B. Fitness Function
GA searches for the optimal solution by maximizing a fit-
ness function that assigns a quality value to each individ-
ual of the population. This quality value is used as a com-
parative evaluation criteria of each individual against other
members of the population and is a key factor for the real
optimization problem.

The fitness value of a member indicates how suitable it
is, by representing the desired solution in M × N image. To
compute the fitness value, evaluation procedure is executed
with the encoded template, and the results are compared to
the desired image using the following equation:

εk =

M−1∑
i=0

N−1∑
j=0

(ϕi j − ηk
i j)

2

M × N
(15)

and Eq. (15) can also be represented as follows:

εk =
‖Φ − Hk‖2

M × N
(16)

where k denotes the number of the chromosome, ϕi j is the
value of the (i, j) pixel of the desired image and ηi j stands
for the pixel of the denoising image. Φ denotes the set of
the desired output image, and Hk is the set of the denoising
image by k chromosome.

To compute the fitness value, the following equation is
designed for a better solution.

fk = 10 log10

(
Peakvalue2

εk

)
(17)

where Peakvalue is the maximum pixel value in M × N im-
age. Individuals that represent better solutions are awarded
with higher fitness values, thus enabling them to survive
more generations.

C. Genetic Algorithm Operations
The selection of individuals to reproduce a superior gener-
ation is quite an important problem, since it influences the
existence or decline of competitive individuals. The higher
the fitness value, the more likely it is that the individual will
be chosen for the next generation.

Here we use a tournament selection method. In the
tournament selection, n individuals are randomly selected
from the population and the best of the n individuals will
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be selected as the parent individual for further genetic pro-
cessing. This process is repeated until the mating pool is
filled. Though this strategy selects good individuals for the
next generation, it cannot ensure that the best individual in
any population survives throughout the optimization pro-
cess. To overcome this problem, the GA performs the de-
scending sort of all individuals using the fitness value, and
elitist strategy is used in the GA such that once some highest
individuals among the current generation are found, these
will be kept unchanged into the next generation.

Crossover is mainly accountable for the global-search
property of GA. It basically combines understructures of
two parent chromosomes to produce offspring chromo-
somes. Several crossover schemes have been suggested
in the literature, such as single-point, multi-point, ran-
dom crossover or uniform crossover. In our approach, the
BLX [25] crossover is applied to the floating point numbers.
Figure 6 represents the BLX crossover operation for the one-
dimensional case. A gene y for the offspring chromosome is
generated from the space [λ1, λ2] as follows:

y =

{
λ1 + r(λ2 − λ1) : i f umin ≤ y ≤ umax

repeat generating : otherwise
(18)

where r is uni f orm random number ∈ [0, 1].

λ1 = α − φ(β − α)
λ2 = β + φ(β − α)

(19)

Note that λ1 and λ2 will lie between umin and umax, the
variables’ lower and upper bounds, respectively. It also was
observed that φ = 0.5 provides good results.

Mutation is the operator responsible for the injection
of new genetic material into the population. A uniform mu-
tation operator is used to the real coded numbers. It ran-
domly selects one of the variables from a parent chromo-
some which is chosen by tournament selection, and sets a

Fig. 6 Scheme of BLX crossover and the procedure of crossover.

uniform random number which do not exceed the bounds of
the region allowed for the parameters.

4. Experimental Results and Discussion

For demonstrating the effectiveness of the proposed method,
we have performed experiments on the 256 × 256 gray
scale images that are noisy images polluted by PSN. Test
images are taken from USC-SIPI and CVG-UGR image
database [26], [27]: Barbara, Cameraman, Lenna, Boat, Air-
plane, Baboon, and Peppers.

There are several parameters in a GA which have to be
specified for the template learning. The following values in
Table 1 were used in the simulation. For control template
and feedback template, 5 × 5 template is adopted and the
length of chromosome is 13. Figure 7 represents the change
of the fitness as the procedure of GA increases. Though the
fitness is an important parameter which can determine the
improved quality of population, its absolute value is not very
important. Our simulation should be efficient to many kinds
of images, so we took an average with several images for
fitness of one generation. The figure shows the convergence
of our GA, and the quality of population is improved when
the run time increases.

The quality of denoised images is evaluated by normal-
ized mean square error (NMSE), Laplace mean square error
(LMSE) and peak signal to noise ratio (PSNR).

Table 1 Parameter values in genetic algorithm.

Item Value
The population size 200

The maximum generation 3000
The length of chromosome 13(5*5CNN), real number
Crossover probability Pc 0.65, BLX Crossover
Mutation probability Pm 0.02 per gene
Elite preservation size Pe 0.2

Selection criteria Tournament selection

Fig. 7 Change of fitness according to PSN.
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Fig. 8 Noise reduction experiment on Barbara image: (a) Noise-free image, (b) PSN image with 256
photons, (c) result by mean filter, (f) α-trim mean filter, (d) median filter, (e) adaptive median filter, (g)
Wiener filter, and (h) the proposed filter.

NMS E =

M−1∑
i=0

N−1∑
j=0

(Oi, j − Ei, j)2

M−1∑
i=0

N−1∑
j=0

(Oi, j)2

(20)

LMS E =

M−1∑
i=0

N−1∑
j=0

(Ψ(Oi, j) − Ψ(Ei, j))2

M−1∑
i=0

N−1∑
j=0

(Ψ(Oi, j))2

(21)

Ψ(Oi, j) = Oi+1, j + Oi−1, j + Oi, j+1 + Oi, j−1 − 4Oi, j (22)

where M and N denote the original image size, and (i, j) is
the pixel coordinate in an image. Oi, j and Ei, j denote the
pixel values of original image and denoised image, respec-
tively.

To calculate the PSNR in decibels (dB), the Mean
Square Error (MSE) which requires two M × N gray scale
images Oi, j and Ei, j is calculated using the following equa-
tion:

MS E =
1

M × N

M−1∑
i=0

N−1∑
j=0

(Oi, j − Ei, j)
2 (23)

PS NR = 10 log10

(
(PeakS ingal)2

MS E

)
(24)

where PeakS ignal is the maximum pixel value of the im-
age. LMSE is one of quality measure based on the prop-
erties of the human visual system. This measure can yield

a good performance for the signification of object bound-
ary and edge in images for the human visualization and for
imaged which are severely degraded with low spatial fre-
quency noise. With given noise variances, the smaller the
values of NMSE and LMSE, the better the quality of the de-
noised image. Contrarily, the larger the values of PSNR, the
better the quality of the denoised image.

We compared the results of the proposed method with
other denoising techniques including mean filtering, α-trim
mean filtering, median filtering, adaptive median filtering,
Lee filtering, and Wiener filtering. The images denoised
by other methods were shown in Fig. 8 with Barbara image,
and the corresponding values of NMSE, LMSE, and PSNR
calculated were also shown in Table 2. Denoising results
obtained by the proposed method are shown in the bottom-
most row in Fig. 8 and Table 2. From the simulation results,
it is easy to see that the noise has been effectively reduced,
the visual effect has been highly enhanced compared with
the corresponding noise versions, and the proposed method
has received the best numerical performance. Although the
denoised image by the proposed method still appears a lit-
tle bit grainy, the shape and content of the original image
are retained very well. Under the same noisy level, the val-
ues of NMSE and LMSE of the denoised images are much
smaller than those of the corresponding noisy images, while
the PSNR values of the denoised images are much larger
than those of the noisy images. It can also be observed that
the smaller the photon level ρ is, the smaller the PSNR val-
ues are; whereas the larger the NMSE and LMSE values are.

The mean filter is the worst denoiser in this simula-
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Table 2 Evaluation obtained by different denoising algorithm. Image: Barbara.

Method
ρ = 32 ρ = 64 ρ = 128 ρ = 256 ρ = 512

NMSE LMSE PSNR NMSE LMSE PSNR NMSE LMSE PSNR NMSE LMSE PSNR NMSE LMSE PSNR

Mean 0.0305 10.520 21.66 0.0259 14.817 22.36 0.0238 18.654 22.76 0.0228 21.271 22.93 0.0228 21.304 23.01

α-t. mean 0.0374 10.366 20.77 0.0299 14.667 21.73 0.0265 18.861 22.26 0.0250 21.354 22.53 0.0243 21.951 22.63

Median 0.0443 3.8847 20.01 0.0337 5.3503 21.22 0.0285 6.6743 21.94 0.0260 7.5952 22.35 0.0247 7.512 22.59

A-median 0.0454 1.5629 19.93 0.0296 1.9122 21.84 0.0214 2.2208 23.19 0.0176 2.5172 24.05 0.0154 2.4974 24.63

Lee 0.0305 11.456 21.67 0.0259 17.209 22.71 0.0237 22.617 22.97 0.0228 26.694 23.19 0.0121 29.348 23.58

Wiener 0.0659 0.7660 18.32 0.0327 0.6089 21.40 0.0162 0.4277 24.43 0.0081 0.2642 27.46 0.0040 0.1480 30.43

Prop. filter 0.0395 0.6459 22.17 0.0174 0.4602 24.46 0.0123 0.3748 26.62 0.0068 0.2183 29.56 0.0038 0.1003 33.01

Table 3 The PSNR value by the proposed method.

Image
The number of input photons

ρ = 32 ρ = 64 ρ = 128 ρ = 256 ρ = 512

Barb. 22.17 24.46 26.62 29.56 33.01

Came. 22.15 24.04 26.01 29.83 31.89

Lenna 22.23 24.81 26.19 29.01 32.09

Boat 22.56 23.62 26.32 29.58 32.16

Airp. 22.17 24.52 26.95 29.01 32.48

Babo. 22.18 24.36 26.88 29.00 32.62

Pepp. 21.95 24.05 26.08 29.34 32.95

tion. Wiener filter can also hardly reduce the noise, but it
is worse than the proposed method. The result confirmed
that the proposed method is about 3 db better than Wiener
filter. Compared with LNSE of Wiener filter and the pro-
posed method, the proposed method shows better perfor-
mance, which is to preserve the fine details and boundaries
of objects, than Wiener filter. The PSNR values of the pro-
posed method using several test images are also listed in
Table 3. The main advantage of this filter is that PSN is
suppressed very successfully while maintaining the sharp-
ness of the fine details and edges. The simulation results
demonstrate that the adaptive GA-CNNs have good overall
performance.

5. Conclusion

Template learning is a crucial step in CNNs technology. In
this paper, a genetic approach for CNNs template learning
and optimization to reduce the PSN noise was introduced.
The adaptive CNNs were also designed to reduce PSN ac-
cording to the number of photons. We noted that noise re-
duction of CMOS image for the proposed method is equiv-
alent to seeking a maximum of a fitness function. Simu-
lation results showed that the proposed method could re-
duce PSN noise more effectively than mean, median, and
Wiener filter. According to the metrics of PSNR, NMSE,
and LMSE, which are the image-quality measures, the pro-
posed method produced good results in reducing PSN and
preserving edges and fine details. Finally, since this work
does not address noise reduction for color images, this omis-
sion will be rectified in future work. Moreover, the satisfac-

tory performance of the algorithm encourages us to utilize
this method in different applications.
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